Occupational Exposure to Ultrafine Particles and Placental Histopathological Lesions: A Retrospective Study about 130 Cases
Abstract
:1. Introduction
2. Materials and Methods
2.1. ARTEMIS Center
2.2. Study Participants
2.3. Evaluation of the Non-Occupational Exposure to UFPs
2.4. Evaluation of the Occupational Exposure to UFPs
2.5. Evaluation of the Histological Placental Lesions
2.6. Population Characteristics
2.7. Statistical Analysis
3. Results
3.1. Population
3.2. Exposure
3.3. Histological Lesions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Commission Recommendation of 18 October 2011 on the Definition of NanomaterialText with EEA Relevance. Available online: https://ec.europa.eu/research/industrial_technologies/pdf/policy/commission–recommendation–on–the–definition–of–nanomater–18102011_en.pdf (accessed on 24 March 2021).
- Manigrasso, M.; Protano, C.; Vitali, M.; Avino, P. Where Do Ultrafine Particles and Nano–Sized Particles Come From? J. Alzheimers Dis. 2019, 68, 1371–1390. [Google Scholar] [CrossRef]
- Stone, V.; Miller, M.R.; Clift, M.J.D.; Elder, A.; Mills, N.L.; Møller, P.; Schins, R.P.F.; Vogel, U.; Kreyling, W.G.; Alstrup Jensen, K.; et al. Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge. Environ. Health Perspect 2017, 125, 106002. [Google Scholar] [CrossRef]
- Kwon, H.-S.; Ryu, M.H.; Carlsten, C. Ultrafine Particles: Unique Physicochemical Properties Relevant to Health and Disease. Exp. Mol. Med. 2020, 52, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Witschger, O.; Fabriès, J.F. Particules Ultra–Fines et Santé Au Travail. 1—Caractérisation Des Effets Potentiels Sur La Santé. INRS 2005, 199, 21–35. [Google Scholar]
- Donaldson, K.; Stone, V.; Clouter, A.; Renwick, L.; MacNee, W. Ultrafine Particles. Occup. Environ. Med 2001, 58, 199, 211–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotti, M.; Olivato, I.; Bergamo, L. Inflammation and Short–Term Cardiopulmonary Effects of Particulate Matter. Nanotoxicology 2009, 3, 27–32. [Google Scholar] [CrossRef]
- Schraufnagel, D.E. The Health Effects of Ultrafine Particles. Exp. Mol. Med. 2020, 52, 311–317. [Google Scholar] [CrossRef]
- Bongaerts, E.; Nawrot, T.S.; Van Pee, T.; Ameloot, M.; Bové, H. Translocation of (Ultra)Fine Particles and Nanoparticles across the Placenta; a Systematic Review on the Evidence of in Vitro, Ex Vivo, and in Vivo Studies. Part. Fibre. Toxicol. 2020, 17, 56. [Google Scholar] [CrossRef]
- Bové, H.; Bongaerts, E.; Slenders, E.; Bijnens, E.M.; Saenen, N.D.; Gyselaers, W.; Van Eyken, P.; Plusquin, M.; Roeffaers, M.B.J.; Ameloot, M.; et al. Ambient Black Carbon Particles Reach the Fetal Side of Human Placenta. Nat. Commun. 2019, 10, 3866. [Google Scholar] [CrossRef] [PubMed]
- Manangama, G.; Migault, L.; Audignon–Durand, S.; Gramond, C.; Zaros, C.; Bouvier, G.; Brochard, P.; Sentilhes, L.; Lacourt, A.; Delva, F. Maternal Occupational Exposures to Nanoscale Particles and Small for Gestational Age Outcome in the French Longitudinal Study of Children. Environ. Int. 2019, 122, 322–329. [Google Scholar] [CrossRef]
- Longtine, M.; Nelson, D.M. Placental Dysfunction and Fetal Programming: The Importance of Placental Size, Shape, Histopathology, and Molecular Composition. Semin. Reprod. Med. 2011, 29, 187–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khong, T.Y.; Mooney, E.E.; Ariel, I.; Balmus, N.C.M.; Boyd, T.K.; Brundler, M.-A.; Derricott, H.; Evans, M.J.; Faye–Petersen, O.M.; Gillan, J.E.; et al. Sampling and Definitions of Placental Lesions: Amsterdam Placental Workshop Group Consensus Statement. Arch. Pathol. Lab. Med. 2016, 140, 698–713. [Google Scholar] [CrossRef] [Green Version]
- Abbott, L.C.; Maynard, A.D. Exposure Assessment Approaches for Engineered Nanomaterials: Perspective. Risk Anal. 2010, 30, 1634–1644. [Google Scholar] [CrossRef] [PubMed]
- Viitanen, A.-K.; Uuksulainen, S.; Koivisto, A.J.; Hämeri, K.; Kauppinen, T. Workplace Measurements of Ultrafine Particles—A Literature Review. Ann. Work Expo. Health 2017, 61, 749–758. [Google Scholar] [CrossRef]
- Delva, F.; Manangama, G.; Brochard, P.; Teysseire, R.; Sentilhes, L. The ARTEMIS Center: An Environmental Health Prevention Platform Dedicated to Reproduction. IJERPH 2020, 17, 694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langston, C.; Kaplan, C.; Macpherson, T.; Manci, E.; Peevy, K.; Clark, B.; Murtagh, C.; Cox, S.; Glenn, G. Practice Guideline for Examination of the Placenta: Developed by the Placental Pathology Practice Guideline Development Task Force of the College of American Pathologists. Arch. Pathol Lab. Med. 1997, 121, 449–476. [Google Scholar] [PubMed]
- Hilal, M.; Barczak, A.; Tourneux, F.-P.; Schaeffer, Y.; Houdart, M.; Cremer–Schulte, D. Typologie des Campagnes Françaises et des Espaces à Enjeux Spécifiques (Littoral, Montagne et DOM). 81. Available online: https://hal.archives-ouvertes.fr/hal-00911232/PDF/TRAVAUX_en_L_12_22032012_bd.pdf (accessed on 24 March 2021).
- Audignon–Durand, S.; Gramond, C.; Ducamp, S.; Manangama, G.; Garrigou, A.; Delva, F.; Brochard, P.; Lacourt, A. Development of a Job–Exposure Matrix for Ultrafine Particle Exposure: The MatPUF JEM. Ann. Work Expo. Health 2021. [Google Scholar] [CrossRef] [PubMed]
- ISCO—International Standard Classification of Occupations. Available online: https://www.ilo.org/public/english/bureau/stat/isco/ (accessed on 13 February 2021).
- Nomenclature D’activités Française | Insee. Available online: https://www.insee.fr/fr/information/2406147 (accessed on 24 March 2021).
- Pvalue.Io. Available online: https://www.pvalue.io/fr/ (accessed on 27 November 2021).
- Redline, R.W.; Boyd, T.K.; Roberts, D.J. Placental and Gestational Pathology; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Proctor, L.K.; Fitzgerald, B.; Whittle, W.L.; Mokhtari, N.; Lee, E.; Machin, G.; Kingdom, J.C.P.; Keating, S.J. Umbilical Cord Diameter Percentile Curves and Their Correlation to Birth Weight and Placental Pathology. Placenta 2013, 34, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Raio, L.; Ghezzi, F.; Di Naro, E.; Duwe, D.G.; Cromi, A.; Schneider, H. Umbilical Cord Morphologic Characteristics and Umbilical Artery Doppler Parameters in Intrauterine Growth–Restricted Fetuses. J. Ultrasound Med. 2003, 22, 1341–1347. [Google Scholar] [CrossRef]
- Campagnolo, L.; Massimiani, M.; Palmieri, G.; Bernardini, R.; Sacchetti, C.; Bergamaschi, A.; Vecchione, L.; Magrini, A.; Bottini, M.; Pietroiusti, A. Biodistribution and Toxicity of Pegylated Single Wall Carbon Nanotubes in Pregnant Mice. Part. Fibre Toxicol. 2013, 10, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietroiusti, A.; Massimiani, M.; Fenoglio, I.; Colonna, M.; Valentini, F.; Palleschi, G.; Camaioni, A.; Magrini, A.; Siracusa, G.; Bergamaschi, A.; et al. Low Doses of Pristine and Oxidized Single–Wall Carbon Nanotubes Affect Mammalian Embryonic Development. Acs. Nano 2011, 5, 4624–4633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valentino, S.A.; Tarrade, A.; Aioun, J.; Mourier, E.; Richard, C.; Dahirel, M.; Rousseau–Ralliard, D.; Fournier, N.; Aubrière, M.-C.; Lallemand, M.–S.; et al. Maternal Exposure to Diluted Diesel Engine Exhaust Alters Placental Function and Induces Intergenerational Effects in Rabbits. Part. Fibre Toxicol. 2015, 13, 39. [Google Scholar] [CrossRef]
- Max Costa, Y.Y. Genetic and Epigenetic Effects of Nanoparticles. J. Mol. Genet. Med. 2013, 7. [Google Scholar] [CrossRef] [Green Version]
- Xia, T.; Kovochich, M.; Brant, J.; Hotze, M.; Sempf, J.; Oberley, T.; Sioutas, C.; Yeh, J.I.; Wiesner, M.R.; Nel, A.E. Comparison of the Abilities of Ambient and Manufactured Nanoparticles To Induce Cellular Toxicity According to an Oxidative Stress Paradigm. Nano Lett. 2006, 6, 1794–1807. [Google Scholar] [CrossRef] [PubMed]
- Saenen, N.D.; Martens, D.S.; Neven, K.Y.; Alfano, R.; Bové, H.; Janssen, B.G.; Roels, H.A.; Plusquin, M.; Vrijens, K.; Nawrot, T.S. Air Pollution–Induced Placental Alterations: An Interplay of Oxidative Stress, Epigenetics, and the Aging Phenotype? Clin. Epigenet 2019, 11, 124. [Google Scholar] [CrossRef] [PubMed]
- Laganà, A.S.; Vitale, S.G.; Sapia, F.; Valenti, G.; Corrado, F.; Padula, F.; Rapisarda, A.M.C.; D’Anna, R. MiRNA Expression for Early Diagnosis of Preeclampsia Onset: Hope or Hype? J. Matern. –Fetal Neonatal Med. 2018, 31, 817–821. [Google Scholar] [CrossRef]
- Chiofalo, B.; Laganà, A.S.; Vaiarelli, A.; La Rosa, V.L.; Rossetti, D.; Palmara, V.; Valenti, G.; Rapisarda, A.M.C.; Granese, R.; Sapia, F.; et al. Do MiRNAs Play a Role in Fetal Growth Restriction? A Fresh Look to a Busy Corner. Biomed Res. Int. 2017, 2017, 1–8. [Google Scholar] [CrossRef]
- Burstyn, I.; Yang, Y.; Schnatter, A. Effects of Non–Differential Exposure Misclassification on False Conclusions in Hypothesis–Generating Studies. IJERPH 2014, 11, 10951–10966. [Google Scholar] [CrossRef] [Green Version]
- Clemens, T.; Turner, S.; Dibben, C. Maternal Exposure to Ambient Air Pollution and Fetal Growth in North–East Scotland: A Population–Based Study Using Routine Ultrasound Scans. Environ. Int. 2017, 107, 216–226. [Google Scholar] [CrossRef] [Green Version]
- Lamichhane, D.K.; Ryu, J.; Leem, J.-H.; Ha, M.; Hong, Y.-C.; Park, H.; Kim, Y.; Jung, D.-Y.; Lee, J.-Y.; Kim, H.-C.; et al. Air Pollution Exposure during Pregnancy and Ultrasound and Birth Measures of Fetal Growth: A Prospective Cohort Study in Korea. Sci. Total Environ. 2018, 619–620, 834–841. [Google Scholar] [CrossRef]
- Laurent, O.; Hu, J.; Li, L.; Kleeman, M.J.; Bartell, S.M.; Cockburn, M.; Escobedo, L.; Wu, J. Low Birth Weight and Air Pollution in California: Which Sources and Components Drive the Risk? Environ. Int. 2016, 92–93, 471–477. [Google Scholar] [CrossRef]
- Manangama, G.; Audignon–Durand, S.; Migault, L.; Gramond, C.; Zaros, C.; Teysseire, R.; Sentilhes, L.; Brochard, P.; Lacourt, A.; Delva, F. Maternal Occupational Exposure to Carbonaceous Nanoscale Particles and Small for Gestational Age and the Evolution of Head Circumference in the French Longitudinal Study of Children—Elfe Study. Environ. Res. 2020, 185, 109394. [Google Scholar] [CrossRef]
Socio-Demographic Characteristics | Total | Unexposed | Exposed | p-Value * | |||
---|---|---|---|---|---|---|---|
Maternal age, median (Q25; Q75) | 33 | (28;36) | 33 | (28;36) | 33 | (25.8;35.2) | 0.63 |
Maternal education, n (%) | |||||||
Short-cycle higher education | 34 | (30) | 30 | (35) | 4 | (14) | <0.01 |
Master’s degree or equivalent | 30 | (26) | 28 | (33) | 2 | (7.1) | |
Professional qualification | 22 | (19) | 13 | (15) | 2 | (32) | |
Professional high school | 9 | (7.9) | 4 | (4.7) | 5 | (18) | |
High school | 5 | (4.4) | 4 | (4.7) | 1 | (3.6) | |
Without certificate | 6 | (5.3) | 3 | (3.5) | 3 | (11) | |
Unknown | 8 | (7) | 14 | (4.7) | 4 | (14) | |
BMI category (kg/m2), n (%) | |||||||
<19 | 8 | (7) | 6 | (7) | 2 | (7.1) | 1 |
19–24.9 | 59 | (52) | 47 | (55) | 12 | (43) | |
25–29.9 | 17 | (15) | 13 | (15) | 4 | (14) | |
≥30 | 18 | (17) | 12 | (14) | 7 | (25) | |
Unknown | 11 | (9.6) | 8 | (9.3) | 3 | (11) | |
Localization of home, n (%) | |||||||
Urban | 70 | (61) | 54 | (63) | 16 | (57) | 1 |
Semi-urban | 23 | (20) | 16 | (19) | 7 | (25) | |
Rural | 18 | (16) | 13 | (15) | 5 | (18) | |
Unknown | 3 | (2.6) | 3 | (3.5) | 0 | (0) | |
Chronic hypertension | 4 | (3.5) | 4 | (4.7) | 0 | (0) | 1 |
Type of pregnancy, n (%) | |||||||
Singleton | 93 | (82) | 67 | (78) | 26 | (93) | 0.85 |
Dichorionic diamniotic | 16 | (14) | 14 | (16) | 2 | (7.1) | |
Monochorionic diamniotic | 4 | (3.5) | 4 | (4.7) | 0 | (0) | |
Monochorionic monoamniotic | 1 | (0.8) | 1 | (1.2) | 0 | (0) | |
Smoking during pregnancy, n (%) | 20 | (18) | 12 | (14) | 8 | (29) | 0.18 |
Passive tobacco exposure 1, n (%) | 10 | (8.8) | 8 | (9.3) | 2 | (7.1) | 0.62 |
Obstetrical Pathologies | Total | Unexposed | Exposed | p-Value * | |||
---|---|---|---|---|---|---|---|
n | (%) | n | (%) | n | (%) | ||
Assisted reproductive technology (ART) | 13 | (11) | 11 | (13) | 2 | (7.1) | 1 |
Gestational diabetes | 11 | (9.6) | 7 | (8.1) | 4 | (14) | 0.92 |
Gestational hypertension | 4 | (3.5) | 3 | (3.5) | 1 | (3.6) | 1 |
Pre-eclampsia | 37 | (32) | 28 | (33) | 9 | (32) | 0.97 |
Fetal growth restriction | 50 | (44) | 39 | (45) | 11 | (39) | 0.57 |
Premature rupture of the membranes | 25 | (22) | 19 | (22) | 6 | (21) | 0.94 |
Congenital malformation | 21 | (18) | 14 | (16) | 7 | (25) | 0.3 |
Termination of pregnancy | 12 | (11) | 7 | (8.1) | 5 | (18) | 0.33 |
Clinical suspicion of chorioamnionitis | 10 | (8.8) | 8 | (9.3) | 2 | (7.1) | 1 |
Other pathology | 22 | (19) | 16 | (19) | 6 | (21) | 0.74 |
Preterm birth | |||||||
37–32 WG | 46 | (40) | 33 | (38) | 13 | (46) | 1 |
<32 WG | 59 | (52) | 45 | (52) | 14 | (50) |
Occupation | Effective | |
---|---|---|
n | (%) | |
Cleaner | 10 | 35.7 |
Childcare professional | 5 | 17.8 |
Agricultural worker | 3 | 10.7 |
Cook | 2 | 7 |
Laundry worker | 1 | 3.6 |
Mail delivery | 1 | 3.6 |
Maintenance engineer | 1 | 3.6 |
Pharmaceutical mill worker | 1 | 3.6 |
QHSE 1 worker in a paper mill | 1 | 3.6 |
Chief of project in construction | 1 | 3.6 |
Wood mill worker | 1 | 3.6 |
Medical worker | 1 | 3.6 |
Total | Unexposed | Exposed | p-Value | ||||
---|---|---|---|---|---|---|---|
n | (%) | n | (%) | n | (%) | ||
Maternal stromal-vascular malperfusion | 120 | (92) | 89 | (90) | 31 | (100) | 0.23 |
Fetal stromal-vascular malperfusion | 30 | (23) | 26 | (26) | 4 | (13) | 0.12 |
Ascending intra-uterine infection | 22 | (17) | 20 | (20) | 2 | (6.5) | 0.08 |
Immune lesions | 22 | (17) | 20 | (20) | 2 | (6.5) | 0.08 |
Total | Unexposed | Exposed | p-Value | ||||
---|---|---|---|---|---|---|---|
n | (%) | n | (%) | n | (%) | ||
Maternal stromal-vascular malperfusion | |||||||
Decidual arteriopathy | 31 | (24) | 23 | (23) | 8 | (26) | 0.77 |
Accelerated villous maturation | 99 | (76) | 67 | (68) | 23 | (74) | 0.49 |
Distal villous hypoplasia | 17 | (13) | 14 | (14) | 3 | (9.7) | 0.76 |
Placental hypoplasia | 53 | (41) | 34 | (34) | 19 | (61) | <0.01 |
Villous infarction | 30 | (23) | 23 | (23) | 7 | (23) | 0.94 |
Retroplacental hemorrhage | 13 | (10) | 10 | (10) | 3 | (10) | 1 |
Fetal stromal-vascular malperfusion | |||||||
Thrombus in a major vessel | 8 | (6.2) | 8 | (8.1) | 0 | (0) | 0.2 |
Villous stromal-vascular karyorrhexis | 9 | (7) | 9 | (9.1) | 0 | (0) | 0.12 |
Avascular villosity | 27 | (21) | 23 | (23) | 4 | (13) | 0.24 |
Ascending intra-uterine infection | 22 | (17) | 20 | (20) | 2 | (6.5) | 0.08 |
Immune lesions | |||||||
Chronic intervillitis | 9 | (6.9) | 9 | (9.1) | 0 | (0) | 0.11 |
Villitis of unknown etiology | 12 | (9.2) | 12 | (12) | 0 | (0) | 0.07 |
Other immune lesion | 9 | (6.9) | 7 | (7.1) | 2 | (6.5) | 1 |
Other lesions | |||||||
Crowding of villosity | 105 | (81) | 81 | (82) | 24 | (77) | 0.59 |
Increased intervillous fibrin | 104 | (80) | 80 | (81) | 24 | (77) | 0.68 |
Increased syncytial knots | 104 | (80) | 79 | (80) | 25 | (81) | 0.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasquiou, A.; Pelluard, F.; Manangama, G.; Brochard, P.; Audignon, S.; Sentilhes, L.; Delva, F. Occupational Exposure to Ultrafine Particles and Placental Histopathological Lesions: A Retrospective Study about 130 Cases. Int. J. Environ. Res. Public Health 2021, 18, 12719. https://doi.org/10.3390/ijerph182312719
Pasquiou A, Pelluard F, Manangama G, Brochard P, Audignon S, Sentilhes L, Delva F. Occupational Exposure to Ultrafine Particles and Placental Histopathological Lesions: A Retrospective Study about 130 Cases. International Journal of Environmental Research and Public Health. 2021; 18(23):12719. https://doi.org/10.3390/ijerph182312719
Chicago/Turabian StylePasquiou, Anaïs, Fanny Pelluard, Guyguy Manangama, Patrick Brochard, Sabyne Audignon, Loïc Sentilhes, and Fleur Delva. 2021. "Occupational Exposure to Ultrafine Particles and Placental Histopathological Lesions: A Retrospective Study about 130 Cases" International Journal of Environmental Research and Public Health 18, no. 23: 12719. https://doi.org/10.3390/ijerph182312719
APA StylePasquiou, A., Pelluard, F., Manangama, G., Brochard, P., Audignon, S., Sentilhes, L., & Delva, F. (2021). Occupational Exposure to Ultrafine Particles and Placental Histopathological Lesions: A Retrospective Study about 130 Cases. International Journal of Environmental Research and Public Health, 18(23), 12719. https://doi.org/10.3390/ijerph182312719