The Influence of Noise in the Neurofeedback Training Sessions in Student Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Signal Acquisition
2.3. Experimental Design
2.3.1. Intervention Groups—Noisy Room and Silent Room
2.3.2. Control Group
2.3.3. Silent Room
2.3.4. Noisy Room
2.3.5. Spectrogram
2.4. Measurements
2.5. Assessments
2.5.1. N-Back Test (Working Memory)
2.5.2. Oddball (Reaction Time)
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reinten, J.; Braat-Eggen, P.E.; Hornikx, M.; Kort, H.S.M.; Kohlrausch, A. The indoor sound environment and human task performance: A literature review on the role of room acoustics. Build. Environ. 2017, 123, 315–332. [Google Scholar] [CrossRef]
- Loeb, M.; Holding, D.H.; Baker, M.A. Noise stress and circadian arousal in self-paced computation. Motiv. Emot. 1982, 6, 43–48. [Google Scholar] [CrossRef]
- Dalton, B.H.; Behm, D.G. Effects of noise and music on human and task performance: A systematic review. Occup. Ergon. 2007, 7, 143–152. [Google Scholar] [CrossRef]
- Nassiri, P.; Monazam, M.; Fouladi Dehaghi, B.; Ibrahimi Ghavam Abadi, L.; Zakerian, S.A.; Azam, K. The effect of noise on human performance: A clinical trial. Int. J. Occup. Environ. Med. 2013, 4, 87–95. [Google Scholar]
- Siu, K.C.; Suh, I.H.; Mukherjee, M.; Oleynikov, D.; Stergiou, N. The impact of environmental noise on robot-assisted laparoscopic surgical performance. Surgery 2010, 147, 107–113. [Google Scholar] [CrossRef]
- Jamieson, J.P. The home field advantage in athletics: A meta-analysis. J. Appl. Soc. Psychol. 2010, 40, 1819–1848. [Google Scholar] [CrossRef]
- Szalma, J.L.; Hancock, P.A. Noise effects on human performance: A meta-analytic synthesis. Psychol. Bull 2011, 137, 682–707. [Google Scholar] [CrossRef] [PubMed]
- Davids, K.; Shuttleworth, R.; Button, C.; Renshaw, I.; Glazier, P. “Essential noise”—enhancing variability of informational constraints benefits movement control: A comment on Waddington and Adams (2003). Br. J. Sports Med. 2004, 38, 601–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, S.; Weinstein, N. Nonauditory effects of noise on behavior and health. J. Soc. Issues 1981, 37, 36–70. [Google Scholar] [CrossRef]
- Beckmann, J.; Elbe, A.-M. Sport Psychological Interventions in Competitive Sports; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2015. [Google Scholar]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Mirifar, A.; Beckmann, J.; Ehrlenspiel, F. Neurofeedback as supplementary training for optimizing athletes’ performance: A systematic review with implications for future research. Neurosci. Biobehav. Rev. 2017, 75, 419–432. [Google Scholar] [CrossRef]
- Xiang, M.Q.; Hou, X.H.; Liao, B.G.; Liao, J.W.; Hu, M. The effect of neurofeedback training for sport performance in athletes: A meta-analysis. Psychol. Sport Exerc. 2018, 36, 114–122. [Google Scholar] [CrossRef]
- Baker, J.; Cote, J.; Deakin, J. Expertise in ultra-endurance triathletes early sport involvement, training structure, and the theory of deliberate practice. J. Appl. Sport Psychol. 2005, 17, 64–78. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- World Medical Association. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Bull. World Health Organ. 2001, 79, 373–374. [Google Scholar]
- Mann, C.A.; Sterman, M.B.; Kaiser, D.A. Suppression of EEG rhythmic frequencies during somato-motor and visuo-motor behavior. Int. J. Psychophysiol. 1996, 23, 1–7. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Neuper, C.; Ramoser, H.; Muller-Gerking, J. Visually guided motor imagery activates sensorimotor areas in humans. Neurosci. Lett. 1999, 269, 153–156. [Google Scholar] [CrossRef]
- Suter, A.H. The Effects of Noise on Performance; Gallaudet University: Washington, DC, USA, 1989. [Google Scholar]
- Altes, R.A. Angle estimation and binaural processing in animal echolocation. J. Acoust. Soc. Am. 1978, 63, 155–171. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.P.; Migotina, D.G.; da Rosa, A.C. EEG training platform: Improving Brain-Computer Interaction and cognitive skills. In Proceedings of the 3rd International Conference on Human System Interaction, Rzeszów, Poland, 13−15 May 2010; pp. 425–429. [Google Scholar] [CrossRef]
- Nan, W.; Wan, F.; Lou, C.I.; Vai, M.I.; Rosa, A. Peripheral visual performance enhancement by neurofeedback training. Appl. Psychophysiol. Biofeedback 2013, 38, 285–291. [Google Scholar] [CrossRef]
- Bullmore, E.; Owen, A.M.; McMillan, K.M.; Laird, A.R. N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapp. 2005, 25, 46–59. [Google Scholar] [CrossRef] [Green Version]
- Debener, S.; Makeig, S.; Delorme, A.; Engel, A.K. What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event-related potential as revealed by independent component analysis. Cogn. Brain Res. 2005, 22, 309–321. [Google Scholar] [CrossRef] [Green Version]
- Domingos, C.; Peralta, M.; Prazeres, P.; Nan, W.; Rosa, A.; Pereira, J.G. Session Frequency Matters in Neurofeedback Training of Athletes. Appl. Psychophysiol. Biofeedback 2021, 46, 195–204. [Google Scholar] [CrossRef]
- Ljung, R.; Israelsson, K.; Hygge, S. Speech intelligibility and recall of spoken material heard at different signal-to-noise ratios and the role played by working memory capacity. Appl. Cogn. Psychol. 2013, 27, 198–203. [Google Scholar] [CrossRef]
- Rönnberg, N.; Rudner, M.; Lunner, T.; Stenfelt, S. Assessing listening effort by measuring short-term memory storage and processing of speech in noise. Speech Lang. Hear. 2014, 17, 123–132. [Google Scholar] [CrossRef]
- Jeon, H.; Kim, J.; Ali, A.; Choi, S. Noise distraction and mental practice in closed and open motor skills. Percept. Mot. Skills 2014, 119, 156–168. [Google Scholar] [CrossRef] [PubMed]
- Balazova, I.; Clausen, G.; Rindel, J.H.; Poulsen, T.; Wyon, D.P. Open-plan office environments: A laboratory experiment to examine the effect of office noise and temperature on human perception, comfort and office work performance. In Proceedings of the 11th International conference on Indoor Air Quality and Climate—Indoor Air 2008, Copenhagen, Denmark, 17–22 August 2008. Paper ID: 703. [Google Scholar]
- Gruzelier, J.H. Differential effects on mood of 12-15 (SMR) and 15-18 (beta1) Hz neurofeedback. Int. J. Psychophysiol. 2014, 93, 112–115. [Google Scholar] [CrossRef] [PubMed]
M ± SD | ||||
---|---|---|---|---|
Control (n = 15) | Silent Room (n = 15) | Noisy Room (n = 15) | p | |
SAB S1 | NA | 1.57 ± 0.08 | 1.08 ± 0.21 | <0.001 a |
SAB S12 | NA | 1.51 ± 0.09 | 1.15 ± 0.28 | 0.005 b |
Difference in SAB (S12–S1) | NA | −0.06 ± 0.06 | 0.07 ± 0. | 0.113 a |
IAB session 1 | NA | 1.56 ± 0.08 | 1.14 ± 0.26 | <0.001 a |
IAB session 12 | NA | 1.59 ± 0.12 | 1.21 ± 0.31 | 0.007 b |
Difference in IAB (S12–S1) | NA | 0.04 ± 0.08 | 0.07 ± 0. | 0.740 b |
NB pre-test | 96.00 ± 3.87 | 93.67 ± 6.94 | 89.33 ± 9.23 | 0.127 d |
NB post-test | 96.00 ± 6.32 | 96.33 ± 3.99 | 98.67 ± 8.84 | 0.189 d |
Difference in NB (post-test–pre-test) | 0.00 ± 0.07 | 2.67 ± 6.78 | 9.33 ± 8.84 | 0.005 c |
OB pre-test | 94.80 ± 5.28 | 96.27 ± 3.20 | 95.20 ± 3.84 | 0.724 d |
OB post-test | 96.27 ± 3.01 | 98.40 ± 2.95 | 98.53 ± 1.41 | 0.008 d |
Difference in OB (post-test–pre-test) | 1.47 ± 2.77 | 2.13 ± 3.58 | 3..33 ± 3.44 | 0.298 c |
M ± SD | |||
---|---|---|---|
Pre-Test | Post-Test | p | |
Control | |||
NB | 96.00 ± 3.87 | 96.00 ± 6.32 | 0.666 a |
OB | 94.80 ± 5.28 | 96.27 ± 3.01 | 0.059 a |
Silent Room protocol | |||
NB | 93.67 ± 6.93 | 96.33 ± 3.99 | 0.142 a |
OB | 96.26 ± 3.20 | 98.40 ± 2.95 | 0.057 a |
Noisy Room protocol | |||
NB | 89.33 ± 9.23 | 98.67 ± 2.97 | 0.005 a |
OB | 95.20 ± 3.84 | 98.53 ± 1.41 | 0.003 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domingos, C.; da Silva Caldeira, H.; Miranda, M.; Melício, F.; Rosa, A.C.; Pereira, J.G. The Influence of Noise in the Neurofeedback Training Sessions in Student Athletes. Int. J. Environ. Res. Public Health 2021, 18, 13223. https://doi.org/10.3390/ijerph182413223
Domingos C, da Silva Caldeira H, Miranda M, Melício F, Rosa AC, Pereira JG. The Influence of Noise in the Neurofeedback Training Sessions in Student Athletes. International Journal of Environmental Research and Public Health. 2021; 18(24):13223. https://doi.org/10.3390/ijerph182413223
Chicago/Turabian StyleDomingos, Christophe, Higino da Silva Caldeira, Marco Miranda, Fernando Melício, Agostinho C. Rosa, and José Gomes Pereira. 2021. "The Influence of Noise in the Neurofeedback Training Sessions in Student Athletes" International Journal of Environmental Research and Public Health 18, no. 24: 13223. https://doi.org/10.3390/ijerph182413223
APA StyleDomingos, C., da Silva Caldeira, H., Miranda, M., Melício, F., Rosa, A. C., & Pereira, J. G. (2021). The Influence of Noise in the Neurofeedback Training Sessions in Student Athletes. International Journal of Environmental Research and Public Health, 18(24), 13223. https://doi.org/10.3390/ijerph182413223