Sleep Characteristics According to Gender and Age Measured by Wrist Actigraphy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Characteristic
2.2. Procedure
2.3. Actigraphy and Sleep Analysis
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Zisapel, N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br. J. Pharmacol. 2018, 175, 3190–3199. [Google Scholar] [CrossRef] [PubMed]
- Borbély, A.A.; Daan, S.; Wirz-Justice, A.; Deboer, T. The two-process model of sleep regulation: A reappraisal. J. Sleep Res. 2016, 25, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Saper, C.B.; Cano, G.; Scammell, T.E. Homeostatic, circadian, and emotional regulation of sleep. J. Comp. Neurol. 2005, 493, 92–98. [Google Scholar] [CrossRef]
- Carley, D.W.; Farabi, S.S. Physiology of Sleep. Diabetes Spectr. 2016, 29, 5–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zielinski, M.R.; McKenna, J.T.; McCarley, R.W. Functions and Mechanisms of Sleep. AIMS Neurosci. 2016, 3, 67–104. [Google Scholar] [CrossRef] [PubMed]
- Mong, J.A.; Cusmano, D.M. Sex differences in sleep: Impact of biological sex and sex steroids. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150110. [Google Scholar] [CrossRef]
- Markun, L.C.; Sampat, A. Clinician-Focused Overview and Developments in Polysomnography. Curr. Sleep Med. Rep. 2020, 6, 309–321. [Google Scholar] [CrossRef]
- Hirshkowitz, M. Polysomnography Challenges. Sleep Med. Clin. 2016, 11, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Boulos, M.I.; Jairam, T.; Kendzerska, T.; Im, J.; Mekhael, A.; Murray, B.J. Normal polysomnography parameters in healthy adults: A systematic review and meta-analysis. Lancet Respir. Med. 2019, 7, 533–543. [Google Scholar] [CrossRef]
- Marino, M.; Li, Y.; Rueschman, M.N.; Winkelman, J.W.; Ellenbogen, J.M.; Solet, J.M.; Dulin, H.; Berkman, L.F.; Buxton, O.M. Measuring Sleep: Accuracy, Sensitivity, and Specificity of Wrist Actigraphy Compared to Polysomnography. Sleep 2013, 36, 1747–1755. [Google Scholar] [CrossRef]
- Hokett, E.; Arunmozhi, A.; Campbell, J.; Verhaeghen, P.; Duarte, A. A systematic review and meta-analysis of individual differences in naturalistic sleep quality and episodic memory performance in young and older adults. Neurosci. Biobehav. Rev. 2021, 127, 675–688. [Google Scholar] [CrossRef]
- Kushida, C.A.; Chang, A.; Gadkary, C.; Guilleminault, C.; Carrillo, O.; Dement, W.C. Comparison of actigraphic, polysomnographic, and subjective assessment of sleep parameters in sleep-disordered patients. Sleep Med. 2001, 2, 389–396. [Google Scholar] [CrossRef]
- Littner, M.; Kushida, C.A.; Anderson, W.M.; Bailey, D.; Berry, R.B.; Davila, D.G.; Hirshkowitz, M.; Kapen, S.; Kramer, M.; Loube, D.; et al. Practice parameters for the role of actigraphy in the study of sleep and circadian rhythms: An update for 2002. Sleep 2003, 26, 337–341. [Google Scholar] [CrossRef]
- Johns, M.W. A New Method for Measuring Daytime Sleepiness: The Epworth Sleepiness Scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folkard, S.; Monk, T.H.; Lobuan, M.C. Towards a Predictive Test of Adjustment to Shift Work. Ergonomics 1979, 22, 79–91. [Google Scholar] [CrossRef]
- Montaruli, A.; Castelli, L.; Mulè, A.; Scurati, R.; Esposito, F.; Galasso, L.; Roveda, E. Biological Rhythm and Chronotype: New Perspectives in Health. Biomolecules 2021, 11, 487. [Google Scholar] [CrossRef]
- Zerbini, G.; Winnebeck, E.C.; Merrow, M. Weekly, seasonal, and chronotype-dependent variation of dim-light melatonin onset. J. Pineal Res. 2021, 70, e12723. [Google Scholar] [CrossRef] [PubMed]
- Stebelová, K.; Molčan, L.; Okuliarová, M.; Hanuliak, P.; Hartman, P.; Hraška, J.; Zeman, M. The influence of indoor lighting with low blue light dose on urine 6-sulphatoxymelatonin concentrations and sleep efficiency of healthy volunteers. Biol. Rhythm Res. 2015, 46, 137–145. [Google Scholar] [CrossRef]
- Stebelova, K.; Roska, J.; Zeman, M. Impact of dim light at night on urinary 6-sulphatoxymelatonin concentrations and sleep in healthy humans. Int. J. Mol. Sci. 2020, 21, 7736. [Google Scholar] [CrossRef]
- Gaina, A.; Sekine, M.; Chen, X.; Hamanishi, S.; Kagamimori, S. Sleep parameters recorded by Actiwatch® in elementary school children and junior high school adolescents: Schooldays vs. weekends. Sleep Hypn. 2004, 6, 66–77. [Google Scholar]
- Redline, S.; Kirchner, H.L.; Quan, S.F.; Gottlieb, D.J.; Kapur, V.; Newman, A. The Effects of Age, Sex, Ethnicity, and Sleep-Disordered Breathing on Sleep Architecture. Arch. Intern. Med. 2004, 164, 406. [Google Scholar] [CrossRef] [PubMed]
- Roehrs, T.; Kapke, A.; Roth, T.; Breslau, N. Sex differences in the polysomnographic sleep of young adults: A community-based study. Sleep Med. 2006, 7, 49–53. [Google Scholar] [CrossRef]
- Bixler, E.O.; Papaliaga, M.N.; Vgontzas, A.N.; Lin, H.M.; Pejovic, S.; Karataraki, M.; Vela-Bueno, A.; Chrousos, G.P. Women sleep objectively better than men and the sleep of young women is more resilient to external stressors: Effects of age and menopause. J. Sleep Res. 2009, 18, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Okano, K.; Kaczmarzyk, J.R.; Dave, N.; Gabrieli, J.D.E.; Grossman, J.C. Sleep quality, duration, and consistency are associated with better academic performance in college students. NPJ Sci. Learn. 2019, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Becker, S.P.; Jarrett, M.A.; Luebbe, A.M.; Garner, A.A.; Burns, G.L.; Kofler, M.J. Sleep in a large, multi-university sample of college students: Sleep problem prevalence, sex differences, and mental health correlates. Sleep Health 2018, 4, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Liu, Q.; Ren, Y.; Gong, T.; Wang, S.; Li, L. Socio-demographic association of multiple modifiable lifestyle risk factors and their clustering in a representative urban population of adults: A cross-sectional study in Hangzhou, China. Int. J. Behav. Nutr. Phys. Act. 2011, 8. [Google Scholar] [CrossRef] [Green Version]
- Olson, J.S.; Hummer, R.A.; Harris, K.M. Gender and Health Behavior Clustering among U.S. Young Adults. Biodemogr. Soc. Biol. 2017, 63, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Rabel, M.; Laxy, M.; Thorand, B.; Peters, A.; Schwettmann, L.; Mess, F. Clustering of health-related behavior patterns and demographics. Results from the population-based KORA S4/F4 cohort study. Front. Public Health 2019, 6, 387. [Google Scholar] [CrossRef] [Green Version]
- Ha, S.; Choi, H.R.; Lee, Y.H. Clustering of four major lifestyle risk factors among Korean adults with metabolic syndrome. PLoS ONE 2017, 12, e0174567. [Google Scholar] [CrossRef]
- Lonnie, M.; Wadolowska, L. Empirically derived dietary-lifestyle patterns and cardiometabolic health in young men: A review. Proc. Nutr. Soc. 2020, 79, 324–330. [Google Scholar] [CrossRef]
- Godos, J.; Grosso, G.; Castellano, S.; Galvano, F.; Caraci, F.; Ferri, R. Association between diet and sleep quality: A systematic review. Sleep Med. Rev. 2021, 57, 101430. [Google Scholar] [CrossRef]
- Chan, W.S.; Cheng, C. Elevated Prevalence of Probable Insomnia among Young Men during Social Unrest in Hong Kong: A Population-Based Study. Behav. Sleep Med. 2021. [Google Scholar] [CrossRef]
- Middelkoop, H.A.M.; Smilde-van den Doel, D.A.; Neven, A.K.; Kamphuisen, H.A.C.; Springer, C.P. Subjective Sleep Characteristics of 1485 Males and Females Aged 50–93: Effects of Sex and Age, and Factors Related to Self-Evaluated Quality of Sleep. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1996, 51A, M108–M115. [Google Scholar] [CrossRef] [Green Version]
- Van Den Berg, J.F.; Miedema, H.M.E.; Tulen, J.H.M.; Hofman, A.; Neven, A.K.; Tiemeier, H. Sex differences in subjective and actigraphic sleep measures: A population-based study of elderly persons. Sleep 2009, 32, 1367–1375. [Google Scholar] [CrossRef]
- Choi, H.; Jeong, J.; Kim, H.; Shin, C.; Yoon, I.Y. Implication of Fast Activities of Spectral Analysis in Subjective Sleep Complaints of Elderly Women. J. Geriatr. Psychiatry Neurol. 2019, 32, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Åkerstedt, T.; Schwarz, J.; Gruber, G.; Lindberg, E.; Theorell-Haglöw, J. The relation between polysomnography and subjective sleep and its dependence on age—Poor sleep may become good sleep. J. Sleep Res. 2016, 25, 565–570. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, J.F.A.; Åkerstedt, T.; Lindberg, E.; Gruber, G.; Fischer, H.; Theorell-Haglöw, J. Age affects sleep microstructure more than sleep macrostructure. J. Sleep Res. 2017, 26, 277–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, N.; Shafi, F.; Bhat, A. Unique Aspects of Sleep in Women. Mo. Med. 2015, 112, 430–434. [Google Scholar] [PubMed]
- Conzatti, M.; Perez, A.V.; Maciel, R.F.; De Castro, D.H.; Sbaraini, M.; Wender, M.C.O. Sleep quality and excessive daytime sleepiness in women with Premenstrual Syndrome. Gynecol. Endocrinol. 2021, 37, 945–949. [Google Scholar] [CrossRef]
- Kamel, D.M.; Tantawy, S.A.; Alsayed, N.; Bekhet, A.H.; Elbkery, N.; Khairy, A. The relationship between premenstrual syndrome and the quality of sleep among egyptian women: An observational study. Arch. Balk. Med. Union 2021, 56, 172–178. [Google Scholar] [CrossRef]
- Kennedy, K.E.R.; Onyeonwu, C.; Nowakowski, S.; Hale, L.; Branas, C.C.; Killgore, W.D.S.; Wills, C.C.A.; Grandner, M.A. Menstrual regularity and bleeding is associated with sleep duration, sleep quality and fatigue in a community sample. J. Sleep Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wing, Y.K. Sex differences in insomnia: A meta-analysis. Sleep 2006, 29, 85–93. [Google Scholar] [CrossRef]
- Baglioni, C.; Regen, W.; Teghen, A.; Spiegelhalder, K.; Feige, B.; Nissen, C.; Riemann, D. Sleep changes in the disorder of insomnia: A meta-analysis of polysomnographic studies. Sleep Med. Rev. 2014, 18, 195–213. [Google Scholar] [CrossRef]
- Ehlers, C.L.; Kupfer, D.J. Effects of age on delta and REM sleep parameters. Electroencephalogr. Clin. Neurophysiol. 1989, 72, 118–125. [Google Scholar] [CrossRef]
- Eggert, T.; Dorn, H.; Sauter, C.; Schmid, G.; Danker-Hopfe, H. RF-EMF exposure effects on sleep—Age doesn’t matter in men! Environ. Res. 2020, 191, 110173. [Google Scholar] [CrossRef]
- Smagula, S.F.; Reynolds, C.F.; Ancoli-Israel, S.; Barrett-Connor, E.; Dam, T.T.; Hughes-Austin, J.M.; Paudel, M.; Redline, S.; Stone, K.L.; Cauley, J.A. Sleep architecture and mental health among community-dwelling older men. J. Gerontol.-Ser. B Psychol. Sci. Soc. Sci. 2015, 70, 673–681. [Google Scholar] [CrossRef] [Green Version]
- Carrier, J.; Semba, K.; Deurveilher, S.; Drogos, L.; Cyr-Cronier, J.; Lord, C.; Sekerovick, Z. Sex differences in age-related changes in the sleep-wake cycle. Front. Neuroendocrinol. 2017, 47, 66–85. [Google Scholar] [CrossRef] [PubMed]
- Luboshitzky, R.; Shen-Orr, Z.; Herer, P. Middle-aged men secrete less testosterone at night than young healthy men. J. Clin. Endocrinol. Metab. 2003, 88, 3160–3166. [Google Scholar] [CrossRef] [Green Version]
- Duffy, J.F.; Willson, H.J.; Wang, W.; Czeisler, C.A. Healthy older adults better tolerate sleep deprivation than young adults: Brief reports. J. Am. Geriatr. Soc. 2009, 57, 1245–1251. [Google Scholar] [CrossRef] [Green Version]
- Filtness, A.J.; Reyner, L.A.; Horne, J.A. Driver sleepiness—Comparisons between young and older men during a monotonous afternoon simulated drive. Biol. Psychol. 2012, 89, 580–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aili, K.; Åström-Paulsson, S.; Stoetzer, U.; Svartengren, M.; Hillert, L. Reliability of Actigraphy and Subjective Sleep Measurements in Adults: The Design of Sleep Assessments. J. Clin. Sleep Med. 2017, 13, 39–47. [Google Scholar] [CrossRef] [PubMed]
Women (n = 47) | Men (n = 27) | |||
---|---|---|---|---|
Group | <40 (n = 35) | ≥40 (n = 12) | <40 (n = 17) | ≥40 (n = 10) |
Mean age (years) | 22.3 ± 0.5 | 54.3 ± 2.6 | 25.4 ± 1.2 | 54.7 ± 2.2 |
Age range (years) | 19–33 | 40–72 | 20–39 | 44–63 |
BMI (kg/m2) | 22.7 ± 0.7 | 23.5 ± 1 | 24.4 ± 0.8 | 25.9 ± 2.2 |
Bedtime (h:min) | 22:24 ± 0:53 | 22:42 ± 0:18 | 23:40 ± 0:10 | 22:20 ± 0:36 |
Wakeup time (h:min) | 7:12 ± 0:11 | 5:57 ± 0:12 | 7:51 ± 0:31 | 5:20 ± 0:20 |
Time in bed (h:min) | 7:35 ± 0:07 | 7:13 ± 0:12 | 7:28 ± 0:09 | 7:12 ± 0:15 |
Chronotype score | 49.9 ± 1.9 | 63.6 ± 6.1 | 57.4 ± 2.7 | 56.9 ± 6.8 |
Sleep Parameter | Description |
---|---|
Actual sleep (%) Actual wake (%) | The time actually spent sleeping or waking, respectively. |
Sleep efficiency (%) | Index of the amount of time in bed spent sleeping. |
Sleep bouts Wake bouts | The actual number of episodes of sleep and of wakefulness, respectively. |
Immobile time (%) Moving time (%) | Percentage value comparing the time spent immobile or moving during the assumed sleep period, respectively. |
One-min immobility (%) | The percentage of immobility lasting 1 min or less in relation to the total number of immobility phases. |
Fragmentation index (%) | Indicator of restlessness, calculated by the sum of moving minutes and immobility phases shorter than 1 min. |
Variable | Analysis of Variance | p-Value |
---|---|---|
Actual sleep (%) 1 | F (3, 71) = 3.600 | p < 0.05 |
Actual wake (%) 1 | F (3, 71) = 3.583 | p < 0.05 |
Sleep efficiency (%) 1 | F (3, 71) = 4.641 | p < 0.01 |
Sleep bouts 1 | F (3, 71) = 4.403 | p < 0.01 |
Wake bouts 1 | F (3, 71) = 4.714 | p < 0.01 |
Immobile time (%) 2 | H (3, 71) = 11.031 | p < 0.05 |
Moving time (%) 2 | H (3, 71) = 10.564 | p < 0.05 |
One-min immobility (%) 1 | F (3, 71) = 4.744 | p < 0.01 |
Fragmentation index (%) 2 | H (3, 71) = 12.542 | p < 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kováčová, K.; Stebelová, K. Sleep Characteristics According to Gender and Age Measured by Wrist Actigraphy. Int. J. Environ. Res. Public Health 2021, 18, 13213. https://doi.org/10.3390/ijerph182413213
Kováčová K, Stebelová K. Sleep Characteristics According to Gender and Age Measured by Wrist Actigraphy. International Journal of Environmental Research and Public Health. 2021; 18(24):13213. https://doi.org/10.3390/ijerph182413213
Chicago/Turabian StyleKováčová, Katarína, and Katarína Stebelová. 2021. "Sleep Characteristics According to Gender and Age Measured by Wrist Actigraphy" International Journal of Environmental Research and Public Health 18, no. 24: 13213. https://doi.org/10.3390/ijerph182413213
APA StyleKováčová, K., & Stebelová, K. (2021). Sleep Characteristics According to Gender and Age Measured by Wrist Actigraphy. International Journal of Environmental Research and Public Health, 18(24), 13213. https://doi.org/10.3390/ijerph182413213