Earth Dreams: Reimagining ARPA for Health of People, Places and Planet
Abstract
:1. Introduction
2. Origins of ARPA—Space Dreams
3. Processes That Promote Quantum Advances and Circumvent Bureaucracy
4. Making the Case for an ARPA for Health
5. Becoming a Reality—Earth Dreams
6. The Risk of Limiting the Scope and Impact of ARPA-H before it Begins
7. ARPA-H and the Exposome
8. An Example and a Cautionary Tale
9. New Perspectives on the Ecology of Social Disadvantage
10. Asking the Right Questions
“It’s the questions that we need to discover, because the answers preexist. If we ask the right questions, the answers will come”Jonas Salk, 1972 [114].
11. Conclusions
“We must try to imagine the kinds of surroundings and ways of life we desire, lest we end up with a jumble of technologies and counter-technologies that will eventually smother body and soul.”Rene Dubos, 1971 [139].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Whitmee, S.; Haines, A.; Beyrer, C.; Boltz, F.; Capon, A.G.; de Souza Dias, B.F.; Ezeh, A.; Frumkin, H.; Gong, P.; Head, P.; et al. Safeguarding human health in the Anthropocene epoch: Report of The Rockefeller Foundation-Lancet Commission on planetary health. Lancet 2015, 386, 1973–2028. [Google Scholar] [CrossRef]
- Prescott, S.L.; Bland, J.S. Spaceship Earth Revisited: The Co-Benefits of Overcoming Biological Extinction of Experience at the Level of Person, Place and Planet. Int. J. Env. Res. Public Health 2020, 17, 1407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wabnitz, K.J.; Gabrysch, S.; Guinto, R.; Haines, A.; Herrmann, M.; Howard, C.; Potter, T.; Prescott, S.L.; Redvers, N. A pledge for planetary health to unite health professionals in the Anthropocene. Lancet 2020, 396, 1471–1473. [Google Scholar] [CrossRef]
- Prescott, S.L.; Logan, A.C.; Albrecht, G.; Campbell, D.E.; Crane, J.; Cunsolo, A.; Holloway, J.W.; Kozyrskyj, A.; Lowry, C.A.; Penders, J.; et al. The Canmore Declaration: Statement of Principles for Planetary Health. Challenges 2018, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Giroux, E.; Fayet, Y.; Serviant-Fine, T. The exposome: Tensions between holism and reductionism. Med. Sci. 2021, 37, 774–778. [Google Scholar]
- Logan, A.C.; Berman, S.H.; Scott, R.B.; Berman, B.M.; Prescott, S.L. Wise Ancestors, Good Ancestors: Why Mindfulness Matters in the Promotion of Planetary Health. Challenges 2021, 12, 26. [Google Scholar] [CrossRef]
- DeGette, D.; Upton, F. A Bill to Continue the Acceleration of the Discovery, Development, and Delivery of 21st Century Cures, and for Other Purposes. Title V. 117th Congress, 1st Session. 22 June 2021. Available online: https://www.acr.org/-/media/ACR/Files/Advocacy/AIA/Cures-2-Draft-Legislation-070821.pdf (accessed on 25 October 2021).
- Collins, F.S.; Schwetz, T.A.; Tabak, L.A.; Lander, E.S. ARPA-H: Accelerating biomedical breakthroughs. Science 2021, 373, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, S. $6.5 billion proposed for new US health research agency. Lancet 2021, 397, 1869–1870. [Google Scholar] [CrossRef]
- Tollefson, J. What the Rise of ‘ARPA-Everything’ Will Mean for Science. Nature 2021, 595, 483–484. [Google Scholar] [CrossRef]
- VanderWeele, T.J.; McNeely, E.; Koh, H.K. Reimagining Health-Flourishing. JAMA 2019, 321, 1667–1668. [Google Scholar] [CrossRef] [PubMed]
- VanderWeele, T.J.; Chen, Y.; Long, K.; Kim, E.S.; Trudel-Fitzgerald, C.; Kubzansky, L.D. Positive Epidemiology? Epidemiology 2020, 31, 189–193. [Google Scholar] [CrossRef]
- Brogren, M. A Proposed DARPA for Life Sciences. Office of Science and Innovation of Sweden. Available online: https://sweden-science-innovation.blog/washington/a-proposed-darpa-for-life-sciences/ (accessed on 25 November 2021).
- Reston, J. Some defense accomplishments. Chattanooga Daily Times (Chattanooga, Tennessee), 8 December 1957; 30. [Google Scholar]
- Associated Press. ‘Advanced Projects’ to be set up to handle weapons, space-flight work. Wichita Eagle (Wichita Kans.), 6 December 1957; 1. [Google Scholar]
- Fay, E.C. McElroy organizing advanced research projects agency. The Wichita Eagle (Wichita, Kansas), 10 January 1958; 1. [Google Scholar]
- Associated Press. Executive named czar of space agency. The Newport Daily Express (Newport, Vermont), 7 February 1958; 1. [Google Scholar]
- Liu, S. DARPA: A Global Innovation Differentiator. IEEE Eng. Manag. Rev. 2020, 48, 65–71. [Google Scholar] [CrossRef]
- Lalani, H.S.; Avorn, J.; Kesselheim, A.S. US Taxpayers Heavily Funded the Discovery of COVID-19 Vaccines. Clin. Pharm. 2021. [Google Scholar] [CrossRef]
- Ngo, A.D.; Taylor, R.; Roberts, C.L.; Nguyen, T.V. Association between Agent Orange and birth defects: Systematic review and meta-analysis. Int. J. Epidemiol. 2006, 35, 1220–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stellman, J.M.; Stellman, S.D.; Christian, R.; Weber, T.; Tomasallo, C. The extent and patterns of usage of Agent Orange and other herbicides in Vietnam. Nature 2003, 422, 681–687. [Google Scholar] [CrossRef]
- Fuchs, E.R.H. Cloning DARPA Successfully. Issues Sci. Technol. 2009, 26, 65–70. [Google Scholar]
- Else, H. Plan to create UK version of DARPA lacks detail, say researchers. Nature 2021. [Google Scholar] [CrossRef] [PubMed]
- Glosserman, B. In meeting today’s great challenges: Think ‘moonshot’. Japanese Times. 18 May 2021. Available online: https://www.japantimes.co.jp/opinion/2021/05/18/commentary/japan-commentary/moonshot-research-tech-robots-and-ai/ (accessed on 29 November 2021).
- Cook-Deegan, R.M. Does NIH need a DARPA? Issues Sci. Technol. 1997, 13, 25–28. [Google Scholar]
- Sampat, B.N.; Cook-Deegan, R. An ARPA for Health Research? Milbank Quarterly Opinion, 30 August 2021. [Google Scholar]
- United States House of Representatives 117th Congress, Departments of Labor, Health and Human Services, and Education, and Related Agencies Appropriations Bill, 2022. 2021. Available online: https://docs.house.gov/meetings/AP/AP00/20210715/113908/HMKP-117-AP00-20210715-SD003.pdf (accessed on 25 October 2021).
- The White House Briefing Room, Science Magazine: ARPA-H: Accelerating Biomedical Breakthroughs. 22 June 2021. Available online: https://www.whitehouse.gov/ostp/news-updates/2021/06/22/science-magazine-arpa-h-accelerating-biomedical-breakthroughs/ (accessed on 25 October 2021).
- Sattar, N.; Valabhji, J. Obesity as a Risk Factor for Severe COVID-19: Summary of the Best Evidence and Implications for Health Care. Curr. Obes. Rep. 2021, 10, 282–289. [Google Scholar] [CrossRef]
- Sanchis-Gomar, F.; Lavie, C.J.; Neeland, I.J.; Lippi, G. Does abdominal obesity influence immunological response to SARS-CoV-2 infection? Expert Rev. Endocrino. 2021. [Google Scholar] [CrossRef]
- Figueroa, J.F.; Wadhera, R.K.; Mehtsun, W.T.; Riley, K.; Phelan, J.; Jha, A.K. Association of race, ethnicity, and community-level factors with COVID-19 cases and deaths across U.S. counties. Healthcare 2021, 9, 100495. [Google Scholar] [CrossRef]
- Lippert, A.M.; Evans, C.R.; Razak, F.; Subramanian, S.V. Associations of Continuity and Change in Early Neighborhood Poverty With Adult Cardiometabolic Biomarkers in the United States: Results From the National Longitudinal Study of Adolescent to Adult Health, 1995–2008. Am. J. Epidemiol. 2017, 185, 765–776. [Google Scholar] [CrossRef] [Green Version]
- Woolf, S.H.; Masters, R.K.; Aron, L.Y. Effect of the COVID-19 pandemic in 2020 on life expectancy across populations in the USA and other high income countries: Simulations of provisional mortality data. BMJ 2021, 373, n1343. [Google Scholar] [CrossRef]
- Woolf, S.H.; Schoomaker, H. Life Expectancy and Mortality Rates in the United States, 1959–2017. JAMA—J. Am. Med. Assoc. 2019, 322, 1996–2016. [Google Scholar] [CrossRef] [PubMed]
- Horton, M.; Perman-Howe, P.R.; Angus, C.; Bishop, J.; Bogdanovica, I.; Brennan, A.; Britton, J.; Brose, L.S.; Brown, J.; Collin, J.; et al. The SPECTRUM Consortium: A new UK Prevention Research Partnership consortium focussed on the commercial determinants of health, the prevention of non-communicable diseases, and the reduction of health inequalities. Wellcome Open Res. 2021, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Moodie, R.; Stuckler, D.; Monteiro, C.; Sheron, N.; Neal, B.; Thamarangsi, T.; Lincoln, P.; Casswell, S.; Lancet, N.C.D.A.G. Profits and pandemics: Prevention of harmful effects of tobacco, alcohol, and ultra-processed food and drink industries. Lancet 2013, 381, 670–679. [Google Scholar] [CrossRef]
- Moodie, R.; Bennett, E.; Kwong, E.J.L.; Santos, T.M.; Pratiwi, L.; Williams, J.; Baker, P. Ultra-Processed Profits: The Political Economy of Countering the Global Spread of Ultra-Processed Foods—A Synthesis Review on the Market and Political Practices of Transnational Food Corporations and Strategic Public Health Responses. Int. J. Health Policy Manag. 2021. [Google Scholar] [CrossRef]
- Olsen, J.R.; Patterson, C.; Caryl, F.M.; Robertson, T.; Mooney, S.J.; Rundle, A.G.; Mitchell, R.; Hilton, S. Exposure to unhealthy product advertising: Spatial proximity analysis to schools and socio-economic inequalities in daily exposure measured using Scottish Children’s individual-level GPS data. Health Place 2021, 68, 102535. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, S.E.; Zimmerman, F.J.; Adler, G.J. Increasing public support for food-industry related, obesity prevention policies: The role of a taste-engineering frame and contextualized values. Soc. Sci. Med. 2016, 156, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, J.; Tarasuk, V. The relationship between diet quality and the severity of household food insecurity in Canada. Public Health Nutr. 2021, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Logan, A.C.; Prescott, S.L. Astrofood, priorities and pandemics: Reflections of an ultra-processed breakfast program and contemporary dysbiotic drift. Challenges 2017, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Bell, C.N.; Kerr, J.; Young, J.L. Associations between Obesity, Obesogenic Environments, and Structural Racism Vary by County-Level Racial Composition. Int. J. Env. Res. Public Health 2019, 16, 861. [Google Scholar] [CrossRef] [Green Version]
- Kato, Y.; Kageyama, K.; Mesaki, T.; Uchida, H.; Sejima, Y.; Marume, R.; Takahashi, K.; Hirao, K. Study protocol for a pilot randomized controlled trial on a smartphone application-based intervention for subthreshold depression Study protocol clinical trial (SPIRIT Compliant). Medicine 2020, 99, e18934. [Google Scholar] [CrossRef] [PubMed]
- Sarris, J.; Logan, A.C.; Akbaraly, T.N.; Amminger, G.P.; Balanza-Martinez, V.; Freeman, M.P.; Hibbeln, J.; Matsuoka, Y.; Mischoulon, D.; Mizoue, T.; et al. Nutritional medicine as mainstream in psychiatry. Lancet Psychiatry 2015, 2, 271–274. [Google Scholar] [CrossRef]
- Armbrecht, E.; Shah, A.; Schepman, P.; Shah, R.; Pappadopulos, E.; Chambers, R.; Stephens, J.; Haider, S.; McIntyre, R.S. Economic and humanistic burden associated with noncommunicable diseases among adults with depression and anxiety in the United States. J. Med. Econ. 2020, 23, 1032–1042. [Google Scholar] [CrossRef]
- Biden, J.R. Biden’s Speech to Congress: Full Transcript. 29 April 2021. Available online: https://www.nytimes.com/2021/04/29/us/politics/joe-biden-speech-transcript.html (accessed on 25 October 2021).
- Renz, H.; Holt, P.G.; Inouye, M.; Logan, A.C.; Prescott, S.L.; Sly, P.D. An exposome perspective: Early-life events and immune development in a changing world. J. Allergy Clin. Immunol. 2017, 140, 24–40. [Google Scholar] [CrossRef] [Green Version]
- Prescott, S.L.; Logan, A.C. Each meal matters in the exposome: Biological and community considerations in fast-food-socioeconomic associations. Econ. Hum. Biol. 2017, 27 Pt B, 328–335. [Google Scholar] [CrossRef]
- Dubos, R. The Spaceship Earth. J. Allergy Clin. Immunol. 1969, 44, 1–9. [Google Scholar]
- Dubos, J. Human ecology. WHO Chron 1969, 23, 499–504. [Google Scholar] [CrossRef]
- Dubos, R. Environmental biology. BioScience 1964, 14, 11–14. [Google Scholar]
- Manzoni, C.; Kia, D.A.; Vandrovcova, J.; Hardy, J.; Wood, N.W.; Lewis, P.A.; Ferrari, R. Genome, transcriptome and proteome: The rise of omics data and their integration in biomedical sciences. Brief. Bioinform. 2018, 19, 286–302. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S. Integrative medicine: Breaking down silos of knowledge and practice an epigenetic approach. Metab. Clin. Exp. 2017, 69, S21–S29. [Google Scholar] [CrossRef]
- Tebani, A.; Afonso, C.; Marret, S.; Bekri, S. Omics-Based Strategies in Precision Medicine: Toward a Paradigm Shift in Inborn Errors of Metabolism Investigations. Int. J. Mol. Sci. 2016, 17, 1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendes-Soares, H.; Raveh-Sadka, T.; Azulay, S.; Edens, K.; Ben-Shlomo, Y.; Cohen, Y.; Ofek, T.; Bachrach, D.; Stevens, J.; Colibaseanu, D.; et al. Assessment of a Personalized Approach to Predicting Postprandial Glycemic Responses to Food Among Individuals Without Diabetes. JAMA Netw. Open 2019, 2, e188102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicklett, E.J.; Szanton, S.; Sun, K.; Ferrucci, L.; Fried, L.P.; Guralnik, J.M.; Semba, R.D. Neighborhood socioeconomic status is associated with serum carotenoid concentrations in older, community-dwelling women. J. Nutr. 2011, 141, 284–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stimpson, J.P.; Nash, A.C.; Ju, H.; Eschbach, K. Neighborhood Deprivation is associated with lower levels of serum carotenoids among adults participating in the Third National Health and Nutrition Examination Survey. J. Am. Diet. Assoc. 2007, 107, 1895–1902. [Google Scholar] [CrossRef]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019, 30, 226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKay, G.J.; Lyner, N.; Linden, G.J.; Kee, F.; Moitry, M.; Biasch, K.; Amouyel, P.; Dallongeville, J.; Bongard, V.; Ferrieres, J.; et al. Association of low plasma antioxidant levels with all-cause mortality and coronary events in healthy middle-aged men from France and Northern Ireland in the PRIME study. Eur. J. Nutr. 2021, 60, 2631–2641. [Google Scholar] [CrossRef]
- Vahid, F.; Rahmani, D.; Davoodi, S.H. The correlation between serum inflammatory, antioxidant, glucose handling biomarkers, and Dietary Antioxidant Index (DAI) and the role of DAI in obesity/overweight causation: Population-based case-control study. Int. J. Obes. 2021, 45, 2591–2599. [Google Scholar] [CrossRef] [PubMed]
- Machado, P.P.; Steele, E.M.; Levy, R.B.; da Costa Louzada, M.L.; Rangan, A.; Woods, J.; Gill, T.; Scrinis, G.; Monteiro, C.A. Ultra-processed food consumption and obesity in the Australian adult population. Nutr. Diabetes 2020, 10, 39. [Google Scholar] [CrossRef]
- Prescott, S.L. History of medicine: Origin of the term microbiome and why it matters. Hum. Microbiome J. 2017, 4, 24–25. [Google Scholar] [CrossRef]
- Logan, A.C. Dysbiotic drift: Mental health, environmental grey space, and microbiota. J. Physiol. Anthr. 2015, 34, 23. [Google Scholar] [CrossRef] [Green Version]
- Prescott, S.L.; Wegienka, G.; Logan, A.C.; Katz, D.L. Dysbiotic drift and biopsychosocial medicine: How the microbiome links personal, public and planetary health. Biopsychosoc. Med. 2018, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Logan, A.C.; Katzman, M. Major depressive disorder: Probiotics may be an adjuvant therapy. Med. Hypotheses 2005, 64, 533–538. [Google Scholar] [CrossRef]
- Logan, A.C.; Venket Rao, A.; Irani, D. Chronic fatigue syndrome: Lactic acid bacteria may be of therapeutic value. Med. Hypotheses 2003, 60, 915–923. [Google Scholar] [CrossRef]
- Reardon, S. Gut-brain link grabs neuroscientists. Nature 2014, 515, 175–177. [Google Scholar] [CrossRef]
- Nikolova, V.L.; Smith, M.R.B.; Hall, L.J.; Cleare, A.J.; Stone, J.M.; Young, A.H. Perturbations in Gut Microbiota Composition in Psychiatric Disorders A Review and Meta-analysis. JAMA Psychiat. 2021, 78, 1343–1354. [Google Scholar] [CrossRef]
- Socala, K.; Doboszewska, U.; Szopa, A.; Serefko, A.; Wlodarczyk, M.; Zielinska, A.; Poleszak, E.; Fichna, J.; Wlaz, P. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharm. Res. 2021, 172, 105840. [Google Scholar] [CrossRef]
- Federici, S.; Suez, J.; Elinav, E. Our Microbiome: On the Challenges, Promises, and Hype. Results Probl. Cell Differ. 2020, 69, 539–557. [Google Scholar]
- Ahmed, E.; Hens, K. Microbiome in Precision Psychiatry: An Overview of the Ethical Challenges Regarding Microbiome Big Data and Microbiome-Based Interventions. AJOB Neurosci. 2021, 1–17. [Google Scholar] [CrossRef]
- Parke, E.C. Trivial, Interesting, or Overselling? The Microbiome and “What It Means to Be Human”. BioScience 2021, 71, 658–663. [Google Scholar] [CrossRef]
- Maughan, T. The Promise and the Hype of ‘Personalised Medicine’. New Bioeth 2017, 23, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Hordern, J.; Maughan, T.; Feiler, T.; Morrell, L.; Horne, R.; Sullivan, R. The ‘molecularly unstratified’ patient: A focus for moral, psycho-social and societal research. Biomed. Hub. 2017, 2 (Suppl. S1), 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lapidot, Y.; Reshef, L.; Goldsmith, R.; Na’amnih, W.; Kassem, E.; Ornoy, A.; Gophna, U.; Muhsen, K. The Associations between Diet and Socioeconomic Disparities and the Intestinal Microbiome in Preadolescence. Nutrients 2021, 13, 2645. [Google Scholar] [CrossRef]
- Bowyer, R.C.E.; Jackson, M.A.; Le Roy, C.I.; Lochlainn, M.N.; Spector, T.D.; Dowd, J.B.; Steves, C.J. Socioeconomic Status and the Gut Microbiome: A TwinsUK Cohort Study. Microorganisms 2019, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Miller, G.E.; Engen, P.A.; Gillevet, P.M.; Shaikh, M.; Sikaroodi, M.; Forsyth, C.B.; Mutlu, E.; Keshavarzian, A. Lower Neighborhood Socioeconomic Status Associated with Reduced Diversity of the Colonic Microbiota in Healthy Adults. PLoS ONE 2016, 11, e0148952. [Google Scholar] [CrossRef]
- Lewis, C.R.; Bonham, K.S.; McCann, S.H.; Volpe, A.R.; D’Sa, V.; Naymik, M.; De Both, M.D.; Huentelman, M.J.; Lemery-Chalfant, K.; Highlander, S.K.; et al. Family SES Is Associated with the Gut Microbiome in Infants and Children. Microorganisms 2021, 9, 1608. [Google Scholar] [CrossRef]
- Belstrom, D.; Holmstrup, P.; Nielsen, C.H.; Kirkby, N.; Twetman, S.; Heitmann, B.L.; Klepac-Ceraj, V.; Paster, B.J.; Fiehn, N.E. Bacterial profiles of saliva in relation to diet, lifestyle factors, and socioeconomic status. J. Oral Microbiol. 2014, 6, 23609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundin, J.; Rangel, I.; Fuentes, S.; Heikamp-de Jong, I.; Hultgren-Hornquist, E.; de Vos, W.M.; Brummer, R.J. Altered faecal and mucosal microbial composition in post-infectious irritable bowel syndrome patients correlates with mucosal lymphocyte phenotypes and psychological distress. Aliment. Pharm. 2015, 41, 342–351. [Google Scholar] [CrossRef]
- Zijlmans, M.A.; Korpela, K.; Riksen-Walraven, J.M.; de Vos, W.M.; de Weerth, C. Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology 2015, 53, 233–245. [Google Scholar] [CrossRef]
- Karl, J.P.; Margolis, L.M.; Madslien, E.H.; Murphy, N.E.; Castellani, J.W.; Gundersen, Y.; Hoke, A.V.; Levangie, M.W.; Kumar, R.; Chakraborty, N.; et al. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiologic stress. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 312, G559–G571. [Google Scholar] [CrossRef] [Green Version]
- Neroni, B.; Evangelisti, M.; Radocchia, G.; Di Nardo, G.; Pantanella, F.; Villa, M.P.; Schippa, S. Relationship between sleep disorders and gut dysbiosis: What affects what? Sleep Med. 2021, 87, 1–7. [Google Scholar] [CrossRef]
- Resende, A.S.; Leite, G.S.F.; Junior, A.L.H. Changes in the Gut Bacteria Composition of Healthy Men with the Same Nutritional Profile Undergoing 10-Week Aerobic Exercise Training: A Randomized Controlled Trial. Nutrients 2021, 13, 2839. [Google Scholar] [CrossRef]
- Gui, X.H.; Yang, Z.L.; Li, M.D. Effect of Cigarette Smoke on Gut Microbiota: State of Knowledge. Front. Physiol. 2021, 12, 816. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Montero, C.; Fraile-Martinez, O.; Gomez-Lahoz, A.M.; Pekarek, L.; Castellanos, A.J.; Noguerales-Fraguas, F.; Coca, S.; Guijarro, L.G.; Garcia-Honduvilla, N.; Asunsolo, A.; et al. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota-Immune System Interplay. Implications for Health and Disease. Nutrients 2021, 13, 699. [Google Scholar] [CrossRef] [PubMed]
- Fei, N.; Choo-Kang, C.; Reutrakul, S.; Crowley, S.J.; Rae, D.; Bedu-Addo, K.; Plange-Rhule, J.; Forrester, T.E.; Lambert, E.V.; Bovet, P.; et al. Gut microbiota alterations in response to sleep length among African-origin adults. PLoS ONE 2021, 16, e0255323. [Google Scholar] [CrossRef]
- Wang, P.; Dong, Y.; Jiao, J.; Zuo, K.; Han, C.; Zhao, L.; Ding, S.; Yang, X.; Chen, M.; Li, J. Cigarette smoking status alters dysbiotic gut microbes in hypertensive patients. J. Clin. Hypertens. 2021, 23, 1431–1446. [Google Scholar] [CrossRef]
- Griffin, N.W.; Ahern, P.P.; Cheng, J.Y.; Heath, A.C.; Ilkayeva, O.; Newgard, C.B.; Fontana, L.; Gordon, J.I. Prior Dietary Practices and Connections to a Human Gut Microbial Metacommunity Alter Responses to Diet Interventions. Cell Host Microbe 2017, 21, 84–96. [Google Scholar] [CrossRef] [Green Version]
- Holmes, Z.C.; Villa, M.M.; Durand, H.K.; Jiang, S.; Dallow, E.P.; Petrone, B.L.; Silverman, J.D.; Lin, P.; David, L.A. Microbiota responses to different prebiotics are conserved within individuals and associated with habitual fiber intake. bioRxiv 2021. [Google Scholar] [CrossRef]
- Smits, S.A.; Marcobal, A.; Higginbottom, S.; Sonnenburg, J.L.; Kashyap, P.C. Individualized Responses of Gut Microbiota to Dietary Intervention Modeled in Humanized Mice. mSystems 2016, 1, e00098-e16. [Google Scholar] [CrossRef] [Green Version]
- Figge, A.; Sydor, S.; Wenning, C.; Manka, P.; Assmuth, S.; Vilchez-Vargas, R.; Link, A.; Jahnert, A.; Brodesser, S.; Lucas, C.; et al. Gender and gut microbiota composition determine hepatic bile acid, metabolic and inflammatory response to a single fast-food meal in healthy adults. Clin. Nutr 2021, 40, 2609–2619. [Google Scholar] [CrossRef]
- Korem, T.; Zeevi, D.; Zmora, N.; Weissbrod, O.; Bar, N.; Lotan-Pompan, M.; Avnit-Sagi, T.; Kosower, N.; Malka, G.; Rein, M.; et al. Bread Affects Clinical Parameters and Induces Gut Microbiome-Associated Personal Glycemic Responses. Cell Metab. 2017, 25, 1243–1253. [Google Scholar] [CrossRef] [Green Version]
- Asnicar, F.; Berry, S.E.; Valdes, A.M.; Nguyen, L.H.; Piccinno, G.; Drew, D.A.; Leeming, E.; Gibson, R.; Le Roy, C.; Al Khatib, H.; et al. Microbiome connections with host metabolism and habitual diet from 1098 deeply phenotyped individuals. Nat. Med. 2021, 27, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Z.; Hall, S.; Vitetta, L. Altered gut microbial metabolites could mediate the effects of risk factors in Covid-19. Rev. Med. Virol. 2021, 31, e2211. [Google Scholar] [CrossRef] [PubMed]
- Magalhaes, N.S.; Savino, W.; Silva, P.M.R.; Martins, M.A.; Carvalho, V.F. Gut Microbiota Dysbiosis Is a Crucial Player for the Poor Outcomes for COVID-19 in Elderly, Diabetic and Hypertensive Patients. Front. Med. Lausanne 2021, 8, 1318. [Google Scholar] [CrossRef]
- Troisi, J.; Venutolo, G.; Tanya, M.P.; Carri, M.D.; Landolfi, A.; Fasano, A. COVID-19 and the gastrointestinal tract: Source of infection or merely a target of the inflammatory process following SARS-CoV-2 infection? World J. Gastroenterol. 2021, 27, 1406. [Google Scholar] [CrossRef]
- Yuan, X.X.; Wang, Y.P.; Li, X.; Jiang, J.J.; Kang, Y.L.; Pang, L.J.; Zhang, P.F.; Li, A.; Lv, L.X.; Andreassen, O.L.A.; et al. Gut microbial biomarkers for the treatment response in first-episode, drug-naive schizophrenia: A 24-week follow-up study. Transl. Psychiat. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Dangoor, I.; Stanic, D.; Reshef, L.; Pesic, V.; Gophna, U. Specific Changes in the Mammalian Gut Microbiome as a Biomarker for Oxytocin-Induced Behavioral Changes. Microorganisms 2021, 9, 1938. [Google Scholar] [CrossRef]
- Cussotto, S.; Clarke, G.; Dinan, T.G.; Cryan, J.F. Psychotropic Drugs and the Microbiome. Mod. Trends Psychiatry 2021, 32, 113–133. [Google Scholar]
- Dahabiyeh, L.A.; Mujammami, M.; Arafat, T.; Benabdelkamel, H.; Alfadda, A.A.; Abdel Rahman, A.M. A Metabolic Pattern in Healthy Subjects Given a Single Dose of Metformin: A Metabolomics Approach. Front. Pharm. 2021, 12, 705932. [Google Scholar] [CrossRef] [PubMed]
- Cheon, B.K.; Hong, Y.Y. Mere experience of low subjective socioeconomic status stimulates appetite and food intake. Proc. Natl Acad. Sci. USA 2017, 114, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Cardel, M.I.; Johnson, S.L.; Beck, J.; Dhurandhar, E.; Keita, A.D.; Tomczik, A.C.; Pavela, G.; Huo, T.; Janicke, D.M.; Muller, K.; et al. The effects of experimentally manipulated social status on acute eating behavior: A randomized, crossover pilot study. Physiol. Behav. 2016, 162, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Lim, E.X.; Forde, C.G.; Cheon, B.K. Low subjective socioeconomic status alters taste-based perceptual sensitivity to the energy density of beverages. Physiol. Behav. 2020, 223, 112989. [Google Scholar] [CrossRef]
- Giurgescu, C.; Engeland, C.G.; Templin, T.N.; Zenk, S.N.; Koenig, M.D.; Garfield, L. Racial discrimination predicts greater systemic inflammation in pregnant African American women. Appl. Nurs. Res. 2016, 32, 98–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moody, D.L.B.; Brown, C.; Matthews, K.A.; Bromberger, J.T. Everyday Discrimination Prospectively Predicts Inflammation across 7-Years in Racially Diverse Midlife Women: Study of Women’s Health across the Nation. J. Soc. Issues 2014, 70, 298–314. [Google Scholar] [CrossRef] [PubMed]
- Lewis, T.T.; Aiello, A.E.; Leurgans, S.; Kelly, J.; Barnes, L.L. Self-reported experiences of everyday discrimination are associated with elevated C-reactive protein levels in older African-American adults. Brain Behav. Immun. 2010, 24, 438–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streit, F.; Send, T.; Bardtke, S.; O’Donnell, E.P.; Sabunciyan, S.; Hatfield, G.; Witt, S.; Gilles, M.; Rietschel, M.; Deuschle, M.; et al. Microbiome Profiles Are Associated with Cognitive Functioning in 45-Month-Old Children. Eur. Neuropsychopharm. 2019, 29, S252. [Google Scholar] [CrossRef]
- Huang, J.H.; Liao, L.; Fang, Y.; Deng, H.L.; Yin, H.G.; Shen, B.; Hu, M. Six-Week Exercise Training with Dietary Restriction Improves Central Hemodynamics Associated with Altered Gut Microbiota in Adolescents With Obesity. Front. Endocrinol. 2020, 11, 569085. [Google Scholar] [CrossRef]
- Quiroga, R.; Nistal, E.; Estebanez, B.; Porras, D.; Juarez-Fernandez, M.; Martinez-Florez, S.; Garcia-Mediavilla, M.V.; de Paz, J.A.; Gonzalez-Gallego, J.; Sanchez-Campos, S.; et al. Exercise training modulates the gut microbiota profile and impairs inflammatory signaling pathways in obese children. Exp. Mol. Med. 2020, 52, 1048–1061. [Google Scholar] [CrossRef]
- Kiecolt-Glaser, J.K.; Wilson, S.J.; Shrout, M.R.; Madison, A.A.; Andridge, R.; Peng, J.; Malarkey, W.B.; Bailey, M.T. The gut reaction to couples’ relationship troubles: A route to gut dysbiosis through changes in depressive symptoms. Psychoneuroendocrinology 2021, 125, 105132. [Google Scholar] [CrossRef]
- Dowd, J.B.; Renson, A. “Under the Skin” and into the Gut: Social Epidemiology of the Microbiome. Curr. Epidemiol. Rep. 2018, 5, 432–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renson, A.; Herd, P.; Dowd, J.B. Sick Individuals and Sick (Microbial) Populations: Challenges in Epidemiology and the Microbiome. Annu. Rev. Public Health 2020, 41, 63–80. [Google Scholar] [CrossRef]
- Scarr, L. Dr. Salk: Book deals with man’s relation, not medicine. Courier-Post, 15 November 1972; 61. [Google Scholar]
- Zenk, S.N.; Horoi, I.; McDonald, A.; Corte, C.; Riley, B.; Odoms-Young, A.M. Ecological momentary assessment of environmental and personal factors and snack food intake in African American women. Appetite 2014, 83, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Jaeggi, A.V.; Blackwell, A.D.; von Rueden, C.; Trumble, B.C.; Stieglitz, J.; Garcia, A.R.; Kraft, T.S.; Beheim, B.A.; Hooper, P.L.; Kaplan, H.; et al. Do wealth and inequality associate with health in a small-scale subsistence society? Elife 2021, 10, e59437. [Google Scholar] [CrossRef] [PubMed]
- Cenat, J.M.; Kogan, C.; Noorishad, P.G.; Hajizadeh, S.; Dalexis, R.D.; Ndengeyingoma, A.; Guerrier, M. Prevalence and correlates of depression among Black individuals in Canada: The major role of everyday racial discrimination. Depress. Anxiety 2021, 38, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Mahabir, D.F.; O’Campo, P.; Lofters, A.; Shankardass, K.; Salmon, C.; Muntaner, C. Experiences of everyday racism in Toronto’s health care system: A concept mapping study. Int. J. Equity Health 2021, 20, 74. [Google Scholar] [CrossRef]
- Bird, C.E.; Seeman, T.; Escarce, J.J.; Basurto-Davila, R.; Finch, B.K.; Dubowitz, T.; Heron, M.; Hale, L.; Merkin, S.S.; Weden, M.; et al. Neighbourhood socioeconomic status and biological ‘wear and tear’ in a nationally representative sample of US adults. J. Epidemiol. Community Health 2010, 64, 860–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brody, G.H.; Lei, M.K.; Chen, E.; Miller, G.E. Neighborhood Poverty and Allostatic Load in African American Youth. Pediatrics 2014, 134, E1362–E1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraga, S.; Marques-Vidal, P.; Vollenweider, P.; Waeber, G.; Guessous, I.; Paccaud, F.; Barros, H.; Stringhini, S. Association of socioeconomic status with inflammatory markers: A two cohort comparison. Prev. Med. 2015, 71, 12–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gianaros, P.J.; Kuan, D.C.H.; Marsland, A.L.; Sheu, L.K.; Hackman, D.A.; Miller, K.G.; Manuck, S.B. Community Socioeconomic Disadvantage in Midlife Relates to Cortical Morphology via Neuroendocrine and Cardiometabolic Pathways. Cereb. Cortex 2017, 27, 460–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keita, A.D.; Judd, S.E.; Howard, V.J.; Carson, A.P.; Ard, J.D.; Fernandez, J.R. Associations of neighborhood area level deprivation with the metabolic syndrome and inflammation among middle- and older-age adults. BMC Public Health 2014, 14, 1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazmi, A.; Roux, A.D.; Ranjit, N.; Seeman, T.E.; Jenny, N.S. Cross-sectional and longitudinal associations of neighborhood characteristics with inflammatory markers: Findings from the multi-ethnic study of atherosclerosis. Health Place 2010, 16, 1104–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, A.J.; Mentz, G.; Lachance, L.; Zenk, S.N.; Johnson, J.; Stokes, C.; Mandell, R. Do observed or perceived characteristics of the neighborhood environment mediate associations between neighborhood poverty and cumulative biological risk? Health Place 2013, 24, 147–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stringhini, S.; Batty, G.D.; Bovet, P.; Shipley, M.J.; Marmot, M.G.; Kumari, M.; Tabak, A.G.; Kivimaki, M. Association of Lifecourse Socioeconomic Status with Chronic Inflammation and Type 2 Diabetes Risk: The Whitehall II Prospective Cohort Study. PLoS Med. 2013, 10, e1001479. [Google Scholar] [CrossRef]
- Theall, K.P.; Drury, S.S.; Shirtcliff, E.A. Cumulative Neighborhood Risk of Psychosocial Stress and Allostatic Load in Adolescents. Am. J. Epidemiol. 2012, 176, S164–S174. [Google Scholar] [CrossRef] [Green Version]
- McEwen, B.S. Brain on stress: How the social environment gets under the skin. Proc. Natl. Acad. Sci. USA 2012, 109, 17180–17185. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.N.; Hong, Y.C. The exposome and the future of epidemiology: A vision and prospect. Environ. Health Toxicol. 2017, 32, e2017009. [Google Scholar] [CrossRef] [PubMed]
- Logan, A.C.; Prescott, S.L.; Haahtela, T.; Katz, D.L. The importance of the exposome and allostatic load in the planetary health paradigm. J. Physiol. Anthr. 2018, 37, 15. [Google Scholar] [CrossRef]
- Chae, D.H.; Wang, Y.J.; Martz, C.D.; Slopen, N.; Yip, T.; Adler, N.E.; Fuller-Rowell, T.E.; Lin, J.; Matthews, K.A.; Brody, G.H.; et al. Racial Discrimination and Telomere Shortening Among African Americans: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Health Psychol. 2020, 39, 209–219. [Google Scholar] [CrossRef]
- Rej, P.H.; Bellamy, J.; Boston, Q.; Holifield, E.; Mitchell, M.; Seaborn, C.; Gravlee, C.C.; Mulligan, C.J.; Comm, H.S. Shortened telomere length is associated with unfair treatment attributed to race in African Americans living in Tallahassee, Florida. Am. J. Hum. Biol. 2020, 32, e23375. [Google Scholar] [CrossRef]
- Massey, D.S.; Wagner, B.; Donnelly, L.; McLanahan, S.; Brooks-Gunn, J.; Garfinkel, I.; Mitchell, C.; Notterman, D.A. Neighborhood Disadvantage and Telomere Length: Results from the Fragile Families Study. RSF-Russell Sage J. Soc. Sci. 2018, 4, 28–42. [Google Scholar] [CrossRef] [Green Version]
- Thierry, A.D. Association between telomere length and neighborhood characteristics by race and region in US midlife and older adults. Health Place 2020, 62, 102272. [Google Scholar] [CrossRef] [PubMed]
- Hailu, E.M.; Lewis, T.T.; Needham, B.L.; Lin, J.; Seeman, T.E.; Mujahid, M.S. Longitudinal Associations Between Discrimination, Neighborhood Social Cohesion, and Telomere Length: The Multi-Ethnic Study of Atherosclerosis. J. Gerontol. A Biol. Sci. Med. Sci. 2021. [Google Scholar] [CrossRef]
- Weinberger, S. The Imagineers of War: The Untold Story of DARPA, the Pentagon Agency That Changed the World; Alfred A. Knopf: New York, NY, USA, 2017. [Google Scholar]
- Kaiser, D. Military science: Masters of war. Nature 2017, 543, 176–177. [Google Scholar] [CrossRef] [Green Version]
- Logan, A.C.; Berman, S.H.; Berman, B.M.; Prescott, S.L. Healing Anthropocene Syndrome: Planetary Health Requires Remediation of the Toxic Post-Truth Environment. Challenges 2021, 12, 1. [Google Scholar] [CrossRef]
- Dubos, R. Man Overadapting. Psychol. Today 1971, 4, 5–53. [Google Scholar]
- Horton, R. Offline: How others see us. Lancet 2021, 398, 1290. [Google Scholar] [CrossRef]
- Katz Rothman, B. The Biomedical Empire: Lessons Learned from the COVID-19 Pandemic; Stanford University Press: Redwood City, CA, USA, 2021. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Logan, A.C.; Berman, B.M.; Prescott, S.L. Earth Dreams: Reimagining ARPA for Health of People, Places and Planet. Int. J. Environ. Res. Public Health 2021, 18, 12788. https://doi.org/10.3390/ijerph182312788
Logan AC, Berman BM, Prescott SL. Earth Dreams: Reimagining ARPA for Health of People, Places and Planet. International Journal of Environmental Research and Public Health. 2021; 18(23):12788. https://doi.org/10.3390/ijerph182312788
Chicago/Turabian StyleLogan, Alan C., Brian M. Berman, and Susan L. Prescott. 2021. "Earth Dreams: Reimagining ARPA for Health of People, Places and Planet" International Journal of Environmental Research and Public Health 18, no. 23: 12788. https://doi.org/10.3390/ijerph182312788
APA StyleLogan, A. C., Berman, B. M., & Prescott, S. L. (2021). Earth Dreams: Reimagining ARPA for Health of People, Places and Planet. International Journal of Environmental Research and Public Health, 18(23), 12788. https://doi.org/10.3390/ijerph182312788