Influence of the Psychomotor Profile in the Improvement of Learning in Early Childhood Education
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Variables and Instruments
2.3. Procedure
2.4. Data Analysis
2.5. Ethical Aspects
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stipek, D.; Feiler, R.; Daniels, D.; Milburn, S. Effects of different instructional approaches on young childrens achievement and motivation. Child Dev. 1995, 66, 209–223. [Google Scholar] [CrossRef]
- Aunio, P.; Rasanen, P. Core numerical skills for learning mathematics in children aged five to eight years—A working model for educators. Eur. Early Child. Educ. Res. J. 2016, 24, 684–704. [Google Scholar] [CrossRef]
- Arribas Estebaranz, J.M. Evidence of the importance of education as a determining factor in personal and social promotion. In Proceedings of the 8th International Conference on Intercultural Education/International Conference on Transcultural Health (EDUHEM), Almeria, Spain, 20–22 June 2018; pp. 157–167. [Google Scholar]
- Denham, S.A.; Bassett, H.H.; Brown, C.; Way, E.; Steed, J. “I Know How You Feel”: Preschoolers’ emotion knowledge contributes to early school success. J. Early Child. Res. 2015, 13, 252–262. [Google Scholar] [CrossRef] [Green Version]
- Fleming, C.B.; Haggerty, K.P.; Catalano, R.F.; Harachi, T.W.; Mazza, J.J.; Gruman, D.H. Do social and behavioral characteristics targeted by preventive interventions predict standardized test scores and grades? J. Sch. Health 2005, 75, 342–349. [Google Scholar] [CrossRef]
- Bidzan-Bluma, I.; Lipowska, M. Physical Activity and Cognitive Functioning of Children: A Systematic Review. Int. J. Environ. Res. Public Health 2018, 15, 800. [Google Scholar] [CrossRef]
- Sheridan, S.; Williams, P.; Sandberg, A.; Vuorinen, T. Preschool teaching in Sweden—A profession in change. Educ. Res. 2011, 53, 415–437. [Google Scholar] [CrossRef]
- Piaget, J. The relation of affectivity to intelligence in the mental development of the child. Bull. Menn. Clin. 1962, 26, 129–137. [Google Scholar]
- Caldwell, B.M. Descriptive evaluations of child development and of developmental settings. Pediatrics 1967, 40, 46–54. [Google Scholar]
- Lejarraga, H.; Pascucci, M.C.; Krupitzky, S.; Kelmansky, D.; Bianco, A.; Martinez, E.; Tibaldi, F.; Cameron, N. Psychomotor development in Argentinean children aged 0–5 years. Paediatr. Perinat. Epidemiol. 2002, 16, 47–60. [Google Scholar] [CrossRef]
- Buzescu, R.; Nechita, F.; Cioroiu, S.G. The Relationship between Neuromuscular Control and Physical Activity in the Formation of the Visual-Psychomotor Schemes in Preschools. Sensors 2021, 21, 224. [Google Scholar] [CrossRef]
- Lee, J.; Zhang, T.; Chu, T.L.; Gu, X. Effects of a Need-Supportive Motor Skill Intervention on Children’s Motor Skill Competence and Physical Activity. Children 2020, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Costa, H.J.T.; Abelairas-Gomez, C.; Arufe-Giraldez, V.; Pazos-Couto, J.M.; Barcala-Furelos, R. Influence of a physical education plan on psychomotor development profiles of preschool children. J. Hum. Sport Exerc. 2015, 10, 126–140. [Google Scholar] [CrossRef] [Green Version]
- Carlson, S.A.; Fulton, J.E.; Lee, S.M.; Maynard, M.; Brown, D.R.; Kohl, H.W.; Dietz, W.H. Physical education and academic achievement in elementary school: Data from the early childhood longitudinal study. Am. J. Public Health 2008, 98, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Palmer, K.K.; Chinn, K.M.; Scott-Andrews, K.Q.; Robinson, L.E. An Intervention-Related Comparison of Preschoolers’ Scores on the TGMD-2 and TGMD-3. Percept. Mot. Ski. 2021, 128, 1354–1372. [Google Scholar] [CrossRef]
- Spiegel, A.N.; Steffens, K.M.; Rynders, J.E.; Bruininks, R.H. The early motor profile: Correlation with the Bruininks-Oseretsky test of motor proficiency. Percept. Mot. Ski. 1990, 71, 645–646. [Google Scholar] [CrossRef] [PubMed]
- Benjumea, J.M.C.; Afonso, J.R.; Pineda, S.M.; Hurtado, J.M.R.; Fernandez-Truan, J.C. Design and validation of a tool to assess motor coordination in primary. Rev. Int. Med. Cienc. Act. Fis. Dep. 2016, 16, 203–219. [Google Scholar] [CrossRef] [Green Version]
- Urzua, A.; Ramos, M.; Alday, C.; Alquinta, A. Neuropsychological maturity in preschool children: Psychometric properties of CUMANIN test. Ter. Psicol. 2010, 28, 13–25. [Google Scholar]
- Cools, W.; De Martelaer, K.; Samaey, C.; Andries, C. Movement skill assessment of typically developing preschool children: A review of seven movement skill assessment tools. J. Sport Sci. Med. 2009, 8, 154–168. [Google Scholar]
- De la Cruz, M.V.; Mazaira, M.C. Escala de Evaluación de la Psicomotricidad en Preescolar; Ediciones, S.A., Ed.; TEA Publicaciones de Psicología Aplicada: Madrid, Spain, 1998. [Google Scholar]
- Boonyong, S.; Siu, K.C.; van Donkelaar, P.; Chou, L.S.; Woollacott, M.H. Development of postural control during gait in typically developing children: The effects of dual-task conditions. Gait Posture 2012, 35, 428–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, D.R.; McClelland, M.M.; Loprinzi, P.; Trost, S.G. Physical Activity, Self-Regulation, and Early Academic Achievement in Preschool Children. Early Educ. Dev. 2014, 25, 56–70. [Google Scholar] [CrossRef]
- Howard, S.J.; Vella, S.A.; Cliff, D.P. Children’s sports participation and self-regulation: Bi-directional longitudinal associations. Early Child. Res. Q. 2018, 42, 140–147. [Google Scholar] [CrossRef] [Green Version]
- Costa, H.J.T.; Barcala-Furelos, R.; Abelairas-Gomez, C.; Arufe-Giraldez, V. The influence of a structured physical education plan on preschool children’s psychomotor development profiles. Australas. J. Early Child. 2015, 40, 68–77. [Google Scholar] [CrossRef]
- Szeszulski, J.; Lorenzo, E.; O’Connor, T.; Hill, J.L.; Shaibi, G.Q.; Buman, M.P.; Vega-Lopez, S.; Hooker, S.P.; Lee, R.E. Exploring Correlates of Preschool-Aged Children’s Locomotor Skills: Individual and Parent Demographics and Home Environment. Percept. Mot. Ski. 2021, 128, 649–671. [Google Scholar] [CrossRef]
- Ericsson, I. Motor skills, attention and academic achievements. An intervention study in school years 1–3. Br. Educ. Res. J. 2008, 34, 301–313. [Google Scholar] [CrossRef]
- Alvarez-Bueno, C.; Pesce, C.; Cavero-Redondo, I.; Sanchez-Lopez, M.; Garrido-Miguel, M.; Martinez-Vizcaino, V. Academic achievement and physical activity: A meta-analysis. Pediatrics 2017, 140, e20171498. [Google Scholar] [CrossRef] [Green Version]
- Shephard, R.J. Curricular physical activity and academic performance. Pediatric Exerc. Sci. 1997, 9, 113–126. [Google Scholar] [CrossRef]
- Coe, D.P.; Pivarnik, J.M.; Womack, C.J.; Reeves, M.J.; Malina, R.M. Effect of physical education and activity levels on academic achievement in children. Med. Sci. Sports Exerc. 2006, 38, 1515–1519. [Google Scholar] [CrossRef] [Green Version]
- Dwyer, T.; Sallis, J.F.; Blizzard, L.; Lazarus, R.; Dean, K. Relation of academic performance to physical activity and fitness in children. Pediatric Exerc. Sci. 2001, 13, 225–237. [Google Scholar] [CrossRef]
- Donnelly, J.E.; Hillman, C.H.; Castelli, D.; Etnier, J.L.; Lee, S.; Tomporowski, P.; Lambourne, K.; Szabo-Reed, A.N. Physical Activity, Fitness, Cognitive Function, and Academic Achievement in Children: A Systematic Review. Med. Sci. Sports Exerc. 2016, 48, 1197–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Med, A. World Medical Association Declaration of Helsinki Ethical Principles for Medical Research Involving Human Subjects. JAMA J. Am. Med. Assoc. 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Hausdorff, J.M.; Zemany, L.; Peng, C.K.; Goldberger, A.L. Maturation of gait dynamics: Stride-to-stride variability and its temporal organization in children. J. Appl. Physiol. 1999, 86, 1040–1047. [Google Scholar] [CrossRef] [Green Version]
- Utesch, T.; Bardid, F.; Busch, D.; Strauss, B. The Relationship Between Motor Competence and Physical Fitness from Early Childhood to Early Adulthood: A Meta-Analysis. Sports Med. 2019, 49, 541–551. [Google Scholar] [CrossRef] [Green Version]
- Ghassabian, A.; Sundaram, R.; Bell, E.; Bello, S.C.; Kus, C.; Yeung, E. Gross Motor Milestones and Subsequent Development. Pediatrics 2016, 138, 8. [Google Scholar] [CrossRef] [Green Version]
- Barnett, L.M.; Lai, S.K.; Veldman, S.L.C.; Hardy, L.L.; Cliff, D.P.; Morgan, P.J.; Zask, A.; Lubans, D.R.; Shultz, S.P.; Ridgers, N.D.; et al. Correlates of Gross Motor Competence in Children and Adolescents: A Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 1663–1688. [Google Scholar] [CrossRef] [Green Version]
- Scheuer, C.; Herrmann, C.; Bund, A. Motor tests for primary school aged children: A systematic review. J. Sports Sci. 2019, 37, 1097–1112. [Google Scholar] [CrossRef]
- Saez-Sanchez, M.B.; Gil-Madrona, P.; Martinez-Lopez, M. Psychomotor development and its link with motivation to learn and academic performance in Early Childhood Education. Rev. Educ. 2021, 392, 165–190. [Google Scholar] [CrossRef]
- Feder, K.P.; Majnemer, A. Handwriting development, competency, and intervention. Dev. Med. Child Neurol. 2007, 49, 312–317. [Google Scholar] [CrossRef] [PubMed]
- De Caso-Fuertes, A.M.; Garcia-Sanchez, J.N. Relations between motivation and writing. Rev. Latinoam. Psicol. 2006, 38, 477–492. [Google Scholar]
- Hardy, L.L.; King, L.; Farrell, L.; Macniven, R.; Howlett, S. Fundamental movement skills among Australian preschool children. J. Sci. Med. Sport 2010, 13, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.K.; Costigan, S.A.; Morgan, P.J.; Lubans, D.R.; Stodden, D.F.; Salmon, J.; Barnett, L.M. Do School-Based Interventions Focusing on Physical Activity, Fitness, or Fundamental Movement Skill Competency Produce a Sustained Impact in These Outcomes in Children and Adolescents? A Systematic Review of Follow-Up Studies. Sports Med. 2014, 44, 67–79. [Google Scholar] [CrossRef] [PubMed]
3-Year-Olds | 4-Year-Olds | 5-Year-Olds | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Measure, Means (SD) | Within-Subjects Effect | Measure, Means (SD) | Within-Subjects Effect | Measure, Means (SD) | Within-Subjects Effect | |||||||
PRE | POST | Time | Gender-Time | PRE | POST | Time | Gender-Time | PRE | POST | Time | Gender-Time | |
F(d.f.); p-Value (η2) | F(d.f.); p-Value (η2) | F(d.f.); p-Value (η2) | F(d.f.); p-Value (η2) | F(d.f.); p-Value (η2) | F(d.f.); p-Value (η2) | |||||||
Locomotion | F (1;80) = 3.72; p = 0.057 (0.044) | F (1;80) = 6.09; p = 0.016 (0.071) | F (1;80) = 18.52; p < 0.001 (0.188) | F (1;80) = 0.04; p = 0.834 (0.001) | F (1;80) = 26.86; p < 0.001 (0.251) | F (1;80) = 0.13; p = 0.721 (0.002) | ||||||
Male | 12.56 (1.3) | 12.46 (2.1) | 12.87 (1.2) | 13.67 (0.6) | 13.15 (1.0) | 13.79 (0.5) | ||||||
Female | 12.05 (1.8) | 12.88 (1.3) | 12.79 (1.7) | 13.51 (0.9) | 13.47 (0.9) | 14.02 (0.8) | ||||||
Total | 12.29 (1.6) | 12.68 (1.7) | 12.83 (1.5) | 13.59 (0.8) | 13.32 (0.9) | 13.91 (0.7) | ||||||
Positions | F (1;80) = 3.21; p = 0.077 (0.039) | F (1;80) = 1.60; p = 0.210 (0.020) | F (1;80) = 12.36; p = 0.001 (0.134) | F (1;80) = 2.64; p = 0.108 (0.032) | F (1;80) = 32.11; p < 0.001 (0.286) | F (1;80) = 0.54; p = 0.466 (0.007) | ||||||
Male | 4.82 (1.5) | 5.36 (1.0) | 4.95 (0.8) | 5.21 (1.2) | 5.44 (0.7) | 5.95 (0.3) | ||||||
Female | 5.12 (1.0) | 5.21 (1.1) | 4.86 (0.9) | 5.56 (0.7) | 5.58 (0.7) | 5.98 (0.2) | ||||||
Total | 4.98 (1.3) | 5.28 (1.1) | 4.90 (0.8) | 5.39 (1.0) | 5.51 (0.7) | 5.96 (0.2) | ||||||
Balance | F (1;80) = 53.91; p < 0.001 (0.403) | F (1;80) = 2.65; p = 0.107 (0.032) | F (1;80) = 13.14; p = 0.001 (0.141) | F (1;80) = 0.07; p = 0.792 (0.001) | F (1;80) = 66.08; p < 0.001 (0.452) | F (1;80) = 1.10; p = 0.298 (0.014) | ||||||
Male | 9.33 (1.6) | 10.67 (2.0) | 8.77 (2.1) | 9.85 (2.1) | 9.74 (1.4) | 11.46 (0.7) | ||||||
Female | 8.72 (2.0) | 10,.81 (1.7) | 8.86 (1.8) | 9.79 (2.6) | 10.23 (1.3) | 11.56 (1.1) | ||||||
Total | 9.01 (1.8) | 10.74 (1.9) | 8.82 (1.9) | 9.82 (2.4) | 10.00 (1.4) | 11.51 (0.9) | ||||||
Leg Coord. | F (1;80) = 13.85; p < 0.001 (0.148) | F (1;80) = 2.14; p = 0.148 (0.026) | F (1;80) = 65.27; p < 0.001 (0.449) | F (1;80) = 0.64; p = 0.427 (.008) | F (1;80) = 24.80; p < 0.001 (0.237) | F (1;80) = 2.57; p = 0.113 (0.031) | ||||||
Male | 10.77 (1.3) | 11.21 (1.3) | 11.67 (1.0) | 9.26 (2.3) | 11.33 (1.0) | 11.92 (0.4) | ||||||
Female | 10.44 (1.9) | 11.44 (1.2) | 11.49 (1.3) | 9.51 (2.3) | 11.70 (0.5) | 12.00 (0.0) | ||||||
Total | 10.60 (1.6) | 11.33 (1.2) | 11.57 (1.2) | 9.39 (2.3) | 11.52 (0.8) | 11.96 (0.2) | ||||||
Arm Coord. | F (1;80) = 1.26; p = 0.265 (0.015) | F (1;80) = 2.24; p = 0.138 (0.027) | F (1;80) = 11.63; p = 0.001 (0.127) | F (1;80) = 1.16; p = 0.286 (0.014) | F (1;80) = 0.30; p = 0.583 (0.004) | F (1;80) = 0.40; p = 0.529 (0.005) | ||||||
Male | 7.13 (1.5) | 6.64 (1.7) | 6.28 (1.9) | 7.67 (2.3) | 8.59 (1.7) | 8.56 (1.9) | ||||||
Female | 6.49 (1.8) | 6.56 (1.4) | 6.14 (1.8) | 6.86 (2.0) | 8.53 (1.6) | 8.91 (1.7) | ||||||
Total | 6.79 (1.7) | 6.60 (1.5) | 6.21 (1.9) | 7.24 (2.2) | 8.56 (1.6) | 8.74 (1.8) | ||||||
Hand Coord. | F (1;80) = 0.43; p = 0.513 (0.005) | F (1;80) = 0.13; p = 0.725 (0.002) | F (1;80) = 17.51; p < 0.001 (0.180) | F (1;80) = 0.01; p = 0.936 (0.000) | F (1;80) = 2.11; p = 0.151 (0.026) | F (1;80) = 0.23; p = 0.631 (0.003) | ||||||
Male | 7.00 (2.1) | 6.92 (1.9) | 8.67 (1.6) | 9.51 (1.0) | 9.49 (0.8) | 9.62 (0.6) | ||||||
Female | 7.28 (2.0) | 7.02 (2.2) | 8.65 (1.6) | 9.47 (1.0) | 9.26 (1.1) | 9.51 (0.7) | ||||||
Total | 7.15 (2.1) | 6.98 (2.1) | 8.66 (1.6) | 9.49 (1.0) | 9.37 (1.0) | 9.56 (0.6) | ||||||
BSA | F (1;80) = 3.13; p = 0.081 (0.038) | F (1;80) = 0.11; p = 0.737 (0.001) | F (1;80) = 21.53; p < 0.001 (0.212) | F (1;80) = 0.15; p = 0.705 (0.002) | F (1;80) = 2.74; p = 0.102 (0.033) | F (1;80) = 2.02; p = 0.159 (0.025) | ||||||
Male | 6.92 (2.6) | 7.54 (1.6) | 4.59 (3.1) | 6.97 (3.4) | 8.72 (2.2) | 8.79 (2.5) | ||||||
Female | 6.93 (2.5) | 7.35 (1.5) | 5.07 (2.8) | 7.09 (3.3) | 8.09 (2.8) | 9.12 (2.0) | ||||||
Total | 6.93 (2.5) | 7.44 (.5) | 4.84 (2.9) | 7.04 (3.3) | 8.39 (2.5) | 8.96 (2.2) | ||||||
BSoA | F (1;79) = 0.89; p = 0.349 (0.011) | F (1;79) = 3.59; p = 0.062 (0.043) | F (1;80) = 1.62; p = 0.206 (0.020) | F (1;80) = 1.35; p = 0.249 (0.017) | F (1;80) = 143.65; p < 0.001(0.642) | F (1;80) = 0.60; p = 0.441 (0.007) | ||||||
Male | 3.84 (1.9) | 3.63 (2.1) | 3.90 (1.4) | 3.87 (1.8) | 3.36 (1.6) | 5.82 (0.6) | ||||||
Female | 3.23 (1.5) | 3.86 (1.9) | 4.16 (1.6) | 3.60 (1.7) | 3.58 (1.6) | 5.74 (0.9) | ||||||
Total | 3.52 (1.7) | 3.75 (2.0) | 4.04 (1.5) | 3.73 (1.7) | 3.48 (1.6) | 5.78 (0.7) |
Psychomotor Skills Level, n (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|
3 Years | 4 Years | 5 Years | |||||||
Good | Normal | Low | Good | Normal | Low | Good | Normal | Low | |
Locomotion | 52 (63.4) | 29 (35.4) | 1 (1.2) | 74 (90.2) | 8 (9.8) | 0 (0) | 72 (87.8) | 10 (12.2) | 0 (0) |
Positions | 49 (59.8) | 30 (36.6) | 3 (3.7) | 49 (59.8) | 31 (37.8) | 2 (2.4) | 0 (0) | 81 (98.8) | 1 (1.2) |
Balance | 57 (69.5) | 22 (26.8) | 3 (3.7) | 47 (57.3) | 29 (35.4) | 6 (7.3) | 47 (57.3) | 35 (42.7) | 0 (0) |
Leg Coord. | 55 (67.1) | 27 (32.9) | 0 (0) | 24 (29.3) | 54 (65.9) | 4 (4.9) | 0 (0) | 81 (98.8) | 1 (1.2) |
Arm Coord. | 4 (4.9) | 75 (91.5) | 3 (3.7) | 19 (23.2) | 60 (73.2) | 3 (3.7) | 0 (0) | 56 (68.3) | 26 (31.7) |
Hand Coord. | 8 (9.8) | 66 (80.5) | 8 (9.8) | 54 (65.9) | 27 (32.9) | 1 (1.2) | 0 (0) | 82 (100) | 0 (0) |
BSA | 7 (8.5) | 74 (90.2) | 1 (1.2) | 42 (51.2) | 25 (30.5) | 15 (18.3) | 52 (63.4) | 25 (30.5) | 5 (6.1) |
BSoA | 25 (30.5) | 46 (56.1) | 11 (13.4) | 28 (34.1) | 53 (64.6) | 1 (1.2) | 74 (90.2) | 5 (6.1) | 3 (3.7) |
PRE | POST | Wilcoxon Test | ||||||
---|---|---|---|---|---|---|---|---|
Initiated | In Progress | Achieved | Initiated | In Progress | Achieved | Z | p-Value | |
3 years | ||||||||
SA | 69 (84.1) | 13 (15.9) | 0 (0) | 8 (9.8) | 56 (68.3) | 18 (22) | −7.47 | <0.001 |
LG | 68 (82.9) | 9 (11) | 5 (6.1) | 8 (9.8) | 49 (59.8) | 25 (30.5) | −7.00 | <0.001 |
KE | 64 (78) | 10 (12.2) | 8 (9.8) | 8 (9.8) | 45 (54.9) | 29 (35.4) | −6.87 | <0.001 |
4 years | ||||||||
SA | 34 (42) | 47 (58) | 0 (0) | 2 (2.4) | 54 (65.9) | 26 (31.7) | −6.32 | <0.001 |
LG | 36 (44.4) | 45 (55.6) | 0 (0) | 3 (3.7) | 51 (62.2) | 28 (34.1) | −6.45 | <0.001 |
KE | 36 (44.4) | 45 (55.6) | 0 (0) | 2 (2.4) | 55 (67.1) | 25 (30.5) | −6.51 | <0.001 |
5 years | ||||||||
SA | 8 (9.8) | 41 (50) | 33 (40.2) | 0 (0) | 0 (0) | 82 (100) | −6.58 | <0.001 |
LG | 10 (12.2) | 38 (46.3) | 34 (41.5) | 0 (0) | 0 (0) | 82 (100) | −6.44 | <0.001 |
KE | 8 (9.8) | 38 (46.3) | 36 (43.9) | 0 (0) | 0 (0) | 82 (100) | −6.36 | <0.001 |
3 Years | ||||||
Self-Awareness | Language | Knowledge of the Environment | ||||
OR (IC 95%) | p-Valor | OR (IC 95%) | p-Valor | OR (IC 95%) | p-Valor | |
---|---|---|---|---|---|---|
Locomotion | 0.35 (0.08–1.64) | 0.185 | 0.62 (0.12–3.23) | 0.569 | 0.26 (0.06–1.23) | <0.001 |
Positions | 1.48 (0.37–6.00) | 0.583 | 0.51 (0.10–2.47) | 0.399 | 1.43 (0.33–6.22) | <0.001 |
Balance | 0.26 (0.06–1.12) | 0.071 | 0.14 (0.03–0.71) | 0.018 | 0.60 (0.16–2.29) | <0.001 |
Leg Coord. | 1.30 (0.35–4.84) | 0.701 | 7.71 (1.50–39.66) | 0.014 | 2.59 (0.66–10.10) | <0.001 |
Arm Coord. | 1.41 (0.29–6.82) | 0.668 | 0.96 (0.16–5.85) | 0.966 | 0.79 (0.18–3.40) | <0.001 |
Hand Coord. | 15.66 (1.53–160.11) | 0.02 | 36.40 (2.99–443.48) | 0.005 | 8.89 (1.27–62.43) | <0.001 |
BSA | 1.02 (0.25–4.25) | 0.975 | 0.65 (0.13–3.25) | 0.596 | 2.97 (0.62–14.17) | <0.001 |
BSoA | 4.90 (0.86–28.06) | 0.074 | 20.40 (1.70–245.55) | 0.018 | 1.69 (0.36–7.89) | <0.001 |
R2 of Nagelkerke | 0.284 | 0.458 | 0.224 | |||
Model | χ2(8) = 16.42; p = 0.037 | χ2(8) = 29.06; p < 0.001 | χ2(8) = 12.67; p = 0.124 | |||
4 Years | ||||||
Self-Awareness | Language | Knowledge of the Environment | ||||
OR (IC 95%) | p-Valor | OR (IC 95%) | p-Valor | OR (IC 95%) | p-Valor | |
Locomotion | 2.88 (0.72–11.52) | 0.135 | 1.55 (0.42–5.76) | 0.51 | 2.80 (0.73–10.72) | <0.001 |
Positions | 3.18 (0.93–10.92) | 0.066 | 3.07 (0.96–9.87) | 0.059 | 2.85 (0.86–9.43) | <0.001 |
Balance | 2.77 (0.79–9.71) | 0.112 | 1.98 (0.61–6.43) | 0.258 | 6.67 (1.81–24.54) | <0.001 |
Leg Coord. | 11.75 (3.45–40.06) | <0.001 | 8.89 (2.64–29.97) | <0.001 | 5.72 (1.76–18.57) | <0.001 |
Arm Coord. | 1.16 (0.33–4.06) | 0.819 | 0.82 (0.24–2.78) | 0.751 | 1.80 (0.52–6.23) | <0.001 |
Hand Coord. | 5.90 (1.57–22.15) | 0.009 | 6.78 (1.95–23.62) | 0.003 | 6.46 (1.78–23.55) | <0.001 |
BSA | 1.45 (0.44–4.73) | 0.543 | 1.50 (0.47–4.76) | 0.496 | 1.93 (0.59–6.29) | <0.001 |
BSoA | 2.88 (0.72–11.52) | 0.135 | 1.55 (0.42–5.76) | 0.51 | 2.80 (0.73–10.72) | <0.001 |
R2 of Nagelkerke | 0.492 | 0.44 | 0.458 | |||
Model | χ2(7) = 37.13; p < 0.001 | χ2(7) = 32.18; p < 0.001 | χ2(7) = 33.79; p < 0.001 | |||
5 Years | ||||||
Self-Awareness | Language | Knowledge of the Environment | ||||
OR (IC 95%) | p-Value | OR (IC 95%) | p-Value | OR (IC 95%) | p-Value | |
Locomotion | 0.95 (0.27–3.34) | 0.931 | 2.70 (0.82–8.91) | 0.103 | 1.29 (0.40–4.14) | <0.001 |
Positions | 3.42 (0.87–13.42) | 0.078 | 1.61 (0.48–5.37) | 0.436 | 2.16 (0.64–7.29) | <0.001 |
Balance | 16.41 (4.06–66.35) | <0.001 | 7.52 (2.13–26.54) | 0.002 | 7.88 (2.24–27.64) | <0.001 |
Leg Coord. | 1.13 (0.29–4.42) | 0.861 | 1.57 (0.46–5.34) | 0.473 | 1.73 (0.51–5.87) | <0.001 |
Arm Coord. | 1.45 (0.42–5.00) | 0.558 | 0.76 (0.24–2.39) | 0.642 | 1.76 (0.56–5.55) | <0.001 |
Hand Coord. | 1.39 (0.37–5.26) | 0.63 | 1.35 (0.38–4.76) | 0.645 | 1.94 (0.56–6.75) | <0.001 |
BSA | 2.77 (0.63–12.21) | 0.179 | 2.99 (0.74–12.11) | 0.126 | 1.70 (0.44–6.58) | <0.001 |
BSoA | 4.76 (1.10–20.55) | 0.037 | 2.28 (0.61–8.53) | 0.219 | 2.77 (0.74–10.29) | <0.001 |
R2 of Nagelkerke | 0.498 | 0.379 | 0.382 | |||
Model | χ2(8) = 37.72; p < 0.001 | χ2(8) = 27.12; p = 0.001 | χ2(8) = 27.55; p = 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borrego-Balsalobre, F.J.; Martínez-Moreno, A.; Morales-Baños, V.; Díaz-Suárez, A. Influence of the Psychomotor Profile in the Improvement of Learning in Early Childhood Education. Int. J. Environ. Res. Public Health 2021, 18, 12655. https://doi.org/10.3390/ijerph182312655
Borrego-Balsalobre FJ, Martínez-Moreno A, Morales-Baños V, Díaz-Suárez A. Influence of the Psychomotor Profile in the Improvement of Learning in Early Childhood Education. International Journal of Environmental Research and Public Health. 2021; 18(23):12655. https://doi.org/10.3390/ijerph182312655
Chicago/Turabian StyleBorrego-Balsalobre, Francisco José, Alfonso Martínez-Moreno, Vicente Morales-Baños, and Arturo Díaz-Suárez. 2021. "Influence of the Psychomotor Profile in the Improvement of Learning in Early Childhood Education" International Journal of Environmental Research and Public Health 18, no. 23: 12655. https://doi.org/10.3390/ijerph182312655
APA StyleBorrego-Balsalobre, F. J., Martínez-Moreno, A., Morales-Baños, V., & Díaz-Suárez, A. (2021). Influence of the Psychomotor Profile in the Improvement of Learning in Early Childhood Education. International Journal of Environmental Research and Public Health, 18(23), 12655. https://doi.org/10.3390/ijerph182312655