Assessment of Dysfunctional Movements and Asymmetries in Children and Adolescents Using the Functional Movement Screen—A Narrative Review
Abstract
:1. Introduction
2. Assessment of Physical Fitness
3. Assessments of Movement in Children
4. The Functional Movement Screen
5. Definitions
6. The Use of the Functional Movement Screen in Youth
6.1. Reliability of the Functional Movement Screen
6.2. Grouping Individual FMS Test Items into Sub-Scores
6.3. Effects of Prior Knowledge on FMS Scores
6.4. Using a 4-Item vs. 7-Item FMS
6.5. The FMS in Youth Sports and Risk of Injuries
6.6. Use of the Functional Movement Screen in Schools
6.7. Sex and Age Differences in the Performance on the FMS
6.8. Performance on the FMS in Normal Weight, Overweight, and Obese Children
6.9. Asymmetries and Dysfunctional Scores
6.10. Effects of Exercise Training on FMS Scores
7. Synopsis and Conclusions
8. Directions for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- US Department of Health and Human Services. Physical Activity Guidelines for Americans, 2nd ed.; Department of Health and Human Services: Washington, DC, USA, 2018. [Google Scholar]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The physical activity guidelines for Americans. J. Am. Med. Assoc. 2018, 320, 2020–2028. [Google Scholar] [CrossRef] [PubMed]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- Bushman, B. Neuromotor exercise training. ACSMs Heath Fit. J. 2012, 16, 4–7. [Google Scholar] [CrossRef]
- Stenger, L. What is functional/neuromotor fitness? ACSMs Heath Fit. J. 2018, 22, 35–43. [Google Scholar] [CrossRef]
- Okada, T.; Huxel, K.C.; Nesser, T.W. Relationship between core stability, functional movement, and performance. J. Strength Cond. Res. 2011, 25, 252–261. [Google Scholar] [CrossRef]
- Reiman, M.P.; Manske, R.C. The assessment of function: How is it measured? A clinical perspective. J. Man. Manip. Ther. 2011, 19, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Tsiros, M.D.; Vincent, H.K.; Getchell, N.; Shultz, S.P. Helping children with obesity “move well” to move more: An applied clinical review. Curr. Sports Med. Rep. 2021, 20, 374–383. [Google Scholar] [CrossRef]
- Parrish, A.-M.; Tremblay, M.S.; Carson, S.; Veldman, S.L.C.; Cliff, D.P.; Vella, S.; Chong, K.H.; Nacher, M.; Cruz, B.d.P.; Ellis, Y.; et al. Comparing and assessing physical activity guidelines for children and adolescents: A systematic literature review and analysis. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Castelli, D.M.; Valley, J.A. The relationship of physical fitness and motor competence to physical activity. J. Teach. Phys. Educ. 2007, 26, 358–374. [Google Scholar] [CrossRef]
- Cattuzzo, M.T.; Henrique, R.D.; Ré, A.H.N.; Oliveira, I.S.; Melo, B.M.; Sousa Moura, M.; Araujo, R.C.; Stodden, D. Motor competence and health related physical fitness in youth: A systematic review. J. Sci. Med. Sport 2016, 19, 123–129. [Google Scholar] [CrossRef]
- D’Hondt, E.; Deforche, B.; Gentier, I.; De Bourdeaudhuij, I.; Vaeyens, R.; Philippaerts, R.; Lenoir, M. A longitudinal analysis of gross motor coordination in overweight and obese children versus normal-weight peers. Int. J. Obes. 2013, 37, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Stodden, D.F.; Goodway, J.D.; Langendorfer, S.J.; Robertson, M.A.; Rudisill, M.E.; Garcia, C.; Garcia, L.E. A developmental perspective on the role of motor skill competence in physical activity: An emergent relationship. Quest 2008, 60, 290–306. [Google Scholar] [CrossRef]
- Lubans, D.R.; Morgan, P.J.; Cliff, D.P.; Barnett, L.M.; Okely, A.D. Fundamental movement skills in children and adolescents. Sports Med. 2010, 40, 1019–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strong, W.B.; Malina, R.M.; Blimkie, C.; Daniels, S.R.; Dishman, R.K.; Gutin, B.; Hergenroeder, A.C.; Must, A.; Nixon, P.A.; Pivarnik, J.M.; et al. Evidence based physical activity for school-aged youth. J. Pediatr. 2005, 146, 732–737. [Google Scholar] [CrossRef]
- Coker, C.A. Improving functional movement proficiency in middle school physical education. Res. Q. Exerc. Sport 2018, 89, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Cronin, J.B.; Faigenbaum, A.D.; Haff, G.G.; Howard, R.; Kraemer, W.J.; Micheli, L.J.; Myer, G.D.; Oliver, J.L. National Strength and Conditioning Association position statement on long-term athletic development. J. Strength Cond. Res. 2016, 30, 1491–1509. [Google Scholar] [CrossRef]
- Barnett, L.M.; van Beurden, E.; Morgan, P.J.; Brooks, L.O.; Beard, J.R. Childhood motor skill proficiency as a predictor of adolescent physical activity. J. Adolesc. Health 2009, 44, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Lopes, V.P.; Rodrigues, L.P.; Maia, J.A.R.; Malina, R.M. Motor coordination as a predictor of physical activity in childhood. Scandanavian J. Med. Sci. Sports 2011, 21, 663–669. [Google Scholar] [CrossRef]
- Malina, R.M. Top 10 research questions related to growth and maturation of relevance to physical activity, performance, and fitness. Res. Q. Exerc. Sport 2014, 85, 157–173. [Google Scholar] [CrossRef] [PubMed]
- Committee on Fitness Measures and Health Outcomes in Youth; Food and Nutrition Board; Institute of Medicine. Measuring Fitness in Youth. In Fitness Measures and Health Outcomes in Youth; Pate, R.R., Oria, M., Pillsbury, L., Eds.; National Academy Press: Washington, DC, USA, 2012. [Google Scholar]
- Pate, R.R.; Blimkie, C.; Castelli, D.; Corbin, C.B.; Daniels, S.R.; Kohl, H.W.; Malina, R.M.; Sacheck, J.; Stodden, D.; Whitt-Glover, M.; et al. Report Brief. Fitness Measures and Health Outcomes in Youth; Institute of Medicine of the National Academies: Washington, DC, USA, 2012. [Google Scholar]
- Almond, L.; Whitehead, M.E. Physical literacy: Clarifying the nature of the concept. Phys. Educ. Matters 2012, 7, 68–71. [Google Scholar]
- Institute of Medicine. Fitness Measures and Health Outcomes in Youth; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Plowman, S.A. Top 10 research questions related to musculoskeletal physical fitness testing in children and adolescents. Res. Q. Exerc. Sport 2014, 85, 174–187. [Google Scholar] [CrossRef]
- Largo, R.H.; Caflisch, J.A.; Hug, F.; Muggli, K.; Molnar, A.A.; Molinari, L. Neuromotor development from 5 to 18 years. Part 2: Associated movements. Dev. Med. Child Neurol. 2001, 43, 444–453. [Google Scholar] [CrossRef]
- Largo, R.H.; Caflisch, J.A.; Hug, F.; Muggli, K.; Molnar, A.A.; Molinari, L.; Sheehy, A.; Gasser, T. Neuromotor development from 5 to 18 years. Part 1: Timed performance. Dev. Med. Child Neurol. 2001, 43, 436–443. [Google Scholar] [CrossRef]
- Holfelder, B.; Schott, N. Relationship of fundamental movement skills and physical activity in children and adolescents: A systematic review. Psychol. Sport Exerc. 2014, 15, 382–391. [Google Scholar] [CrossRef]
- Xin, F.; Chen, S.-T.; Clark, C.; Hong, J.-T.; Liu, Y.; Cai, Y.-J. Relationship between fundamental movement skills and physical activity in preschool-aged children: A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 3566. [Google Scholar] [CrossRef]
- O’Brien, W.; Belton, S.; Issartel, J. Fundamental movement skill proficiency amongst adolescent youth. Phys. Educ. Sport Pedagogy 2016, 21, 557–571. [Google Scholar] [CrossRef]
- Eddy, L.H.; Bingham, D.D.; Crossley, K.L.; Shahid, N.F.; Ellingham-Khan, M.; Otteslev, A.; Figueredo, N.S.; Mon-Williams, M.; Hill, L.J.B. The validity and reliability of observational assessment tools available to measure functional movement skills in school-age children: A systematic review. PLoS ONE 2020, 15, e0237919. [Google Scholar] [CrossRef]
- Wu, H.; Eungpinichpong, W.; Ruan, H.; Zhang, X.; Dong, X. Relationship between motor fitness, fundamental movement skills, and quality of movement patterns in primary school children. PLoS ONE 2021, 16, e0237760. [Google Scholar] [CrossRef] [PubMed]
- Mulder, T. A process-oriented model of human motor behavior: Toward a theory-based rehabilitation approach. Phys. Ther. 1991, 71, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.; Burton, L.; Hoogenboom, B. Pre-participation screening: The use of fundamental movements as an assessment of function—Part 1. N. Am. J. Sports Phys. Ther. 2006, 1, 62–72. [Google Scholar] [PubMed]
- Cook, G.; Burton, L.; Hoogenboom, B. Pre-participation screening: The use of fundamental movements as an assessment of function—Part 2. N. Am. J. Sports Phys. Ther. 2006, 1, 132–139. [Google Scholar]
- Kraus, K.; Schutz, E.; Taylor, W.R.; Doyscher, R. Efficacy of the functional movement screen: A review. J. Strength Cond. Res. 2014, 28, 3571–3584. [Google Scholar] [CrossRef]
- Kiesel, K.; Plisky, P.J.; Voight, M.L. Can serious injury in professional football be predicted by a preseason functional movement screen? N. Am. J. Sports Phys. Ther. 2007, 2, 147–158. [Google Scholar]
- Mitchell, U.H.; Johnson, A.W.; Adamson, B. Relationship between functional movement screen scores, core strength, posture, and body mass index in school children in Moldova. J. Strength Cond. Res. 2015, 29, 1172–1179. [Google Scholar] [CrossRef] [PubMed]
- Meester, A.D.; Stodden, D.; Goodway, J.D.; True, L.; Brian, A.; Ferkel, R.; Haerens, L. Identifying a motor proficiency barried for meeting physical activity quidelines in children. J. Sci. Med. Sport 2018, 21, 58–62. [Google Scholar] [CrossRef]
- Karuc, J.; Markovic, G.; Misigoj-Durakovic, M.; Duncan, M.J.; Soric, M. Is adiposity associated with the quality of movement patterns in mid-adolescent period? Int. J. Environ. Res. Public Health 2020, 17, 9230. [Google Scholar] [CrossRef]
- Karuc, J.; Jelcic, M.; Soric, M.; Misigoj-Durakovic, M.; Markovic, G. Does sex dimorphism exist in dysfunctional movement patterns during the sensitive period of adolescence? Children 2020, 7, 308. [Google Scholar] [CrossRef]
- Parenteau-G, E.; Gaudreault, N.; Chambers, S.; Boisvert, C.; Grenier, A.; Gagne, G.; Balg, F. Functional Movement Screen test: A reliable screening test for young elite hockey players. Phys. Ther. Sport 2014, 15, 169–175. [Google Scholar] [CrossRef]
- Rowan, C.P.; Kuropkat, C.; Gumienlak, R.J.; Gledhill, N.; Jamnik, V.K. Integration of the Functional Movement Screen into the national hockey league combine. J. Strength Cond. Res. 2015, 29, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Magyari, N.; Szakacs, V.; Bartha, C.; Szilagyi, B.; Galamb, K.; Magyar, M.O.; Hortobagyi, T.; Kiss, R.M.; Tihanyi, J.; Negyesi, J. Gender may have an influence on the relationship between Functional Movement Screen scores and gait parameters in elite junior athletes—A pilot study. Physiol. Int. 2017, 104, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Vehrs, P.R.; Barker, H.; Nomiyami, M.; Vehrs, Z.F.; Toth, M.; Uvacsek, M.; Mitchell, U.H.; Johnson, A.W. Sex differences in dysfunctional movements and asymmetries in young normal weight, overweight, and obese children. Children 2021, 8, 184. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Spiga, F.; Toselli, S. The effect of a 20-week corrective exercise program on functional movement patterns in youth elite male soccer players. J. Sport Rehabil. 2019, 28, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Bryson, A.; Arthur, R.; Easton, C. Prior knowledge of the grading criteria increases Functional Movement Screen scores in youth soccer players. J. Strength Cond. Res. 2018, 35, 762–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, M.J.; Stanley, M. Functional movement is negatively associated with weight status and positively associated with physical activity in British primary school children. J. Obes. 2012, 2012, 697563. [Google Scholar] [CrossRef]
- Duncan, M.J.; Stanley, M.; Wright, S.L. The association between functional movement and overweight and obesity in British primary school children. BMC Sports Sci. Med. Rehabil. 2013, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, R.S.; Oliver, J.L.; Radnor, J.M.; Rhodes, B.C.; Faigenbaum, A.D.; Meyer, G.D. Relationships between functional movement screen scores, maturation, and physical performance in young soccer players. J. Sports Sci. 2015, 33, 11–19. [Google Scholar] [CrossRef]
- Rusling, C.; Edwards, K.L.; Bhattacharya, A.; Reed, A.; Irwin, S.; Boles, A.; Potts, A.; Hodgson, L. The Functional Movement Screening tool does not predict injury in football. Prog. Orthop. Sci. 2015, 1, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Wright, M.D.; Portas, M.D.; Evans, V.J.; Weston, M. The effectiveness of 4 weeks of fundamental movement training on Functional Movement Screen and physiological performance in physically active children. J. Strength Cond. Res. 2015, 29, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Dugdale, J.H.; Sanders, D.; Myers, T.; Williams, A.M.; Hunter, A.M. A case study comparison of objective and subjective evaluation methods of physical qualities in youth soccer players. J. Sports Sci. 2020, 38, 1304–1312. [Google Scholar] [CrossRef]
- Bond, D.; Goodson, L.; Oxford, S.W.; Nevill, A.M.; Duncan, M.J. The association between anthropomentric variables, Functional Movement Screen scores and 100 m freestyle swimming performance in youth swimmers. Sports 2015, 3, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Pfeifer, G.E.; Sacko, R.S.; Ortaglia, A.; Monsma, E.V.; Beattie, P.F.; Goins, J.; Stodden, F.D. Functional Movement Screen in youth sports participants: Evaluating the proficiency barrier for injury. Int. J. Sports Phys. Ther. 2019, 14, 436. [Google Scholar] [CrossRef]
- Portas, M.D.; Parkin, G.; Roberts, J.; Batterham, A.M. Maturational effects of Functional Movement Screen score in adolescent soccer players. J. Sci. Med. Sport 2016, 19, 854–858. [Google Scholar] [CrossRef] [Green Version]
- Wright, M.D.; Chesterson, P. Functional Movement Screen total score does not present a gestalt measure of movement quality in youth athletes. J. Sports Sci. 2019, 37, 1393–1402. [Google Scholar] [CrossRef] [PubMed]
- Lester, D.; McGrane, B.; Belton, S.; Duncan, M.J.; Chambers, F.C.; O’Brien, W. The age-related association of movement in Irish adolescent youth. Sports 2017, 5, 77. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, W.; Duncan, M.J.; Farmer, O.; Lester, D. Do Irish adolescents have adequate functional movement skill and confidence? J. Mot. Learn. Dev. 2018, 6, S301–S319. [Google Scholar] [CrossRef]
- Baron, J.; Bieniec, A.; Swinarew, A.S.; Gabrys, T.; Stanula, A. Effect of 12-week functional training intervention on the speed of young footballers. Int. J. Environ. Res. Public Health 2020, 17, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linek, P.; Saulicz, E.; Mysliwiec, A.; Wojtowicz, M.; Wolny, T. The effect of specific sling exercises on the Functional Movement Screen score in adolescent volleyball players: A preliminary study. J. Hum. Kinet. 2016, 54, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Boguszewski, D.; Jakubowska, K.; Adamczyk, J.G.; Bialoszewski, D. The assessment of movement patterns of children practicing karate using the Functional Movement Screen. J. Combat Sports Martial Arts 2015, 6, 21–26. [Google Scholar] [CrossRef]
- Boguszewski, D.; Jakubowska, K.; Adamczyk, J.G.; Ochal, A.J.; Bialoszewski, D. Functional assessment of children practicing ice hockey through Functional Movement Screen test. Phys. Act. Rev. 2017, 5, 105–112. [Google Scholar] [CrossRef]
- Sulowska, I.; Gattner, H.; Stosur, A.; Rembiasz, K. Functional Movements Screen as a tool for functional evaluation and prediction of risk of injury among floorball athletes. J. Kinesiol. Exerc. Sci. 2015, 72, 35–42. [Google Scholar]
- Bakalar, I.; Simonek, J.; Kanasova, J.; Krcmarova, B.; Krcmar, M. Multiple athletic performances, maturation, and Functional Movement Screen total and individual scores across different age categories in young soccer players. J. Exerc. Rehabil. 2020, 16, 432–441. [Google Scholar] [CrossRef]
- Nemati, N.; Norastehy, A.A.; Alizadeh, M.H. The effect of FIFA +11 Program on Functional Movement Screen scores of junior soccer players. Ann. Appl. Sport Sci. 2017, 5, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Barzegari, M.; Shojaedin, S.; Karimi, Z. The effect of a 4-week suspension training with total resistance exercise on performance and balance in healthy children. Phys. Treat. 2019, 9, 235–242. [Google Scholar] [CrossRef]
- Bahiraei, S.; Sharbatzadeh, R.; Nouri, M. Relationship between core stability and Functional Movement Screening test in athletes. Trends Sports Sci. 2019, 3, 129–135. [Google Scholar]
- Dinc, E.; Kilinc, B.E.; Bulat, M.; Erten, Y.T.; Bayraktar, B. Effects of special exercise programs on functional movement screen scores and injury prevention in preprofessional young football players. J. Exerc. Rehabil. 2017, 13, 535–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dogan, O.; Savas, S.; Zorlular, A. Examination of the effects of 8-weeks core stabilization training on FMS (Functional Movement Screen) test scores applied to a 12–14 age group of male basketball players. Eur. J. Phys. Educ. Sport Sci. 2018, 4, 48–56. [Google Scholar]
- Arslan, S.; Yapah, G. The relationship between Functional Movement Screening scores and injury history in U20 elite male soccer players. Sdu Saglik Bilimleri Derg. 2020, 11, 127–132. [Google Scholar] [CrossRef]
- Dinc, E.; Arslan, S. Relationship between Functional Movement Screen scores and musculoskeletal injuries in youth male soccer players: A one-year retrospective observation. J. Basic Clin. Health Sci. 2020, 4, 371–377. [Google Scholar]
- Yildez, S. Relationship between Functional Movement Screen and athletic performance in children tennis players. Univ. J. Educ. Res. 2018, 6, 1647–1651. [Google Scholar] [CrossRef]
- Yildez, S.; Pinar, S.; Gelen, E. Effects of 8-week functional vs. traditional training on athletic performance and functional movement on pre-pubertal tennis players. J. Strength Cond. Res. 2019, 33, 651–661. [Google Scholar] [CrossRef]
- Suzuki, K.; Akasaka, K.; Otsudo, T.; Sawada, Y.; Hattori, H.; Hasebe, Y.; Mizoguchi, Y.; Hall, T.; Yamamoto, M. Effects of functional movement screen training in high-school baseball players. A randomized controlled clinical trial. Medicine 2021, 100, e25423. [Google Scholar] [CrossRef]
- Liao, T.; Zheng, W.; Meng, Y. Appllication of the Functional Movement Screen to the Evaluation of Youth’s Physical Health. In Advances in Human Factors in Sports and Outdoor Recreation; Slamon, P., Macquet, A.C., Eds.; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Wang, D.; Lin, X.-M.; Kulmala, J.-P.; Pesola, A.J.; Gao, Y. Can the Functional Movement Screen method identify previously injured Wushu athletes? Int. J. Environ. Res. Public Health 2021, 18, 721. [Google Scholar] [CrossRef]
- Chang, N.-J.; Tsai, I.-H.; Lee, C.-L.; Liang, C.-H. Effect of a six-week core conditioning as a warm-up exercise in physical education classes on physical fitness, movement capability, and balance in school-aged children. Int. J. Environ. Res. Public Health 2020, 17, 5517. [Google Scholar] [CrossRef]
- Chang, W.-D.; Chou, L.-W.; Chang, N.-J.; Chen, S. Comparison of Functional Movement Screen, Star Excursion Balance Test, and physical fitness in junior athletes with different sports injury risk. BioMed Res. Int. 2020, 2020, 8690540. [Google Scholar] [CrossRef]
- Lee, C.-L.; Hsu, M.-C.; Chang, W.-D.; Wang, S.-C.; Chen, C.-Y.; Chou, P.-H.; Chang, M.-J. Functional movement screen comparison between the preparative period and competitive period in high school baseball players. J. Exerc. Sci. Fit. 2018, 16, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.-H.; Soe, T.-B.; Kim, Y.-P. Relationship between movement dysfunctions and sports injuries according to gender of youth soccer player. J. Exerc. Rehabil. 2020, 16, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Syafei, M.; Budi, D.R.; Listiandi, A.D.; Festiawan, R.; Kusander; Nurcahyo, P.J.; Stephani, M.R.; Qohhar, W. Functional Movement Screening: An early detection of the student injury risk in sport class. J. Pednidikan Jasm. Da Olahraga 2020, 5, 182–191. [Google Scholar] [CrossRef]
- Karuc, J.; Misigoj-Durakovic, M.; Markovic, G.; Hadzic, V.; Duncan, M.J.; Podnar, H.; Soric, M. Movement quality in adolescence depends on the level and type of physical activity. Phys. Ther. Sport 2020, 46, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Karuc, J.; Misigoj-Durakovic, M.; Sarlija, M.; Markovic, G.; Hadzic, V.; Trost-Bobic, T.; Soric, M. Can injuries be predicted by Functional Movement Screen in adolescents? The application of machine learning. J. Strength Cond. Res. 2021, 35, 910–919. [Google Scholar] [CrossRef]
- Marques, V.B.; Medeiros, T.M.; Stigger, F.d.S.; Nakamura, F.Y.; Baroni, B.M. The Functional Movement Screen in elite young soccer players between 14 and 20 years: Composite score, individual test scores and asymmetries. Int. J. Sports Phys. Ther. 2017, 13, 977. [Google Scholar] [CrossRef]
- Silva, B.; Clemente, F.M.; Camoes, M.; Bezerra, P. Functional Movement Screen scores and physical performance among youth elite soccer players. Sports 2017, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Cordellat, A.; Padilla, B.; Grattarola, P.; Garcia-Lucerga, C.; Crehua-Gaudiza, E.; Nunez, F.; Martinez-Costa, C.; Blasco-Lafarga, C. Muticomponent exercise training combined with nutritional counseling improves physical function, biochemical and anthropometric profiles in obese children: A pilot study. Nutrients 2020, 12, 2723. [Google Scholar] [CrossRef]
- Garcia-Luna, M.A.; Cortell-Tormo, J.M.; Valero-Cotillas, J.A.; Garcia-Jaen, M. Functional movement screen differences between male and female young judokas athletes. Arch. Budo 2020, 16, 119–127. [Google Scholar]
- Garcia-Pinillos, F.; Montilla, J.A.P.; Roche-Seruendo, L.E.; Delgado-Floody, P.; Martinez-Salazar, C.P. Do age and sex influence on functional movement in school-age children? Retos 2019, 35, 97–100. [Google Scholar]
- Garcia-Pinillos, F.; Roche-Seruendo, L.E.; Delgado-Floody, P.; Mayorga, D.J.; Latorre-Roman, P.A. Is there any relationship between functional movement and weight status? A study of Spanish school-age children. Nutr. Hosp. 2018, 35, 805–810. [Google Scholar]
- Molina_Garcia, P.; Migueles, J.H.; Cadenas-Sanchez, C.; Esteban-Cornejo, I.; Mora_Gonzalez, J.; Rodriguez-Ayllon, M.; Plaza-Florido, A.; Molina-Molina, A.; Garcia-Delgado, G.; D’Hondt, E.; et al. Fatness and fitness in relation to functional movement quality in overweight and obese children. J. Sports Sci. 2019, 37, 878–885. [Google Scholar] [CrossRef]
- Molina_Garcia, P.; Mora_Gonzalez, J.; Migueles, J.H.; Rodriguez-Ayllon, M.; Esteban-Cornejo, I.; Cadenas-Sanchez, C.; Plaza-Florido, A.; Gil-Cosan0, J.J.; Pelaez-Perez, M.A.; Garcia-Delgado, G.; et al. Effects of exercise on body posture, functional movement, and physical fitness in children with overweight/obesity. J. Strength Cond. Res. 2020, 34, 2146–2155. [Google Scholar] [CrossRef]
- Vernetta-Santana, M.; de Obre-Moreno, M.; Pelaez-Barrios, E.M.; Lopez-Bedoya, J. Movement quality evaluation through the functional movement screen. J. Hum. Sport Exercise. 2020, 15, 918–931. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.; Olivier, B.; Benjamin, N. The Functional Movement Screen in the prediction of injury in adolescent cricket pace bowlers: An observational study. J. Sport Rehabil. 2017, 26, 386–395. [Google Scholar] [CrossRef]
- Quatman-Yates, C.C.; Quatman, C.E.; Meszaros, A.J.; Paterno, M.V.; Hewett, T.E. A systematic review of sensorimotor function during adolescence: A developmental stage of increased motor awkwardness? Br. J. Sports Med. 2012, 46, 649–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahdieh, L.; Zolaktaf, V.; Karimai, M.T. Effects of dynamic neuromuscular stabilization (DNS) training on functional movements. Hum. Mov. Sci. 2020, 70, 102568. [Google Scholar] [CrossRef]
- Arslan, S.; Dinc, E. Effects of body composition on Functional Movement Screen scores in elite youth male soccer players. J. Back Musculoskelet. Rehabil. 2021, 34, 1–8. [Google Scholar] [CrossRef]
- Molina-Garcia, P.; Plaza-Florido, A.; Mora-Gonzalez, J.; Torres-Lopez, L.V.; Vanrenterghem, J.; Ortega, F.B. Role of physical fitness and functional movement in the body posture of children with overweight/obesity. Gait Posture 2020, 80, 331–338. [Google Scholar] [CrossRef]
- Bardenett, S.M.; Micca, J.J.; DeNoyelles, J.T.; Miller, S.D.; Jenk, D.T.; Brooks, G.S. Functional movement screen normative values and validity in high school athletes: Can the FMS be used as a predictor of injury? Int. J. Sports Phys. Ther. 2015, 10, 303–308. [Google Scholar]
- Newton, F.; McCall, A.; Ryan, D.; Blackburne, C.; aus de Funten, K.; Meyer, T.; Lewin, C.; McCunn, R. Functional Movement Screen (FMS) score does not predict injury in English Premier League youth academy football players. Sci. Med. Footb. 2017, 1, 102–106. [Google Scholar] [CrossRef]
- Fuller, J.T.; Chalmers, S.; Debenedictis, T.A.; Townsley, S.; Lynagh, M.; Gleeson, C.; Zacharia, A.; Thomson, S.; Magarey, M. High prevalence of dysfunctional, asymmetrical, and painful movement in elite junior Australian Football players using the Functional Movement Screen. J. Sci. Med. Sport 2017, 20, 134–138. [Google Scholar] [CrossRef]
- Lisman, P.; Hilderbrand, E.; Nadelen, M.; Leppert, K. Association of Functional Movement Screen and Y-Balance test scores with injury in high school athletes. J. Strength Cond. Res. 2019, 35, 1930–1938. [Google Scholar] [CrossRef]
- Bullock, G.S.; Brookreson, N.; Knab, A.M.; Butler, R.J. Examining fundamental movement competency and closed-chain upper extremity dynamic balance in swimmers. J. Strength Cond. Res. 2017, 31, 1544–1551. [Google Scholar] [CrossRef]
- Seefeldt, V.; Naduau, C. Developmental motor patterns: Implications for elementary school physical education. Psychol. Mot. Behav. Sport 1980, 36, 314–323. [Google Scholar]
- Linek, P.; Booysen, N.; Sikora, D.; Stokes, M. Functional Movement Screen and Y balance tests in adolescent footballers with hip/groin symptoms. Phys. Ther. Sport 2019, 39, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, D.; Loicono, A.J.; Blenis, A.; Morese, J.M.; Borg, D.A.; Meehan, W.P. Risk factors in elite, adolescent male soccer players: Prospective study. Clin. Pediatr. 2020, 59, 596–605. [Google Scholar] [CrossRef]
- Abraham, A.; Sannasi, R.; Nair, R. Normative values for the functional movement screen in adolescent school aged children. Int. J. Sports Phys. Ther. 2015, 10, 29–36. [Google Scholar]
- Kramer, T.A.; Sacko, R.S.; Pfeifer, C.E.; Gatens, D.R.; Goins, J.M.; Stodden, D.F. The association between Functional Movement Screen, Y-balance test, and physical performance tests in male and female high school athletes. Int. J. Sports Phys. Ther. 2019, 14, 911. [Google Scholar] [CrossRef]
- Chalmers, S.; Fuller, J.T.; Debenedictis, T.A.; Townsley, S.; Lynach, M.; Gleeson, C.; Zacharia, A.; Thomson, S.; Magarey, M. Asymmetry during preseason Functional Movement Screen testing is associated with injury during a junior a junior Australian football season. J. Sci. Med. Sport 2017, 20, 653–657. [Google Scholar] [CrossRef] [PubMed]
- Paszkewicz, J.R.; McCarty, C.W.; Van Lunen, B.L. Comparison of functional and static evaluation tools among adolescent athletes. J. Strength Cond. Res. 2013, 27, 2842–2850. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.E.; Neumann, M.L.; Bliven, K.C.H. Functional movement screen differences between male and female secondary school athletes. J. Strength Cond. Res. 2015, 29, 1098–1106. [Google Scholar] [CrossRef] [PubMed]
- Haywood, N.K.; Getchell, N. Life Span Motor Development, 5th ed.; Human Kinetics: Champaign, IL, USA, 2009. [Google Scholar]
- Kelch, A.J.; Gulgin, H.R. Functional movement screen score by somatype category. Clin. Kinesiol. 2017, 71, 1–7. [Google Scholar]
- Newell, K.M. Motor Development During Childhood and Adolescence; Burgess Publishing Company: Minneapolis, MI, USA, 1984. [Google Scholar]
- Paulis, W.D.; Silva, S.; Koes, B.W.; van Middelkoop, M. Overweight and obesity are associated with musculoskeletal complaints as early as childhood: A systematic review. Obes. Rev. 2014, 15, 52–67. [Google Scholar] [CrossRef]
- Tsiros, M.D.; Coates, A.M.; Howe, P.R.C.; Grimshaw, P.N.; Buckley, J.D. Obesity: The new childhood disability? Obes. Rev. 2011, 12, 26–36. [Google Scholar] [CrossRef]
- Nantel, J.; Mathieu, M.-E.; Prince, F. Physical activity and obesity: Biomechanical and physiological concepts. J. Obes. 2011, 2011, 650230. [Google Scholar] [CrossRef]
- Hills, A.P.; Henning, E.M.; Bryne, N.M.; Steele, J.R. The biomechanics of adiposity-structural and functional limitations of obesity and implications for movement. Obes. Rev. 2002, 3, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Silentoinen, K.; Maia, J.A.R.; Jelenkovic, A.; Pereira, S.; Gouveia, E.; Antunes, A.; Thomas, M.; Lefevre, J.; Kaprio, J.; Freitas, D. Genetics of somotype and physical fitness in children and adolescents. Am. J. Hum. Biol. 2020, 23, e23470. [Google Scholar]
- Smith, L.J.; Creps, J.R.; Bean, R.; Rodda, B.; Alsaleheen, B. Performance of high school male athletes on the Functional Movement Screen. Phys. Ther. Sport 2017, 27, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Gadzic, A.; Zivkovic, A.; Ratkovic, T. Possibility of Functional Movement Screening in Physical Education. In Proceedings of the International Scientific Conference on Information Technology and Data Related Research, Belgrade, Serbia, 17 October 2020. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vehrs, P.R.; Uvacsek, M.; Johnson, A.W. Assessment of Dysfunctional Movements and Asymmetries in Children and Adolescents Using the Functional Movement Screen—A Narrative Review. Int. J. Environ. Res. Public Health 2021, 18, 12501. https://doi.org/10.3390/ijerph182312501
Vehrs PR, Uvacsek M, Johnson AW. Assessment of Dysfunctional Movements and Asymmetries in Children and Adolescents Using the Functional Movement Screen—A Narrative Review. International Journal of Environmental Research and Public Health. 2021; 18(23):12501. https://doi.org/10.3390/ijerph182312501
Chicago/Turabian StyleVehrs, Pat R., Martina Uvacsek, and Aaron W. Johnson. 2021. "Assessment of Dysfunctional Movements and Asymmetries in Children and Adolescents Using the Functional Movement Screen—A Narrative Review" International Journal of Environmental Research and Public Health 18, no. 23: 12501. https://doi.org/10.3390/ijerph182312501
APA StyleVehrs, P. R., Uvacsek, M., & Johnson, A. W. (2021). Assessment of Dysfunctional Movements and Asymmetries in Children and Adolescents Using the Functional Movement Screen—A Narrative Review. International Journal of Environmental Research and Public Health, 18(23), 12501. https://doi.org/10.3390/ijerph182312501