Impact of Vitamin B12 Insufficiency on Sarcopenia in Community-Dwelling Older Korean Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Study Population
2.2. Vitamin B12
2.3. Sarcopenia
- (1)
- Muscle strength: HGS was measured using a hand dynamometer (JAMAR, Bolingbrook, IL, USA). HGS was measured twice on both sides, with the elbow flexed at 90° in a sitting position, and the highest value was obtained (cut-off value: <28 kg for men; <18 kg for women).
- (2)
- Appendicular skeletal muscle mass (ASM): Among the variety of techniques that can estimate muscle quantity, DEXA is more widely available and useful for its non-invasiveness, accuracy, and convenience for determining muscle quantity [19]. The appendicular skeletal muscle mass index (ASMI) was compared at different heights using height squared (ASM/height2). The cut-off values for sarcopenia were <7.0 kg/m2 for men and <5.4 kg/m2 for women.
- (3)
- Physical performance was measured using the SPPB. The SPPB is a well-established performance test that evaluates the physical function of the lower extremities in older adults. It comprises the standing balance test, walking speed, and five repeated chair stands. Each of these components is scored on a 4-point scale, with a higher score indicating better lower extremity physical function. In AWGS, a SPPB score of ≤9 points indicates low physical performance.
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stabler, S.P. Vitamin B12 Deficiency. N. Engl. J. Med. 2013, 368, 149–160. [Google Scholar] [CrossRef]
- Reynolds, E. Vitamin B12, folic acid, and the nervous system. Lancet Neurol. 2006, 5, 949–960. [Google Scholar] [CrossRef]
- Green, R.; Allen, L.H.; Bjørke-Monsen, A.-L.; Brito, A.; Guéant, J.-L.; Miller, J.W.; Molloy, A.M.; Nexo, E.; Stabler, S.; Toh, B.-H. Vitamin B 12 deficiency. Nat. Rev. Dis. Primers 2017, 3, 17040. [Google Scholar] [CrossRef] [PubMed]
- Heidelbaugh, J.J. Proton pump inhibitors and risk of vitamin and mineral deficiency: Evidence and clinical implications. Ther. Adv. Drug Saf. 2013, 4, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Wolters, M.; Ströhle, A.; Hahn, A. Cobalamin: A critical vitamin in the elderly. Prev. Med. 2004, 39, 1256–1266. [Google Scholar] [CrossRef]
- Bulut, E.A.; Soysal, P.; Aydin, A.E.; Dokuzlar, O.; Kocyigit, S.E.; Isik, A.T. Vitamin B12 deficiency might be related to sarcopenia in older adults. Exp. Gerontol. 2017, 95, 136–140. [Google Scholar] [CrossRef] [PubMed]
- De Villiers, L.; Kalula, S. An approach to balance problems and falls in elderly persons: CME-article. S. Afr. Med. J. 2015, 105, 705–709. [Google Scholar] [CrossRef] [Green Version]
- Aytekin, N.; Mileva, K.; Cunliffe, A. Selected B vitamins and their possible link to the aetiology of age-related sarcopenia: Relevance of UK dietary recommendations. Nutr. Res. Rev. 2018, 31, 204–224. [Google Scholar] [CrossRef]
- Li, R.; Xia, J.; Zhang, X.; Gathirua-Mwangi, W.G.; Guo, J.; Li, Y.; McKenzie, S.; Song, Y. Associations of muscle mass and strength with all-cause mortality among US older adults. Med. Sci. Sports Exerc. 2018, 50, 458. [Google Scholar] [CrossRef]
- Brill, P.A.; Macera, C.A.; Davis, D.R.; Blair, S.N.; Gordon, N. Muscular strength and physical function. Med. Sci. Sports Exerc. 2000, 32, 412–416. [Google Scholar] [CrossRef]
- Shafiee, G.; Keshtkar, A.; Soltani, A.; Ahadi, Z.; Larijani, B.; Heshmat, R. Prevalence of sarcopenia in the world: A systematic review and meta-analysis of general population studies. J. Diabetes Metab. Disord. 2017, 16, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.-K.; Lee, J.-Y.; Gil, C.-R.; Kim, M.-K. Prevalence of sarcopenia in community-dwelling older adults according to simplified algorithms for sarcopenia consensus based on Asian working Group for Sarcopenia. Clin. Interv. Aging 2020, 15, 2291. [Google Scholar] [CrossRef]
- Chen, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Chou, M.-Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef]
- Gao, L.; Jiang, J.; Yang, M.; Hao, Q.; Luo, L.; Dong, B. Prevalence of sarcopenia and associated factors in Chinese community-dwelling elderly: Comparison between rural and urban areas. J. Am. Med. Dir. Assoc. 2015, 16, 1003.e1–1003.e6. [Google Scholar] [CrossRef]
- Wall, B.T.; Dirks, M.L.; Van Loon, L.J. Skeletal muscle atrophy during short-term disuse: Implications for age-related sarcopenia. Ageing Res. Rev. 2013, 12, 898–906. [Google Scholar] [CrossRef]
- Argiles, J.M.; Busquets, S.; Stemmler, B.; Lopez-Soriano, F.J. Cachexia and sarcopenia: Mechanisms and potential targets for intervention. Curr. Opin. Pharmacol. 2015, 22, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Larsson, L.; Degens, H.; Li, M.; Salviati, L.; Lee, Y.i.; Thompson, W.; Kirkland, J.L.; Sandri, M. Sarcopenia: Aging-related loss of muscle mass and function. Physiol. Rev. 2019, 99, 427–511. [Google Scholar] [CrossRef]
- Werder, S.F. Cobalamin deficiency, hyperhomocysteinemia, and dementia. Neuropsychiatr. Dis. Treat. 2010, 6, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilal, S.; Perna, S.; Gasparri, C.; Alalwan, T.A.; Vecchio, V.; Fossari, F.; Peroni, G.; Riva, A.; Petrangolini, G.; Rondanelli, M. Comparison between Appendicular Skeletal Muscle Index DXA Defined by EWGSOP1 and 2 versus BIA Tengvall Criteria among Older People Admitted to the Post-Acute Geriatric Care Unit in Italy. Nutrients 2020, 12, 1818. [Google Scholar] [CrossRef]
- McCormick, R.; Vasilaki, A. Age-related changes in skeletal muscle: Changes to life-style as a therapy. Biogerontology 2018, 19, 519–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calderón-Ospina, C.A.; Nava-Mesa, M.O. B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci. Ther. 2020, 26, 5–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, K. Cobalt: Its role in health and disease. Interrelat. Essent. Met. Ions Hum. Dis. 2013, 13, 295–320. [Google Scholar]
- Fraher, J.; Dockery, P. A strong myelin thickness-axon size correlation emerges in developing nerves despite independent growth of both parameters. J. Anat. 1998, 193, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.; Mujumdar, V.; Shek, E.; Guillot, J.; Angelo, M.; Palmer, L.; Tyagi, S.C. Hyperhomocyst (e) inemia induces multiorgan damage. Heart Vessel. 2000, 15, 135–143. [Google Scholar] [CrossRef] [PubMed]
- McDermott, M.M.; Ferrucci, L.; Guralnik, J.M.; Tian, L.; Green, D.; Liu, K.; Tan, J.; Liao, Y.; Pearce, W.H.; Schneider, J.R. Elevated levels of inflammation, d-dimer, and homocysteine are associated with adverse calf muscle characteristics and reduced calf strength in peripheral arterial disease. J. Am. Coll. Cardiol. 2007, 50, 897–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, J.; Ke, Y.-Y.; Zhang, Z.; Zhang, Y.; Wang, Y.-Y.; Ren, C.-X.; Xu, J.; Zhu, Y.-X.; Zhang, X.-L.; Zhang, X.-Y. Comparison of the value of malnutrition and sarcopenia for predicting mortality in hospitalized old adults over 80 years. Exp. Gerontol. 2020, 138, 111007. [Google Scholar] [CrossRef]
- Kuo, Y.-H.; Wang, T.-F.; Liu, L.-K.; Lee, W.-J.; Peng, L.-N.; Chen, L.-K. Epidemiology of sarcopenia and factors associated with it among community-dwelling older adults in Taiwan. Am. J. Med. Sci. 2019, 357, 124–133. [Google Scholar] [CrossRef]
- Soh, Y.; Won, C.W. Association between frailty and vitamin B12 in the older Korean population. Medicine 2020, 99, e22327. [Google Scholar] [CrossRef]
- Matteini, A.M.; Walston, J.D.; Fallin, M.; Bandeen-Roche, K.; Kao, W.; Semba, R.; Allen, R.; Guralnik, J.; Fried, L.; Stabler, S. Markers of B-vitamin deficiency and frailty in older women. J. Nutr. Health Aging 2008, 12, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Oberlin, B.S.; Tangney, C.C.; Gustashaw, K.A.; Rasmussen, H.E. Vitamin B12 deficiency in relation to functional disabilities. Nutrients 2013, 5, 4462–4475. [Google Scholar] [CrossRef]
- Ng, T.-P.; Aung, K.C.Y.; Feng, L.; Scherer, S.C.; Yap, K.B. Homocysteine, folate, vitamin B-12, and physical function in older adults: Cross-sectional findings from the Singapore Longitudinal Ageing Study. Am. J. Clin. Nutr. 2012, 96, 1362–1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Schoor, N.; Swart, K.; Pluijm, S.; Visser, M.; Simsek, S.; Smulders, Y.; Lips, P. Cross-sectional and longitudinal association between homocysteine, vitamin B12 and physical performance in older persons. Eur. J. Clin. Nutr. 2012, 66, 174–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | B12 (pg/mL) | Total | p | ||
---|---|---|---|---|---|
Sufficiency (≥350, n = 2044) | Insufficiency (<350, n = 281) | (n = 2325) | |||
Age, mean (SD) | 76.3 (3.8) | 77.2 (3.9) | 76.4 (3.8) | <0.001 * | |
Sex (n, %) | Male | 950 (46.5) | 162 (57.7) | 1112 (47.8) | <0.001 * |
Female | 1094 (53.5) | 119 (42.3) | 1213 (52.2) | ||
BMI (SD) | 24.3 (2.9) | 24.5 (3.1) | 24.6 (2.9) | 0.165 | |
Education years (n, %) | Less than 6 | 853 (41.7) | 124 (44.1) | 977 (42.0) | 0.168 |
7–12 | 765 (37.4) | 112 (39.9) | 877 (37.7) | ||
Over 13 y | 426 (20.8) | 45 (16.0) | 471 (20.3) | ||
Marriage (n, %) | Married | 1581 (77.3) | 228 (81.1) | 1809 (77.8) | 0.152 |
Not married | 463 (22.7) | 53 (18.9) | 516 (22.2) | ||
Income per month (Korean million Won †, %) | More than 3 | 390 (19.1) | 51 (18.1) | 441 (19.0) | 0.781 |
1–3 | 883 (43.2) | 118 (42.0) | 1001 (43.1) | ||
Less than 1 | 771 (37.7) | 112 (39.9) | 883 (38.0) | ||
Residency (n, %) | Urban | 1667 (81.6) | 230 (81.9) | 1897 (81.6) | 0.905 |
Rural | 377 (18.4) | 51 (18.1) | 428 (18.4) | ||
Current smoker (n, %) | 655 (32.0) | 97 (34.5) | 752 (32.3) | 0.406 | |
Alcohol use (n, %) | 1191 (58.3) | 175 (62.3) | 1366 (58.8) | 0.2 | |
Hypertension (n, %) | 1152 (56.4) | 159 (56.6) | 1311 (56.4) | 0.944 | |
Dyslipidemia (n, %) | 684 (33.5) | 91 (32.4) | 775 (33.3) | 0.719 | |
Diabetes mellitus (n, %) | 433 (21.2) | 85 (30.2) | 518 (22.3) | 0.001 | |
Depression (n, %) | 59 (2.9) | 6 (2.1) | 65 (2.8) | 0.474 | |
OA (n, %) | 444 (21.7) | 69 (24.6) | 513 (22.1) | 0.283 | |
Osteoporosis (n, %) | 308 (15.1) | 38 (13.5) | 346 (14.9) | 0.495 | |
WBC (103/μL, SD) | 5.8 (1.5) | 5.8 (1.5) | 5.8 (1.6) | 0.768 | |
25(OH)D (ng/mL, SD) | 24.0 (10.1) | 20.9 (9.3) | 23.4 (10.0) | 0.056 | |
Hb (g/dL, SD) | 13.4 (1.3) | 13.4 (1.4) | 13.4 (1.2) | 0.145 | |
MMSE-KC (SD) | 25.8 (3.0) | 25.5 (3.5) | 25.7 (3.3) | 0.023 * |
Characteristic | B12 (pg/mL) | p | |
---|---|---|---|
Sufficiency (≥350, n = 2044) | Insufficiency (<350, n = 281) | ||
HGS (kg, SD) | 26.32 (7.4) | 27.18 (7.42) | 0.066 |
ASMI (kg/m2, SD) | 6.44 (0.99) | 6.44 (0.96) | 0.133 |
SPPB (SD) | 10.84 (1.46) | 10.73 (1.48) | 0.455 |
Sarcopenia † (n, %) | 225(11.0) | 36(12.8) | 0.369 |
Severe Sarcopenia § (n, %) | 71(3.5) | 12(4.3) | 0.5 |
Unadjusted Model | Fully Adjusted Model | |||
---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | |
Muscle strength | ||||
Low HGS † | 0.987 | 0.932 | 0.816 | 0.213 |
(0.728–1.338) | (0.592–1.124) | |||
Muscle mass | ||||
Low ASMI † | 1.596 | <0.001 * | 1.744 | <0.001 * |
(1.242–2.051) | (1.301–2.339) | |||
Physical performance | ||||
Low SPPB † | 1.182 | 0.308 | 1.088 | 0.634 |
(0.857–1.629) | (0.769–1.538) | |||
Sarcopenia †† | 1.188 | 0.37 | 0.991 | 0.965 |
(0.815–1.731) | (0.659–1.489) | |||
Severe sarcopenia § | 1.24 | 0.500 | 1.038 | 0.911 |
(0.664–2.316) | (0.540–1.996) |
Unadjusted Model | Fully Adjusted Model | |||
---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | |
Muscle strength | ||||
Low HGS † | 1.104 | 0.434 | 0.906 | 0.462 |
(0.862–1.416) | (0.696–1.179) | |||
Muscle mass | ||||
Low ASMI † | 1.339 | 0.006 * | 1.478 | 0.002 * |
(1.086–1.652) | (1.155–1.891) | |||
Physical performance | ||||
Low SPPB † | 1.27 | 0.077 | 1.161 | 0.308 |
(0.975–1.655) | (0.871–1.548) | |||
Sarcopenia †† | 1.176 | 0.313 | 0.975 | 0.885 |
(0.858–1.612) | (0.691–1.375) | |||
Severe sarcopenia § | 1.357 | 0.244 | 1.143 | 0.63 |
(0.812–2.269) | (.663–1.971) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chae, S.A.; Kim, H.-S.; Lee, J.H.; Yun, D.H.; Chon, J.; Yoo, M.C.; Yun, Y.; Yoo, S.D.; Kim, D.H.; Lee, S.A.; et al. Impact of Vitamin B12 Insufficiency on Sarcopenia in Community-Dwelling Older Korean Adults. Int. J. Environ. Res. Public Health 2021, 18, 12433. https://doi.org/10.3390/ijerph182312433
Chae SA, Kim H-S, Lee JH, Yun DH, Chon J, Yoo MC, Yun Y, Yoo SD, Kim DH, Lee SA, et al. Impact of Vitamin B12 Insufficiency on Sarcopenia in Community-Dwelling Older Korean Adults. International Journal of Environmental Research and Public Health. 2021; 18(23):12433. https://doi.org/10.3390/ijerph182312433
Chicago/Turabian StyleChae, Seon A, Hee-Sang Kim, Jong Ha Lee, Dong Hwan Yun, Jinmann Chon, Myung Chul Yoo, Yeocheon Yun, Seung Don Yoo, Dong Hwan Kim, Seung Ah Lee, and et al. 2021. "Impact of Vitamin B12 Insufficiency on Sarcopenia in Community-Dwelling Older Korean Adults" International Journal of Environmental Research and Public Health 18, no. 23: 12433. https://doi.org/10.3390/ijerph182312433
APA StyleChae, S. A., Kim, H. -S., Lee, J. H., Yun, D. H., Chon, J., Yoo, M. C., Yun, Y., Yoo, S. D., Kim, D. H., Lee, S. A., Chung, S. J., Soh, Y., & Won, C. W. (2021). Impact of Vitamin B12 Insufficiency on Sarcopenia in Community-Dwelling Older Korean Adults. International Journal of Environmental Research and Public Health, 18(23), 12433. https://doi.org/10.3390/ijerph182312433