Analysis of Superspreading Potential from Transmission Clusters of COVID-19 in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Epidemiological Data
2.2. Cluster-Specific Reproduction Numbers
2.3. Ethical Considerations
3. Results
3.1. Exploratory Data Analysis
- Religious Groups
- Convalescent Homes
- Hospitals
- Workplaces and Schools
- Leisure Facilities
- Itaewon Clubs
- Others
3.2. Linear Relation between Size and Duration by Clusters
3.3. The Average Daily Secondary Cases by Cluster
3.4. Monthly Cases by Cluster as of October 2021
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO Weekly Epidemiological Update—2 November 2021. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---2-november-2021 (accessed on 28 November 2021).
- Bae, T.W.; Kwon, K.K.; Kim, K.H. Mass infection analysis of COVID-19 using the SEIRD model in Daegu-Gyeongbuk of Korea from April to May, 2020. J. Korean Med. Sci. 2020, 35, e317. [Google Scholar] [CrossRef] [PubMed]
- Seong, H.; Hyun, H.J.; Yun, J.G.; Noh, J.Y.; Cheong, H.J.; Kim, W.J.; Song, J.Y. Comparison of the second and third waves of the COVID-19 pandemic in South Korea: Importance of early public health intervention. Int. J. Infect. Dis. 2021, 104, 742–745. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Shi, L.; Zhang, Y.; Wang, X.; Sun, G. A cross-country core strategy comparison in China, Japan, Singapore and South Korea during the early COVID-19 pandemic. Glob. Health 2021, 17, 22. [Google Scholar] [CrossRef] [PubMed]
- Korea Disease Control and Prevention Agency. Available online: http://ncov.mohw.go.kr/ (accessed on 28 November 2021).
- Dighe, A.; Cattarino, L.; Cuomo-Dannenburg, G.; Skarp, J.; Imai, N.; Bhatia, S.; Gaythorpe, K.A.; Ainslie, K.E.; Baguelin, M.; Bhatt, S.; et al. Response to COVID-19 in South Korea and implications for lifting stringent interventions. BMC Med. 2020, 18, 321. [Google Scholar] [CrossRef]
- Zhang, S.; Diao, M.; Yu, W.; Pei, L.; Lin, Z.; Chen, D. Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis. Int. J. Infect. Dis. 2020, 93, 201–204. [Google Scholar] [CrossRef]
- Zhao, S.; Lin, Q.; Ran, J.; Musa, S.S.; Yang, G.; Wang, W.; Lou, Y.; Gao, D.; Yang, L.; He, D.; et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int. J. Infect. Dis. 2020, 92, 214–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Licen, S.; Perrone, M.G.; Piazzalunga, A.; Borelli, M.; Palmisani, J.; Di Gilio, A.; et al. Potential role of particulate matter in the spreading of COVID-19 in Northern Italy: First observational study based on initial epidemic diffusion. BMJ Open 2020, 10, e039338. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.; Ali, S.T.; Noh, E.; Kim, D.; Lau, E.H.; Cowling, B.J. Transmission dynamics and control of two epidemic waves of SARS-CoV-2 in South Korea. BMC Infect. Dis. 2021, 21, 1–9. [Google Scholar] [CrossRef]
- Endo, A. Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China. Wellcome Open Res. 2020, 5, 67. [Google Scholar] [CrossRef]
- Lloyd-Smith, J.O. Maximum likelihood estimation of the negative binomial dispersion parameter for highly overdispersed data, with applications to infectious diseases. PLoS ONE 2020, 2, e180. [Google Scholar] [CrossRef] [PubMed]
- Kwok, K.O.; Chan, H.H.H.; Huang, Y.; Hui, D.S.C.; Tambyah, P.A.; Wei, W.I.; Chau, P.Y.; Wong, S.Y.; Tang, J.W. Inferring super-spreading from transmission clusters of COVID-19 in Hong Kong, Japan, and Singapore. J. Hosp. Infect. 2020, 105, 682–685. [Google Scholar] [CrossRef]
- Adam, D.C.; Wu, P.; Wong, J.Y.; Lau, E.H.; Tsang, T.K.; Cauchemez, S.; Leung, G.M.; Cowling, B.J. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nat. Med. 2020, 26, 1714–1719. [Google Scholar] [CrossRef]
- Tariq, A.; Lee, Y.; Roosa, K.; Blumberg, S.; Yan, P.; Ma, S.; Chowell, G. Real-time monitoring the transmission potential of COVID-19 in Singapore, March 2020. BMC Med. 2020, 18, 166. [Google Scholar] [CrossRef] [PubMed]
- Seoul Metropolitan Government. Data Retrieved from Covid-19 Confirmation Status in Seoul. 2021. Available online: http://data.seoul.go.kr/dataList/OA-20279/S/1/datasetView.do (accessed on 28 November 2021).
- Choi, Y.J.; Park, M.J.; Park, S.J.; Hong, D.; Lee, S.; Lee, K.S.; Moon, S.; Cho, J.; Jang, Y.; Lee, D.; et al. Types of COVID-19 clusters and their relationship with social distancing in the Seoul metropolitan area, South Korea. Int. J. Infect. Dis. 2021, 106, 363–369. [Google Scholar] [CrossRef]
- Lloyd-Smith, J.O.; Schreiber, S.J.; Kopp, P.E.; Getz, W.M. Superspreading and the effect of individual variation on disease emergence. Nature 2005, 438, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Seth, B. Detecting differential transmissibilities that affect the size of self-limited outbreaks. PLoS Pathog. 2014, 10, e1004452. [Google Scholar] [CrossRef] [Green Version]
- Kucharski, A.J.; Althaus, C.L. The role of superspreading in Middle East respiratory syndrome coronavirus (MERS-CoV) transmission. Eurosurveillance 2015, 20, 21167. [Google Scholar] [CrossRef]
- Linton, N.M.; Akhmetzhanov, A.R.; Nishiura, H. Localized end-of-outbreak determination for coronavirus disease 2019 (COVID-19): Examples from clusters in Japan. Int. J. Infect. Dis. 2021, 105, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Na, B.J.; Park, Y.; Huh, I.S.; Kang, C.R.; Lee, J.; Lee, J.Y. Seventy-two hours, targeting time from first COVID-19 symptom onset to hospitalization. J. Korean Med. Sci. 2020, 35, e192. [Google Scholar] [CrossRef] [PubMed]
- Obilor, E.I.; Amadi, E.C. Test for significance of Pearson’s correlation coefficient. Int. J. Innov. Math. Stat. Energy Policies 2018, 6, 11–23. [Google Scholar]
- Min, K.D.; Tak, S. Dynamics of the COVID-19 epidemic in the post-vaccination period in South Korea–a rapid assessment. Epidemiol. Health 2021, 43, e2021040. [Google Scholar] [CrossRef] [PubMed]
Categories | Infection Locations | Cluster Size | Confirmed Date for the First Case Linked to Cluster | Confirmed Date for the Last Case Linked to Cluster |
---|---|---|---|---|
Religious Groups | Church, bible meeting, temple | 1178 | 25 March 2020 | 2 December 2020 |
Convalescent Homes | convalescent facility | 215 | 10 June 2020 | 22 November 2020 |
Hospitals | private hospital, university hospital | 222 | 31 August 2020 | 4 December 2020 |
Workplaces and Schools | Call center, office, city office, school, academy, distribution center | 652 | 8 March 2020 | 4 December 2020 |
Leisure Facilities | Athletic facility, Korean sauna, private meeting, market, teaching center, internet cafe | 682 | 4 March 2020 | 4 December 2020 |
Itaewon Clubs | Nightclub | 139 | 8 May 2020 | 6 June 2020 |
Religious Group | Convalescent Home | Hospital | Workplace and School | Leisure Facilities | Others | Total | |
---|---|---|---|---|---|---|---|
2.64 (1.84–3.78) | 2.10 (1.54–2.86) | 1.80 (1.29–2.51) | 2.12 (1.63–2.76) | 2.08 (1.64–2.65) | 1.35 (1.11–1.64) | 2.26 (2.02–2.53) | |
0.16 (0.06–0.38) | 0.50 (0.11–2.22) | 0.34 (0.09–1.27) | 0.20 (0.10–0.42) | 0.23 (0.11–0.49) | 2.46 (0.13–33.73) | 0.20 (0.14–0.28) |
Virus | Epidemics | References | ||
---|---|---|---|---|
SARS-CoV2 | Republic of Korea 2020 | 2.26 (95% CI: 2.02–2.53) | 0.20 (95% CI: 0.14–0.28) | Estimated |
Hong Kong 2020 | 0.61 (90% CI: 0.47–0.78) | 2.30 (90% CI: 0.39–∞) | [13] | |
Japan 2020 | 0.48 (90% CI: 0.39–0.59) | 0.51 (90% CI: 0.26–1.42) | [13] | |
Singapore 2020 | 0.70 (90% CI: 0.55–0.89) | 1.78 (90% CI: 0.36–∞) | [13] | |
Hong Kong 2020 | 0.74 (95% CI: 0.58–0.97) | 0.33 (95% CI: 0.14–0.98) | [14] | |
MERS-CoV | Republic of Korea 2013 | 0.47 (95% CI: 0.29–0.80) | 0.26 (90% CI: 0.11, 0.87) | [20] |
SARS-CoV | Singapore 2003 | 0.13 (90% CI: 0.54–2.65) | 0.16 (90% CI: 0.11–0.64) | [18] |
Beijing 2003 | 0.94 (90% CI:0.10–0.64) | 0.17 (0.10–0.64) | [18] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Han, C.; Jung, J.; Lee, S. Analysis of Superspreading Potential from Transmission Clusters of COVID-19 in South Korea. Int. J. Environ. Res. Public Health 2021, 18, 12893. https://doi.org/10.3390/ijerph182412893
Lee H, Han C, Jung J, Lee S. Analysis of Superspreading Potential from Transmission Clusters of COVID-19 in South Korea. International Journal of Environmental Research and Public Health. 2021; 18(24):12893. https://doi.org/10.3390/ijerph182412893
Chicago/Turabian StyleLee, Hyojung, Changyong Han, Jooyi Jung, and Sunmi Lee. 2021. "Analysis of Superspreading Potential from Transmission Clusters of COVID-19 in South Korea" International Journal of Environmental Research and Public Health 18, no. 24: 12893. https://doi.org/10.3390/ijerph182412893
APA StyleLee, H., Han, C., Jung, J., & Lee, S. (2021). Analysis of Superspreading Potential from Transmission Clusters of COVID-19 in South Korea. International Journal of Environmental Research and Public Health, 18(24), 12893. https://doi.org/10.3390/ijerph182412893