Influence of Government Information on Farmers’ Participation in Rural Residential Environment Governance: Mediating Effect Analysis Based on Moderation
Abstract
:1. Introduction
2. Methods
2.1. Evaluation Methods
2.2. Measures of Latent Variables
2.3. Data Sources
2.4. Data Analysis
3. Literature Analysis
4. Results
4.1. Reliability and Validity of the Scale
4.2. Analysis on Influencing Factors of Farmers’ Participation Depth
4.2.1. Fitting of Model
4.2.2. Interpretations of the Estimation Results
4.2.3. Analysis of Mediating Effect
4.2.4. The Moderating Effect of Organisational Support
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Zhu, Y.M.; Yu, M.J. Evaluation and determinants of satisfaction with rural livability in China’s less-developed eastern areas: A case study of Xianju county in Zhejiang province. Ecol. Indic. 2019, 104, 711–722. [Google Scholar] [CrossRef]
- Shen, G.F.; Du, W.; Zhou, S.J.; Yu, J.L.; Tao, S. Improving regulations on residential emissions and non-criteria hazardous contaminants-Insights from a field campaign on ambient PM and PAHs in North China Plain. Environ. Sci. Policy 2019, 92, 201–206. [Google Scholar]
- Tian, G.J.; Kong, L.Q.; Liu, X.J.; Yuan, W.P. The spatio-temporal dynamic pattern of rural domestic solid waste discharge of China and its challenges. Environ. Sci. Pollut. Res. 2018, 25, 10115–10125. [Google Scholar] [CrossRef]
- Yi, X.; Lin, D.; Li, J.; Zeng, J.; Wang, D.; Yang, F. Ecological treatment technology for agricultural non-point source pollution in remote rural areas of China. Environ. Sci. Pollut. Res. 2020, 28, 40075–40087. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Sun, H.B.; Chen, B.; Xia, X.H.; Li, P.F. China’s rural human settlements: Qualitative evaluation, quantitative analysis and policy implications. Ecol. Indic. 2019, 105, 398–405. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, X.; He, L.X. Collective action in maintaining rural infrastructures: Cadre-farmer relationship, institution rules and their interaction terms. Land Use Policy 2020, 99, 105043. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Phang, C.W.; Wei, J. Using microblog to enhance public service climate in the rural areas. Gov. Inf. Q. 2020, 37, 101402. [Google Scholar] [CrossRef]
- Li, F.; Cheng, S.K.; Yu Hl Yang, D.W. Waste from livestock and poultry breeding and its potential assessment of biogas energy in rural China. J. Clean. Prod. 2016, 126, 451–460. [Google Scholar] [CrossRef]
- Samuelson, P.A.; Nordhaus, W.D. Economics, 16th ed.; Huaxia Pubilshing House: Beijing, China, 1999. [Google Scholar]
- Sanesi, G.; Chiarello, F. Residents and urban green spaces: The case of Bari. Urban For. Urban Green. 2006, 4, 125–134. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, W.Y. Recreation-amenity use and contingent valuation of urban greenspaces in Guangzhou, China. Landsc. Urban Plan. 2006, 75, 81–96. [Google Scholar] [CrossRef]
- Thompson, C.W. Urban open space in the 21st century. Landsc. Urban Plan. 2002, 60, 59–72. [Google Scholar] [CrossRef]
- Wu, L.H.; Ma, T.S.; Bian, Y.C.; Li, S.J.; Yi, Z.Q. Improvement of regional environmental quality: Government environmental governance and public participation. Sci. Total Environ. 2019, 717, 137265. [Google Scholar] [CrossRef]
- Bukchin, S.; Kerret, D. The role of self-control, hope and information in technology adoption by smallholder farmers-A moderation model. J. Rural Stud. 2020, 74, 160–168. [Google Scholar] [CrossRef]
- Amato, A.D.; Giaccherini, M.; Zoli, M. The role of information sources and providers in shaping green behaviors. Evidence from Europe. Ecol. Econ. 2019, 164, 106292. [Google Scholar] [CrossRef]
- Li, W.Y.; Tian, L.X.; Batool, H. Impact of negative information diffusion on green behavior adoption. Resour. Conserv. Recycl. 2018, 136, 337–344. [Google Scholar] [CrossRef]
- Shi, J.; Hu, X.N.; Guo, X.S.; Lian, C.H. Risk information seeking behavior in disaster resettlement: A case study of ankang city, China. Int. J. Environ. Res. Public Health 2020, 17, 7352. [Google Scholar] [CrossRef]
- Chen, F.Y.; Chen, H.; Yang, J.H.; Long, R.Y.; Li, Q.W. Impact of information intervention on the recycling behavior of individuals with different value orientations-An experimental study on express delivery packaging waste. Sustainability 2018, 10, 3617. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, N.; Loewenstein, G.; Seppi, D. The ostrich effect: Selective attention to information. J. Risk Uncertain. 2009, 38, 95–115. [Google Scholar] [CrossRef]
- Krupka, E.; Weber, R.A. The focusing and informational effects of norms on pro-social behavior. J. Econ. Psychol. 2009, 30, 307–320. [Google Scholar] [CrossRef] [Green Version]
- Teisl, M.F.; Fein, S.S.; Levy, A.S. Information effects on consumer attitudes toward three food technologies: Organic production, biotechnology, and irradiation. Food Qual. Prefer. 2009, 20, 586–596. [Google Scholar] [CrossRef]
- Aregay, F.A.; Zhao, M.J.; Xu, T. Knowledge, attitude and behavior of farmers in farmland conservation in China: An application of the structural equation model. J. Environ. Plan. Manag. 2018, 61, 249–271. [Google Scholar] [CrossRef]
- Henn, L.; Otto, S.; Kaiser, F.G. Positive spillover: The result of attitude change. J. Environ. Psychol. 2020, 69, 101429. [Google Scholar] [CrossRef]
- Muthen, B.; Muthen, L.K. Mplus Users’ Guide Version 8. Available online: https://www.statmodel.com (accessed on 19 May 2021).
- Bagozzi, R.P. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error: A Comment. J. Mark. Res. 1981, 18, 375–381. [Google Scholar] [CrossRef]
- Lau, R.S.; Cheung, G.W. Estimating and Comparing Specific Mediation Effects in Complex Latent Variable Models. Organ. Res. Methods 2012, 15, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Wang, L.; Zhao, J.; Shi, Z. Using structural equation modelling to identify regional socio-economic driving forces of soil erosion: A case study of Jiangxi Province, southern China. J. Environ. Manag. 2021, 279, 111616. [Google Scholar] [CrossRef]
- Tarlao, C.; Steffens, J.; Guastavino, C. Investigating contextual influences on urban soundscape evaluations with structural equation modeling. Build. Environ. 2021, 188, 107490. [Google Scholar] [CrossRef]
- Basak, D.; Bose, A.; Roy, S.; Chowdhury, I.R.; Sarkar, B.C. Understanding sustainable homestay tourism as a driving factor of tourist’s satisfaction through structural equation modelling: A case of Darjeeling Himalayan region, India. Curr. Res. Environ. Sustain. 2021, 3, 100098. [Google Scholar] [CrossRef]
- Özgür, H. Relationships between teachers’ technostress, technological pedagogical content knowledge (TPACK), school support and demographic variables: A structural equation modelling. Comput. Hum. Behav. 2020, 112, 106468. [Google Scholar] [CrossRef]
- Reisinger, Y.; Turner, L. Structural equation modeling with lisrel: Application in tourism. Tour. Manag. 1999, 20, 71–88. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Bowker, M.A.; Grace, J.B.; Powell, J.R. From patterns to causal understanding: Structural equation modelling (SEM) in soil ecology. Pedobiol. J. Soil Ecol. 2015, 58, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Muthén, B.; Kaplan, D. A comparison of some methodologies for the factor analysis of non-normal Likert variables. Br. J. Math. Stat. Psychol. 1985, 38, 171–189. [Google Scholar] [CrossRef]
- Muthén, B. Goodness of fit with categorical and other non-normal variables. In Testing Structural Equation Models; Sage Publications: Newbury Park, CA, USA, 1993; pp. 205–243. [Google Scholar]
- Feng, L.; Zhang, M.H.; Li, Y.X.; Jiang, Y. Satisfaction principle or efficiency principle? Decision-making behavior of peasant households in China’s rural land market. Land Use Policy 2020, 99, 104943. [Google Scholar] [CrossRef]
- Clempner, J.B.; Poznyak, A.S. Multiobjective Markov chains optimization problem with strong Pareto frontier: Principles of decision making. Expert Syst. Appl. 2017, 68, 123–135. [Google Scholar] [CrossRef]
- Stern, P.C. Toward a coherent theory of environmentally significant behavior. J. Soc. Issues 2000, 56, 407–424. [Google Scholar] [CrossRef]
- Fornara, F.; Pattitoni, P.; Mura, M.; Strazzera, E. Predicting intention to improve household energy efficiency: The role of value-belief-norm theory, normative and informational influence, and specific attitude. J. Environ. Psychol. 2016, 45, 1–10. [Google Scholar] [CrossRef]
- Topal, F.H.; Hunt, D.V.L.; Rogers, C.D.F. Exploring Urban Sustainability Understanding and Behaviour: A Systematic Review towards a conceptual framework. Sustainability 2021, 13, 1139. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Japutra, A.; Loureiro, S.M.C.; Molinillo, S.; Ekinci, Y. Travellers’ mindsets and theory of planned behaviour. Tour. Manag. Perspect. 2019, 30, 193–196. [Google Scholar] [CrossRef] [Green Version]
- Yuriev, A.; Dahmen, M.; Paillé, P.; Boiral, O.; Guillaumie, L. Pro-environmental behaviors through the lens of the theory of planned behavior: A scoping review. Resour. Conserv. Recycl. 2020, 155, 104660. [Google Scholar] [CrossRef]
- Liu, J.Y.; Wu, J.L.; Che, T.T. Understanding perceived environment quality in affecting tourists’ environmentally responsible behaviours: A broken windows theory perspective. Tour. Manag. Perspect. 2019, 31, 236–244. [Google Scholar] [CrossRef]
- Madden, T.J.; Ellen, P.S.; Ajzen, I. A comparison of the theory of planned behavior and the theory of reasoned action. Personal. Soc. Psychol. Bull. 1992, 18, 3–9. [Google Scholar] [CrossRef]
- Blumberg, M.; Pringle, C.D. The missing opportunity in organizational research: Some implications for a theory of work performance. Acad. Manag. Rev. 1982, 7, 560–569. [Google Scholar] [CrossRef]
- Zhang, X.B.; Vries, W.T.D.; Li, G.; Ye, Y.M.; Zheng, H.Y.; Wang, M.R. A behavioral analysis of farmers during land reallocation processes of land consolidation in China: Insights from Guangxi and Shandong provinces. Land Use Policy 2019, 89, 104230. [Google Scholar] [CrossRef]
- Wang, Y.D.; Yang, J.; Liang, J.P.; Qiang, Y.F.; Fang, S.Q.; Gao, M.X.; Fan, X.Y.; Yang, G.H.; Zhang, B.W.; Feng, Y.Z. Analysis of the environmental behavior of farmers for non-point source pollution control and management in a water source protection area in China. Sci. Total Environ. 2018, 633, 1126–1135. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Hao, W.H.; Zhang, W.; Han, X.H.; Li, K.Y.; Feng, Y.Z.; Yang, G.H. Exploring farmers’ pro-ecological intentions after ecological rehabilitation in a fragile environment area: A structural equation modeling approach. Sustainability 2018, 10, 29. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Sun, P.S.; Zhao, F.Z.; Han, X.H.; Yang, G.H.; Feng, Y.Z. Analysis of the ecological conservation behavior of farmers in payment for ecosystem service programs in eco-environmentally fragile areas using social psychology models. Sci. Total Environ. 2016, 550, 382–390. [Google Scholar] [CrossRef]
- Guo, H.P.; Xu, S.; Wang, X.T.; Shu, W.; Chen, J.; Pan, C.L.; Guo, C. Driving mechanism of farmers’ utilization behaviors of straw resources—An empirical study in Jilin province, the main grain producing region in the northeast part of China. Sustainability 2021, 13, 2506. [Google Scholar] [CrossRef]
- Wang, Y.D.; Liang, J.P.; Yang, J.; Ma, X.X.; Li, X.Q.; Wu, J.; Yang, G.H.; Ren, G.X.; Feng, Y.Z. Analysis of the environmental behavior of farmers for non-point source pollution control and management: An integration of the theory of planned behavior and the protection motivation theory. J. Environ. Manag. 2019, 237, 15–23. [Google Scholar] [CrossRef]
- Hines, J.M.; Hungerford, H.R.; Tomera, A.N. Analysis and synthesis of research on responsible environmental behavior: A meta-analysis. J. Environ. Educ. 1984, 18, 1–8. [Google Scholar] [CrossRef]
- Chen, F.Y.; Chen, H.; Jin, Y.J.; Wang, F.; Chen, W.J.; Wu, M.F.; Li, W.B.; Li, S.S.; Long, R.Y. Impact of cognition on waste separation behavior-Nonlinear moderating effect by trustworthiness for links. J. Clean. Prod. 2021, 296, 126525. [Google Scholar] [CrossRef]
- Grob, A. A structural model of environmental attitudes and behaviour. J. Environ. Psychol. 1995, 15, 209–220. [Google Scholar] [CrossRef]
- Farani, A.Y.; Mohammadi, Y.; Ghahremani, F. Modeling farmers’ responsible environmental attitude and behaviour: A case from Iran. Environ. Sci. Pollut. Res. 2019, 26, 28146–28161. [Google Scholar] [CrossRef]
- Fang, W.T.; Ng, E.; Zhan, Y.S. Determinants of pro-environmental behavior among young and older farmers in taiwan. Sustainability 2018, 10, 2186. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.Y.; Liu, H.D.; Diabate, A.; Qian, Y.Y.; Sibiri, H.; Yan, B. Assessing influence mechanism of green utilization of agricultural wastes in five provinces of china through farmers’ motivation-cognition-behavior. Int. J. Environ. Res. Public Health 2020, 17, 3381. [Google Scholar] [CrossRef]
- Gholamrezai, S.; Aliabadi, V.; Ataei, P. Understanding the pro-environmental behavior among green poultry farmers: Application of behavioral theories. Environ. Dev. Sustain. 2021, 23, 16100–16118. [Google Scholar] [CrossRef]
- Liu, R.; Wang, Y. Farmers’ household waste disposal behavior and its influencing factors in developing countries: Evidence from Jiangsu, China. Appl. Ecol. Environ. Res. 2019, 17, 8737–8748. [Google Scholar] [CrossRef]
- Dolisca, F.; McDaniel, J.M.; Shannon, D.A.; Jolly, C.M. A multilevel analysis of the determinants of forest conservation behavior among farmers in Haiti. Soc. Nat. Resour. 2009, 22, 433–447. [Google Scholar] [CrossRef]
- Wood, B.A.; Blair, H.T.; Gray, D.I.; Kemp, P.D.; Kenyon, P.R.; Morris, S.T.; Sewell, A.M. Agricultural science in the wild: A social network analysis of farmer knowledge exchange. PLoS ONE. 2014, 9, e105203. [Google Scholar] [CrossRef] [Green Version]
- Cullen, P.; Ryan, M.; O’Donoghue, C.; Hynes, S.; Ó hUallacháin, D. Impact of farmer self-identity and attitudes on participation in agri-environment schemes. Land Use Policy 2020, 95, 104660. [Google Scholar] [CrossRef]
- Li, M.Y.; Wang, J.J.; Chen, K.; Wu, L.B. Willingness and behaviors of farmers’ green disposal of pesticide packaging waste in Henan, China: A perceived value formation mechanism perspective. Int. J. Environ. Res. Public Health 2020, 17, 3753. [Google Scholar] [CrossRef]
- Gunningham, N. The new collaborative environmental governance: The localization of regulation. J. Law Soc. 2009, 36, 145–166. [Google Scholar] [CrossRef]
- William, J.D.; Xia, W.D.; Torkzadeh, G. A confirmatory factor analysis of the end-user computing satisfaction instrument. Manag. Inf. Syst. Res. Cent. 1994, 18, 453–461. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford: New York, NY, USA, 2005. [Google Scholar]
- Raykov, T.; Marcoulides, G.A. A First Course in Structural Equation Modeling; Erlbaum: Mahwah, NJ, USA, 2006. [Google Scholar]
- Muthe’n, L.K.; Muthe’n, B.O. How to use a Monte Carlo study to decide on sample size and determine power. Struct. Equ. Model. 2002, 9, 599–620. [Google Scholar] [CrossRef]
Variable | Variable Interpretation | Mean | Std. Dev | Std. F.L. | Cronbach’ s α | C.R. | AVE | |
---|---|---|---|---|---|---|---|---|
Govern-ment informa-tion (F1) | Infor1 | Accurate information of rural human settlements | 3.76 | 0.694 | 0.840 | 0.916 | 0.919 | 0.740 |
Infor2 | Clear information of rural human settlements | 3.75 | 0.707 | 0.924 | ||||
Infor3 | Full and detailed information of rural human settlements | 3.76 | 0.752 | 0.905 | ||||
Infor4 | Timeliness of information of rural human settlements | 3.65 | 0.766 | 0.762 | ||||
Attitude(F2) | Atti1 | Conductive to village planning | 4.09 | 0.676 | 0.915 | 0.871 | 0.883 | 0.718 |
Atti2 | Improve the living environment | 4.12 | 0.679 | 0.883 | ||||
Atti3 | Get approval from others | 3.84 | 0.812 | 0.733 | ||||
Ability (F3) | Abi1 | Bear the cost | 3.20 | 0.963 | 0.636 | 0.750 | 0.755 | 0.508 |
Abi2 | Have time to participate | 3.33 | 0.962 | 0.761 | ||||
Abi3 | Ability to participate | 3.56 | 0.954 | 0.735 | ||||
Attenti-on(F4) | Attet1 | Often follow | 3.69 | 0.836 | 0.834 | 0.837 | 0.839 | 0.634 |
Attet2 | Actively share relevant content | 3.54 | 0.855 | 0.741 | ||||
Attet3 | Continue to follow in the future | 3.71 | 0.801 | 0.812 | ||||
Organis-ational Support (F5) | OS1 | Village committee encourages participation | 3.59 | 0.878 | 0.854 | 0.876 | 0.878 | 0.707 |
OS2 | Village committees create opportunities for participation | 3.63 | 0.857 | 0.902 | ||||
OS3 | Village committee values | 3.42 | 0.871 | 0.760 |
Survey Targets | Sample Size | Percentage (%) | Survey Targets | Sample Size | Percentage (%) | ||
---|---|---|---|---|---|---|---|
Sex | Female | 553 | 56.66 | >60 | 432 | 44.26 | |
Male | 423 | 43.34 | Education | Illiterate | 138 | 14.14 | |
Participation depth | 1 | 83 | 8.50 | Primary | 225 | 23.05 | |
2 | 458 | 46.93 | Middle | 413 | 42.32 | ||
3 | 244 | 25.00 | High or vocational | 130 | 13.32 | ||
4 | 108 | 11.07 | College and above | 70 | 7.17 | ||
5 | 83 | 8.50 | Identity | Village cadres | 16 | 1.64 | |
Age | ≤30 | 143 | 14.65 | Ordinary villagers | 960 | 98.36 | |
31–40 | 77 | 7.89 | Pure farmer | 1 | 496 | 50.82 | |
41–50 | 90 | 9.22 | 0 | 480 | 49.18 | ||
51–60 | 234 | 23.98 |
Statistical Test | Standard Values of Fit Index | Actual Fitting Results | Test Results |
---|---|---|---|
χ2/df values | Between 1 and 3 | 2.872 | Good fit |
RMSEA | <0.05 | 0.044 | Good fit |
CFI | >0.9 | 0.957 | Good fit |
TLI | >0.9 | 0.943 | Good fit |
SRMR | <0.08 | 0.024 | Good fit |
Variable Relationship | Estimate | S.E. |
---|---|---|
F1 to F2 | 0.151 *** | 0.029 |
F1 to F3 | 0.124 *** | 0.031 |
F1 to F4 | 0.252 *** | 0.029 |
F1 to participation depth | 0.063 | 0.035 |
F2 to participation depth | 0.077 * | 0.039 |
F2 to F3 | 0.287 *** | 0.033 |
F3 to participation depth | 0.210 *** | 0.044 |
F4 to F2 | 0.206 *** | 0.027 |
F4 to F3 | 0.310 *** | 0.034 |
F4 to participation depth | 0.106 ** | 0.037 |
Estimate | Product of Coefficients | Bootstrapping | |||||
---|---|---|---|---|---|---|---|
Percentile 95% CI | BC 95% CI | ||||||
S.E. | Z | Lower | Upper | Lower | Upper | ||
Total | 0.160 *** | 0.039 | 4.078 | 0.084 | 0.238 | 0.083 | 0.238 |
Total Indirect | 0.097 *** | 0.019 | 4.973 | 0.063 | 0.138 | 0.063 | 0.138 |
Direct | 0.063 | 0.045 | 1.398 | −0.024 | 0.150 | −0.024 | 0.149 |
F1 to F2 to participation depth (R1) | 0.012 | 0.009 | 1.315 | −0.003 | 0.031 | −0.001 | 0.035 |
F1 to F3 to participation depth (R2) | 0.026 * | 0.012 | 2.128 | 0.006 | 0.055 | 0.007 | 0.056 |
F1 to F4 to participation depth (R3) | 0.027 * | 0.013 | 2.011 | 0.003 | 0.055 | 0.004 | 0.057 |
F1 to F4 to F2 to participation depth (R4) | 0.004 | 0.003 | 1.533 | −0.001 | 0.010 | 0.000 | 0.011 |
F1 to F2 to F3 to participation depth (R5) | 0.009 * | 0.004 | 2.263 | 0.003 | 0.019 | 0.003 | 0.021 |
F1 to F4 to F3 to participation depth (R6) | 0.016 * | 0.006 | 2.53 | 0.006 | 0.031 | 0.007 | 0.032 |
F1 to F4 to F2 to F3 to participation depth(R7) | 0.003 * | 0.002 | 1.994 | 0.001 | 0.007 | 0.001 | 0.008 |
Contrasts | |||||||
R4 vs. R3 | −0.046 ** | 0.018 | −2.627 | −0.087 | −0.018 | −0.090 | −0.019 |
R6 vs. R3 | −0.045 ** | 0.017 | −2.598 | −0.087 | −0.018 | −0.089 | −0.019 |
R7 vs. R3 | −0.048 ** | 0.017 | −2.780 | −0.087 | −0.019 | −0.092 | −0.021 |
Variable Relationship | Estimate | S.E. |
---|---|---|
F1 to F2 | 0.151 *** | 0.029 |
F1 to F3 | 0.124 *** | 0.031 |
F1 to F4 | 0.252 *** | 0.029 |
F1 to participation depth | 0.063 | 0.035 |
F2 to participation depth | 0.077 * | 0.039 |
F2 to F3 | 0.287 *** | 0.033 |
F3 to participation depth | 0.210 *** | 0.044 |
F4 to F2 | 0.206 *** | 0.027 |
F4 to F3 | 0.310 *** | 0.034 |
F4 to participation depth | 0.106 ** | 0.037 |
F5 to participation depth | 0.049 | 0.049 |
F5 * F3 to participation depth | −0.073 | 0.050 |
F5 * F4 to participation depth | 0.112 * | 0.049 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Hu, D.; Hao, D.; Li, M.; Wang, Y. Influence of Government Information on Farmers’ Participation in Rural Residential Environment Governance: Mediating Effect Analysis Based on Moderation. Int. J. Environ. Res. Public Health 2021, 18, 12607. https://doi.org/10.3390/ijerph182312607
Wang B, Hu D, Hao D, Li M, Wang Y. Influence of Government Information on Farmers’ Participation in Rural Residential Environment Governance: Mediating Effect Analysis Based on Moderation. International Journal of Environmental Research and Public Health. 2021; 18(23):12607. https://doi.org/10.3390/ijerph182312607
Chicago/Turabian StyleWang, Bowen, Desheng Hu, Diandian Hao, Meng Li, and Yanan Wang. 2021. "Influence of Government Information on Farmers’ Participation in Rural Residential Environment Governance: Mediating Effect Analysis Based on Moderation" International Journal of Environmental Research and Public Health 18, no. 23: 12607. https://doi.org/10.3390/ijerph182312607
APA StyleWang, B., Hu, D., Hao, D., Li, M., & Wang, Y. (2021). Influence of Government Information on Farmers’ Participation in Rural Residential Environment Governance: Mediating Effect Analysis Based on Moderation. International Journal of Environmental Research and Public Health, 18(23), 12607. https://doi.org/10.3390/ijerph182312607