Threshold Effect in the Relationship between Environmental Regulations and Haze Pollution: Empirical Evidence from PSTR Estimation
Abstract
:1. Introduction
2. The Underlying Mechanisms
2.1. The Direct Effects Analysis
2.2. Indirect Effects
2.2.1. The Effect of ER on Haze Pollution by TI
2.2.2. The Effect of ER on Haze Pollution by IS
2.2.3. Impact of ER on Haze Pollution by FDI
2.2.4. Impact of ER on Haze Pollution by UR
2.2.5. Impact of ER on Haze Pollution by EC
3. Data Description and Model Settings
3.1. Data and Variables
3.2. Model Settings
- (1)
- Linear (H0) and nonlinear testing (H1) is the first step before specifying and estimating a nonlinear model. The following Equations (6)–(8) are used for the linearity test [56]. The statistics are defined as follows:
- (2)
- The test H0: r = 1 against H1: r = 2 is assessed when the null hypothesis is not accepted in the first step. Then, repeat the process for H0: r = i against H1: r = i + 1, until H0 can be accepted [58].
- (3)
- The final stage of PSTR analysis is the estimation stage. We refer to González et al. [53] to use nonlinear least squares (NLS) to estimate the model.
4. Results
4.1. Quantification of Environmental Regulations (ER)
4.2. Panel Unit Root Test
4.3. Results of Linearity Test
4.4. Results of Remaining No Linearity
4.5. PSTR Estimation Results
4.5.1. Analysis of Direct Effects
4.5.2. Analysis of Indirect Effects
4.5.3. Comprehensive Analysis
5. Conclusions and Policy Recommendations
5.1. Conclusions
5.2. Policy Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lingling, W.; Tsunemi, W. Effects of environmental policy on public risk perceptions of haze in Tianjin City: A difference-in-differences analysis. Renew. Sust. Energy Rev. 2019, 109, 199–212. [Google Scholar]
- Song, Y.; Yang, T.; Li, Z.; Zhang, X.; Zhang, M. Research on the direct and indirect effects of environmental regulation on environmental pollution: Empirical evidence from 253 prefecture-level cities in China. J. Clean. Prod. 2020, 269, 122425. [Google Scholar] [CrossRef]
- Cole, M.A.; Elliott, R.J.; Shimamoto, K. Industrial characteristics, environmental regulations and air pollution: An analysis of the UK manufacturing sector. J. Environ. Econ. Manag. 2005, 50, 121–143. [Google Scholar] [CrossRef]
- Blackman, A.; Kildegaard, A. Clean technological change in developing country industrial clusters: Mexican leather tanning. Environ. Econ. Policy Stud. 2010, 12, 115–132. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Bi, J.; Yuan, Z.; Ge, J.; Liu, B.; Bu, M. Why do firms engage in environmental management? An empirical study in China. J. Clean. Prod. 2008, 16, 1036–1045. [Google Scholar] [CrossRef]
- Féres, J.; Reynaud, A. Assessing the impact of formal and informal regulations on environmental and economic performance of Brazilian manufacturing firms. Environ. Resour. Econ. 2012, 52, 65–85. [Google Scholar] [CrossRef]
- Hao, Y.; Deng, Y.; Lu, Z.N.; Chen, H. Is environmental regulation effective in China? Evidence from city-level panel data. J. Clean. Prod. 2018, 188, 966–976. [Google Scholar] [CrossRef]
- Shen, N.; Liao, H.; Deng, R.; Wang, Q. Different types of environmental regulations and the heterogeneous influence on the environmental total factor productivity: Empirical analysis of China’s industry. J. Clean. Prod. 2019, 211, 171–184. [Google Scholar] [CrossRef]
- Wang, X.; Shao, Q. Non-linear effects of heterogeneous environmental regulations on green growth in G20 countries: Evidence from panel threshold regression. Sci. Total Environ. 2019, 660, 1346–1354. [Google Scholar] [CrossRef]
- Ouyang, X.; Shao, Q.; Zhu, X.; He, Q.; Xiang, C.; Wei, G. Environmental regulation, economic growth and air pollution: Panel threshold analysis for OECD countries. Sci. Total Environ. 2019, 657, 234–241. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, X.; Shao, Q.; Wang, X. The non-linear effect of environmental regulation on haze pollution: Empirical evidence for 277 Chinese cities during 2002–2010. J. Environ. Manag. 2019, 248, 109274. [Google Scholar] [CrossRef] [PubMed]
- Porter, M.E.; Van der Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, X.; Ding, Y.; Wang, W. How does environmental regulation affect haze pollution governance?—an empirical test based on Chinese provincial panel data. Sci. Total Environ. 2019, 695, 133905. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Y.; Chen, D.K. Air pollution, government regulations and high-quality economic development. Econ. Res. J. 2018, 53, 20–34. [Google Scholar]
- Zhao, H. Chapter fourteen—“Beautiful China”: “Chinese Dream” of green development. In The Economics and Politics of China’s Energy Security Transition; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 331–361. [Google Scholar]
- Yao, S. On economic growth, FDI and exports in China. Appl. Econ. 2006, 38, 339–351. [Google Scholar] [CrossRef]
- Walter, I.; Ugelow, J.L. Environmental policies in developing countries. Ambio 1979, 8, 102–109. [Google Scholar]
- Dogan, E.; Turkekul, B. CO2 emissions, real output, energy consumption, trade, urbanization and financial development: Testing the EKC hypothesis for the USA. Environ. Sci. Pollut. Res. 2016, 23, 1203–1213. [Google Scholar] [CrossRef]
- Dogan, E.; Inglesi-Lotz, R. The impact of economic structure to the environmental Kuznets curve (EKC) hypothesis: Evidence from European countries. Environ. Sci. Pollut. Res. 2020, 27, 12717–12724. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, X. Paradox or forced emission-reduction: Dual effect of environmental regulation on carbon emissions (in Chinese). China Popul. Resour. Environ. 2014, 24, 21–29. [Google Scholar]
- Zhang, M.; Liu, X.; Sun, X.; Wang, W. The influence of multiple environmental regulations on haze pollution: Evidence from China. Atmos. Pollut. Res. 2020, 11, 170–179. [Google Scholar] [CrossRef]
- Lahouel, B.B.; Bruna, M.G.; Zaied, Y.B. The curvilinear relationship between environmental performance and financial performance: An investigation of listed French firms using panel smooth transition model. Financ. Res. Lett. 2020, 35, 101455. [Google Scholar] [CrossRef]
- Wang, H.; Wei, W. Coordinating technological progress and environmental regulation in CO2 mitigation: The optimal levels for OECD countries & emerging economies. Energy Econ. 2019, 87, 104510. [Google Scholar]
- Li, X.; Yang, X.; Wei, Q.; Zhang, B. Authoritarian environmentalism and environmental policy implementation in China. Resour. Conserv. Recycl. 2019, 145, 86–93. [Google Scholar] [CrossRef]
- Sinn, H.W. Public policies against global warming: A supply side approach. Int. Tax Public Financ. 2008, 15, 360–394. [Google Scholar] [CrossRef]
- Xu, B.; Luo, L.; Lin, B. A dynamic analysis of air pollution emissions in China: Evidence from nonparametric additive regression models. Ecol. Indic. 2016, 63, 346–358. [Google Scholar] [CrossRef]
- Qiu, L.D.; Zhou, M.; Wei, X. Regulation, innovation, and firm selection: The porter hypothesis under monopolistic competition. J. Environ. Econ. Manag. 2018, 92, 638–658. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, X.; Li, K. Effects of the terms and characteristics of cadres on environmental pollution: Evidence from 230 cities in China. J. Environ. Manag. 2019, 232, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Meng, M.; Jing, K.; Mander, S. Scenario analysis of CO2 emissions from China’s electric power industry. J. Clean. Prod. 2017, 142, 3101–3108. [Google Scholar] [CrossRef]
- Albrizio, S.; Kozluk, T.; Zipperer, V. Environmental policies and productivity growth: Evidence across industries and firms. J. Environ. Econ. Manag. 2017, 81, 209–226. [Google Scholar] [CrossRef]
- Li, J.F.; Ma, Z.Y.; Zhang, Y.X.; Wen, Z.C. Analysis on energy demand and CO2 emissions in China following the energy production and consumption revolution strategy and China dream target. Adv. Clim. Chang. Res. 2018, 9, 16–26. [Google Scholar] [CrossRef]
- Zhu, X. Mandate versus championship: Vertical government intervention and diffusion of innovation in public services in authoritarian China. Public Manag. Rev. 2014, 16, 117–139. [Google Scholar] [CrossRef]
- Li, H.; Zhou, L.A. Political turnover and economic performance: The incentive role of personnel control in China. J. Public Econ. 2005, 89, 1743–1762. [Google Scholar] [CrossRef]
- Eskeland, G.S.; Harrison, A.E. Moving to greener pastures? Multinationals and the pollution haven hypothesis. J. Dev. Econ. 2003, 70, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Grey, K.; Brank, D. Environmental issues in policy-based competition for investment: A literature review. Ecol. Econ. 2002, 11, 71–81. [Google Scholar]
- Zhang, C.; Zhou, X. Does foreign direct investment lead to lower CO2 emissions? Evidence from a regional analysis in China. Renew. Sustain. Energy Rev. 2016, 58, 943–951. [Google Scholar] [CrossRef]
- Wu, J.; Xiang, W.N.; Zhao, J. Urban ecology in China: Historical developments and future directions. Landsc. Urban Plan. 2014, 125, 222–233. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhan, Y.; Wang, B.; Li, Z.; Qin, Y.; Zhang, K. Spatiotemporally mapping of the relationship between NO2 pollution and urbanization for a megacity in Southwest China during 2005–2016. Chemosphere 2019, 220, 155–162. [Google Scholar] [CrossRef]
- Martin, C.; Evans, J.; Karvonen, A.; Paskaleva, K.; Yang, D.; Linjordet, T. Smart-sustainability: A new urban fix? Sust. Cities Soc. 2019, 45, 640–648. [Google Scholar] [CrossRef]
- Lee, J.H.; Lim, S. The selection of compact city policy instruments and their effects on energy consumption and greenhouse gas emissions in the transportation sector: The case of South Korea. Sust. Cities Soc. 2018, 37, 116–124. [Google Scholar] [CrossRef]
- Wang, X.; Tian, G.; Yang, D.; Zhang, W.; Lu, D.; Liu, Z. Responses of PM2.5 pollution to urbanization in China. Energy Policy 2018, 123, 602–610. [Google Scholar] [CrossRef]
- Poumanyvong, P.; Kaneko, S. Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis. Ecol. Econ. 2010, 70, 434–444. [Google Scholar] [CrossRef]
- Shiu, A.; Lam, P.L. Electricity consumption and economic growth in China. Energy Policy 2004, 32, 47–54. [Google Scholar] [CrossRef]
- Yuan, J.; Zhao, C.; Yu, S.; Hu, Z. Electricity consumption and economic growth in China: Cointegration and co-feature analysis. Energy Econ. 2007, 29, 1179–1191. [Google Scholar] [CrossRef]
- Cherni, J.A.; Kentish, J. Renewable energy policy and electricity market reforms in China. Energy Policy 2007, 35, 3616–3629. [Google Scholar] [CrossRef]
- Li, J.; Ye, S. Regional policy synergy and haze governance—empirical evidence from 281 prefecture-level cities in China. Environ. Sci. Pollut. Res. 2021, 28, 10763–10779. [Google Scholar] [CrossRef] [PubMed]
- Bartik, T.J.; Bartik Timothy, J. Who Benefits from State and Local Economic Development Policies? Available online: https://research.upjohn.org/cgi/viewcontent.cgi?article=1093&context=up_press (accessed on 24 November 2021).
- Gan, T.; Yang, H.; Liang, W. How do urban haze pollution and economic development affect each other? Empirical evidence from 287 Chinese cities during 2000–2016. Sust. Cities Soc. 2021, 65, 102642. [Google Scholar] [CrossRef]
- Sun, X.; Zhou, X.; Chen, Z.; Yang, Y. Environmental efficiency of electric power industry, market segmentation and technological innovation: Empirical evidence from China. Sci. Total Environ. 2020, 706, 135749. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Li, X.; Cao, J.H.; Yang, L.L. China’s economic policy choices for governing smog pollution based on spatial spillover effects. Econ. Res. J. 2016, 9, 73–88. [Google Scholar]
- Broner, F.; Bustos, P.; Carvalho, V.M. Sources of Comparative Advantage in Polluting Industries (No. w18337). Natl. Bur. Econ. Res. 2012. NBER Working Paper 18337. Available online: https://www.nber.org/system/files/working_papers/w18337/w18337.pdf (accessed on 24 November 2021).
- Dijk, D.V.; Teräsvirta, T.; Franses, P.H. Smooth transition autoregressive models—A survey of recent developments. Econom. Rev. 2002, 21, 1–47. [Google Scholar] [CrossRef]
- González, A.; Teräsvirta, T.; Van Djik, D. Panel Smooth Transition Regression Models; Paper Presented at the SSE/EFI Working Paper (No. 604); Stockholm School of Economics, The Economic Research Institute (EFI): Stockholm, Sweden, 2005. [Google Scholar]
- Ullah, A.; Zhang, Q.; Raza, S.A.; Ali, S. Is it a global challenge or opportunity? Focusing on different income level countries through Panel Smooth Transition Regression Model. Renew. Energy 2021, 177, 689–699. [Google Scholar] [CrossRef]
- Ulucak, R.; Kassouri, Y. An assessment of the environmental sustainability corridor: Investigating the non-linear effects of environmental taxation on CO2 emissions. Sustain. Dev. 2020, 28, 1010–1018. [Google Scholar] [CrossRef]
- Colletaz, G.; Hurlin, C. Threshold Effects of the Public Capital Productivity: An international Panel Smooth Transition Approach. 2006. Available online: https://halshs.archives-ouvertes.fr/halshs-00008056/document (accessed on 24 November 2021).
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef] [Green Version]
- Fouquau, J.; Hurlin, C.; Rabaud, I. The Feldstein–Horioka puzzle: A panel smooth transition regression approach. Econ. Model. 2008, 25, 284–299. [Google Scholar] [CrossRef]
- Beeferman, D.; Berger, A.; Lafferty, J. Statistical models for text segmentation. Mach. Learn. 1999, 34, 177–210. [Google Scholar] [CrossRef] [Green Version]
- Levin, A.; Lin, C.F.; Chu, C.S.J. Unit root tests in panel data: Asymptotic and finite-sample properties. J. Econom. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Fisher, R.A. Statistical Methods for Research Workers, 4th ed.; Oliver & Boyd: Edinburgh, UK, 1932; Available online: https://psycnet.apa.org/record/1933-04877-000 (accessed on 24 November 2021).
- Gonzalez, A.; Teräsvirta, T.; Van Dijk, D.; Yang, Y. Panel Smooth Transition Regression Models; Stockholm School of Economics: Stockholm, Sweden, 2017. [Google Scholar]
- Jiang, L.; Zhou, H.F.; Bai, L.; Zhou, P. Does foreign direct investment drive environmental degradation in China? An empirical study based on air quality index from a spatial perspective. J. Clean. Prod. 2018, 176, 864–872. [Google Scholar] [CrossRef]
- Li, L.; Tan, Z.; Wang, J.; Xu, J.; Cai, C.; Hou, Y. Energy conservation and emission reduction policies for the electric power industry in China. Energy Policy 2011, 39, 3669–3679. [Google Scholar] [CrossRef]
- Zhou, N.; Levine, M.D.; Price, L. Overview of current energy-efficiency policies in China. Energy Policy 2010, 38, 6439–6452. [Google Scholar] [CrossRef]
- Li, H.; Zhang, M.; Li, C.; Li, M. Study on the spatial correlation structure and synergistic governance development of the haze emission in China. Environ. Sci. Pollut. Res. 2019, 26, 12136–12149. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J. The impact of foreign direct investment on urban PM2.5 pollution in China. J. Environ. Manag. 2020, 265, 110532. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Wang, Z.; Li, J. The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. J. Clean. Prod. 2019, 237, 117649. [Google Scholar] [CrossRef]
- Zhou, K.; Yang, S.; Shen, C.; Ding, S.; Sun, C. Energy conservation and emission reduction of china’s electric power industry. Renew. Sustain. Energy Rev. 2015, 45, 10–19. [Google Scholar] [CrossRef]
Variable | Definition (Unit) | Type | Mean | Std. Dev. | References |
---|---|---|---|---|---|
PM2.5 | PM2.5 concentration (ug/m3) | Dependent variable | 37.76 | 15.96 | [2,13] |
ER | Environmental regulations (%) | Independent variable | 40.41 | 14.47 | [14,46,47] |
TI | The proportion of Government expenditure for science and technology in regional GDP (%) | Transition variables | 0.30 | 0.41 | [11,48] |
IS | The proportion of added value of secondary industry in regional GDP (%) | 48.77 | 11.80 | [5] | |
FDI | The proportion of FDI in regional GDP (%) | 3.79 | 3.38 | [2] | |
UR | The regional urbanization rate (%) | 51.20 | 15.84 | [41] | |
EC | The logarithm of regional electricity consumption (KW.h) | 13.22 | 1.22 | [29,49] | |
LNPD | Population density (100 people/km2) | Control variables | 6.45 | 0.91 | [10] |
LNPGDP | GDP per capita (CNY) | 10.77 | 0.62 | [50] | |
PB | Bus per 10,000 people (buses/10,000 people) | 8.15 | 6.94 | [11] | |
RP | Road area per capita (m2) | 12.17 | 9.14 | [24] | |
KQ | Air flow coefficient (10 m2/s) | 7.52 | 0.54 | [14,51] |
Province | I | II | III | IV | V | VI | VII | VIII | IX | X | XI | EV | TV |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Anhui | 1 | 0 | 2 | 1 | 30 | 10 | 16 | 2 | 2 | 24 | 2 | 90 | 6784 |
Beijing | 0 | 2 | 9 | 0 | 29 | 6 | 24 | 2 | 0 | 9 | 5 | 86 | 7090 |
Chongqing | 1 | 0 | 4 | 0 | 32 | 15 | 16 | 2 | 1 | 9 | 2 | 82 | 6709 |
Fujian | 0 | 0 | 6 | 0 | 44 | 8 | 17 | 3 | 2 | 16 | 3 | 99 | 6717 |
Gansu | 0 | 0 | 5 | 1 | 52 | 12 | 9 | 1 | 1 | 20 | 1 | 102 | 7446 |
Guangdong | 0 | 0 | 5 | 1 | 26 | 8 | 24 | 2 | 2 | 9 | 4 | 81 | 8520 |
Guangxi | 0 | 0 | 4 | 2 | 43 | 11 | 8 | 2 | 2 | 5 | 2 | 79 | 7392 |
Guizhou | 0 | 0 | 1 | 0 | 38 | 8 | 8 | 0 | 4 | 27 | 7 | 93 | 7410 |
Hainan | 1 | 0 | 6 | 0 | 59 | 15 | 8 | 0 | 2 | 5 | 7 | 103 | 7929 |
Hebei | 3 | 1 | 5 | 0 | 23 | 11 | 18 | 3 | 2 | 11 | 6 | 83 | 7077 |
Heilongjiang | 2 | 2 | 3 | 0 | 24 | 3 | 5 | 2 | 0 | 9 | 3 | 53 | 5818 |
Henan | 6 | 0 | 8 | 0 | 26 | 6 | 23 | 5 | 2 | 10 | 2 | 88 | 6942 |
Hubei | 0 | 0 | 2 | 0 | 24 | 7 | 10 | 1 | 2 | 17 | 2 | 65 | 5297 |
Hunan | 0 | 0 | 0 | 0 | 15 | 7 | 10 | 1 | 2 | 11 | 5 | 51 | 6953 |
Jiangsu | 2 | 2 | 8 | 4 | 52 | 7 | 17 | 2 | 2 | 8 | 2 | 106 | 7551 |
Jiangxi | 0 | 0 | 2 | 2 | 49 | 4 | 4 | 2 | 2 | 27 | 1 | 93 | 6792 |
Jilin | 0 | 0 | 7 | 0 | 23 | 10 | 9 | 2 | 1 | 17 | 3 | 72 | 7041 |
Liaoning | 1 | 1 | 2 | 1 | 31 | 3 | 7 | 1 | 1 | 7 | 1 | 56 | 6592 |
Inner Mongolia | 0 | 0 | 2 | 1 | 23 | 5 | 13 | 1 | 2 | 12 | 0 | 59 | 4556 |
Ningxia | 0 | 0 | 1 | 0 | 36 | 12 | 7 | 1 | 2 | 10 | 4 | 73 | 5949 |
Qinghai | 0 | 0 | 1 | 2 | 51 | 7 | 4 | 0 | 2 | 30 | 1 | 98 | 6309 |
Shaanxi | 0 | 0 | 0 | 1 | 27 | 8 | 13 | 2 | 0 | 6 | 1 | 58 | 5663 |
Shandong | 2 | 0 | 5 | 0 | 26 | 9 | 11 | 3 | 1 | 8 | 0 | 65 | 7276 |
Shanghai | 0 | 0 | 6 | 1 | 24 | 7 | 10 | 4 | 0 | 10 | 4 | 66 | 7094 |
Shanxi | 2 | 1 | 6 | 2 | 29 | 8 | 15 | 2 | 1 | 7 | 2 | 75 | 7997 |
Sichuan | 5 | 0 | 2 | 0 | 32 | 9 | 15 | 1 | 1 | 15 | 3 | 83 | 7221 |
Tianjin | 2 | 0 | 2 | 1 | 23 | 7 | 12 | 1 | 2 | 21 | 7 | 78 | 5937 |
Xinjiang | 0 | 0 | 8 | 0 | 50 | 17 | 17 | 1 | 0 | 11 | 2 | 106 | 8446 |
Yunnan | 0 | 0 | 6 | 0 | 33 | 12 | 12 | 1 | 2 | 19 | 2 | 87 | 6814 |
Zhejiang | 4 | 0 | 1 | 0 | 21 | 5 | 8 | 3 | 1 | 10 | 6 | 59 | 6056 |
Variables | ADF-Fisher Chi-Square Statistics (p-Value) at Levels | ADF-Fisher Chi-Square Statistics (p-Value) at First Difference | LLC Statistics (p-Value) at Levels | LLC Statistics (p-Value) at First Difference |
---|---|---|---|---|
PM2.5 | 1608.64 (0.000) *** | 1724.74 (0.000) *** | −17.08 (0.000) *** | −18.67 (0.000) *** |
ER | 1398.19 (0.000) *** | 1376.15 (0.000) *** | −3.97 (0.000) *** | −7.39 (0.000) *** |
TI | 1561.28 (0.000) *** | 1507.38 (0.000) *** | −18.97 (0.000) *** | −19.96 (0.000) *** |
IS | 1189.18 (0.000) *** | 1139.01 (0.000) *** | −10.54 (0.000) *** | −12.61 (0.000) *** |
FDI | 1597.90 (0.000) *** | 1500.56 (0.000) *** | −10.38 (0.000) *** | −10.24 (0.000) *** |
UR | 1384.07 (0.000) *** | 1284.10 (0.000) *** | −23.54 (0.000) *** | −49.17 (0.000) *** |
EC | 1013.10 (0.000) *** | 1053.37 (0.000) *** | −6.28 (0.000) *** | −8.10 (0.000) *** |
LNPD | 2378.82 (0.000) *** | 2246.13 (0.000) *** | −31.18 (0.000) *** | −22.18 (0.000) *** |
LNPGDP | 1640.35 (0.000) *** | 1558.08 (0.000) *** | −14.87 (0.000) *** | −13.98 (0.000) *** |
RP | 1316.26 (0.000) *** | 1250.15 (0.000) *** | −11.54 (0.000) *** | −9.81 (0.000) *** |
PB | 1468.63 (0.000) *** | 1314.76 (0.000) *** | −12.87 (0.000) *** | −7.47 (0.000) *** |
KQ | 1979.69 (0.000) *** | 2016.90 (0.000) *** | −21.22 (0.000) *** | −30.32 (0.000) *** |
Statistic | Threshold Variable | |||||
---|---|---|---|---|---|---|
ER | TI | IS | FDI | UR | EC | |
H0: linear model (r = 0) vs. H1: PSTR model with at least one threshold variable (r = 1) | ||||||
Wald LM test (LMw) | 64.03 *** | 30.14 *** | 38.91 *** | 36.91 *** | 50.74 *** | 69.76 *** |
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Fisher LM test (LMF) | 5.38 *** | 4.60 *** | 5.95 *** | 5.64 *** | 7.80 *** | 10.78 *** |
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Likelihood ratio test (LRT) | 64.69 *** | 30.29 *** | 39.16 *** | 37.13 *** | 51.16 *** | 70.55 *** |
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Statistic | Threshold Variable | |||||
---|---|---|---|---|---|---|
ER | TI | IS | FDI | UR | EC | |
H0: r = 1 vs. H1: r = 2 | ||||||
Wald LM test (LMw) | 14.43 | 1.35 | 15.22 | 7.73 | 15.49 | 12.23 |
0.21 | 0.96 | 0.19 | 0.25 | 0.11 | 0.15 | |
Fisher LM test (LMF) | 1.18 | 0.20 | 2.30 | 1.16 | 2.34 | 1.84 |
0.29 | 0.97 | 0.32 | 0.32 | 0.12 | 0.18 | |
Likelihood ratio test (LRT) | 14.47 | 1.35 | 15.26 | 7.74 | 15.52 | 12.26 |
0.208 | 0.96 | 0.18 | 0.25 | 0.11 | 0.15 |
Core Explanatory Variable | Interpreted Variable: PM2.5 | |||||
---|---|---|---|---|---|---|
Threshold Variables | ||||||
ER | TI | IS | FDI | UR | EC | |
ER (β0) | −0.06 *** | −0.05 ** | −0.001 *** | −0.02 *** | −0.16 *** | 1.22 *** |
0.00 | 0.02 | 0.00 | 0.00 | 0.000 | 0.001 | |
ER (β1) | 0.08 | 0.19 *** | 0.002 *** | −0.08 ** | 0.20 *** | −1.55 ** |
0.20 | 0.00 | 0.00 | 0.091 | 0.000 | 0.01 | |
β0 + β1 | 0.02 | 0.14 | 0.001 | −0.10 | 0.04 | −0.33 |
Threshold (c) | 38.86 | 0.37 | 39.61 | 7.25 | 42.86 | 13.75 |
Slope (γ) | 0.17 | 493.08 | 1.01 | 6.24 | 0.32 | 3.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.; Huang, Y.; Li, M.; Duan, Z. Threshold Effect in the Relationship between Environmental Regulations and Haze Pollution: Empirical Evidence from PSTR Estimation. Int. J. Environ. Res. Public Health 2021, 18, 12423. https://doi.org/10.3390/ijerph182312423
Chang Y, Huang Y, Li M, Duan Z. Threshold Effect in the Relationship between Environmental Regulations and Haze Pollution: Empirical Evidence from PSTR Estimation. International Journal of Environmental Research and Public Health. 2021; 18(23):12423. https://doi.org/10.3390/ijerph182312423
Chicago/Turabian StyleChang, Yonglian, Yingjun Huang, Manman Li, and Zhengmin Duan. 2021. "Threshold Effect in the Relationship between Environmental Regulations and Haze Pollution: Empirical Evidence from PSTR Estimation" International Journal of Environmental Research and Public Health 18, no. 23: 12423. https://doi.org/10.3390/ijerph182312423
APA StyleChang, Y., Huang, Y., Li, M., & Duan, Z. (2021). Threshold Effect in the Relationship between Environmental Regulations and Haze Pollution: Empirical Evidence from PSTR Estimation. International Journal of Environmental Research and Public Health, 18(23), 12423. https://doi.org/10.3390/ijerph182312423