Are the Parameters of Novel Two-Point Force-Velocity Model Generalizable in Leg Muscles?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Testing Procedures
2.3. Standard Lower Limb Tests
2.4. Two-Point Model
2.5. Data Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jaric, S. Force-velocity relationship of muscles performing multi-joint maximum performance tasks. Int. J. Sport. Med. 2015, 36, 699–704. [Google Scholar] [CrossRef]
- McMahon, T.A. Muscles, Reflexes, and Locomotion; Princeton University Press: Princeton, NJ, USA, 1984; ISBN 069102376X. [Google Scholar]
- Alcazar, J.; Csapo, R.; Ara, I.; Alegre, L.M. On the shape of the force-velocity relationship in skeletal muscles: The linear, the hyperbolic and the double-hyperbolic. Front. Physiol. 2019, 10, 769. [Google Scholar] [CrossRef]
- Hill, A.V. The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 1938, 126, 136–195. [Google Scholar]
- Janićijević, D.N. Mechanical Capacities of the Different Muscle Groups Assessed Using “two-velocity” Method. Ph.D. Thesis, Univerzitet u Beogradu-Fakultet sporta i fizičkog vaspitanja, Belgrade, Serbia, 1 October 2020. [Google Scholar]
- Cormie, P.; McBride, J.M.; McCaulley, G.O. Power-time, force-time, and velocity-time curve analysis during the jump squat: Impact of load. J. Appl. Biomech. 2008, 24, 112–120. [Google Scholar] [CrossRef] [Green Version]
- McBride, J.M.; Haines, T.L.; Kirby, T.J. Effect of loading on peak power of the bar, body, and system during power cleans, squats, and jump squats. J. Sports Sci. 2011, 29, 1215–1221. [Google Scholar] [CrossRef]
- Jaric, S. Two-load method for distinguishing between muscle force, velocity, and power-producing capacities. Sport. Med. 2016, 46, 1585–1589. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Reyes, P.; Samozino, P.; García-Ramos, A.; Cuadrado-Peñafiel, V.; Brughelli, M.; Morin, J.-B. Relationship between vertical and horizontal force-velocity-power profiles in various sports and levels of practice. PeerJ 2018, 6, e5937. [Google Scholar] [CrossRef]
- Janicijevic, D.; García-Ramos, A.; Knezevic, O.M.; Mirkov, D.M. Feasibility of the two-point method for assessing the force-velocity relationship during lower-body and upper-body isokinetic tests. J. Sports Sci. 2019, 37, 2396–2402. [Google Scholar] [CrossRef]
- Ravier, G.; Grappe, F.; Rouillon, J.D. Application of force-velocity cycle ergometer test and vertical jump tests in the functional assessment of karate competitor. J. Sport. Med. Phys. Fit. 2004, 44, 349–355. [Google Scholar]
- Driss, T.; Vandewalle, H. The measurement of maximal (anaerobic) power output on a cycle ergometer: A critical review. Biomed. Res. Int. 2013, 2013, 589361. [Google Scholar] [CrossRef] [Green Version]
- Cuk, I.; Markovic, M.; Nedeljkovic, A.; Ugarkovic, D.; Kukolj, M.; Jaric, S. Force–velocity relationship of leg extensors obtained from loaded and unloaded vertical jumps. Eur. J. Appl. Physiol. 2014, 114, 1703–1714. [Google Scholar] [CrossRef] [Green Version]
- Samozino, P.; Rejc, E.; Di Prampero, P.E.; Belli, A.; Morin, J.-B. Optimal force–velocity profile in ballistic movements—Altius. Med. Sci. Sport. Exerc. 2012, 44, 313–322. [Google Scholar] [CrossRef]
- Zivkovic, M.Z.; Djuric, S.; Cuk, I.; Suzovic, D.; Jaric, S. A simple method for assessment of muscle force, velocity, and power producing capacities from functional movement tasks. J. Sports Sci. 2017, 35, 1287–1293. [Google Scholar] [CrossRef]
- Rabita, G.; Guilhem, G.; Giroux, C.; Chollet, D. Optimal Balance between Force and Velocity Differs among World-Class Athletes. J. Appl. Biomech. 2016, 32, 59–68. [Google Scholar]
- García-Ramos, A.; Jaric, S.; Padial, P.; Feriche, B. Force–velocity relationship of upper body muscles: Traditional versus ballistic bench press. J. Appl. Biomech. 2016, 32, 178–185. [Google Scholar] [CrossRef]
- Sreckovic, S.; Cuk, I.; Djuric, S.; Nedeljkovic, A.; Mirkov, D.; Jaric, S. Evaluation of force–velocity and power–velocity relationship of arm muscles. Eur. J. Appl. Physiol. 2015, 115, 1779–1787. [Google Scholar] [CrossRef]
- Nikolaidis, P. Age-and sex-related differences in force-velocity characteristics of upper and lower limbs of competitive adolescent swimmers. J. Hum. Kinet. 2012, 32, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Alcazar, J.; Rodriguez-Lopez, C.; Ara, I.; Alfaro-Acha, A.; Rodríguez-Gómez, I.; Navarro-Cruz, R.; Losa-Reyna, J.; García-García, F.J.; Alegre, L.M. Force-velocity profiling in older adults: An adequate tool for the management of functional trajectories with aging. Exp. Gerontol. 2018, 108, 1–6. [Google Scholar] [CrossRef]
- García-Ramos, A.; Feriche, B.; Pérez-Castilla, A.; Padial, P.; Jaric, S. Assessment of leg muscles mechanical capacities: Which jump, loading, and variable type provide the most reliable outcomes? Eur. J. Sport Sci. 2017, 17, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Djuric, S.; Cuk, I. Sensitivity of the novel two-point force-velocity model: An assessment of leg muscle mechanical capacities. Sport. Biomech. 2020, 1–14. [Google Scholar] [CrossRef]
- Grbic, V.; Djuric, S.; Knezevic, O.M.; Mirkov, D.M.; Nedeljkovic, A.; Jaric, S. A novel two-velocity method for elaborate isokinetic testing of knee extensors. Int. J. Sports Med. 2017, 38, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Morrison, S.; Sleivert, G.G.; Cheung, S.S. Passive hyperthermia reduces voluntary activation and isometric force production. Eur. J. Appl. Physiol. 2004, 91, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Todd, G.; Butler, J.E.; Taylor, J.L.; Gandevia, S.C. Hyperthermia: A failure of the motor cortex and the muscle. J. Physiol. 2005, 563, 621–631. [Google Scholar] [CrossRef]
- Racinais, S.; Oksa, J. Temperature and neuromuscular function. Scand. J. Med. Sci. Sports 2010, 20, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Morales-Artacho, A.J.; Padial, P.; García-Ramos, A.; Pérez-Castilla, A.; Argüelles-Cienfuegos, J.; De la Fuente, B.; Feriche, B. Intermittent resistance training at moderate altitude: Effects on the force-velocity relationship, isometric strength and muscle architecture. Front. Physiol. 2018, 9, 594. [Google Scholar] [CrossRef]
- Pallarés, J.G.; Martínez-Abellán, A.; López-Gullón, J.M.; Morán-Navarro, R.; De la Cruz-Sánchez, E.; Mora-Rodríguez, R. Muscle contraction velocity, strength and power output changes following different degrees of hypohydration in competitive olympic combat sports. J. Int. Soc. Sports Nutr. 2016, 13, 10. [Google Scholar] [CrossRef] [Green Version]
- Judelson, D.A.; Maresh, C.M.; Farrell, M.J.; Yamamoto, L.M.; Armstrong, L.E.; Kraemer, W.J.; Volek, J.S.; Spiering, B.A.; Casa, D.J.; Anderson, J.M. Effect of hydration state on strength, power, and resistance exercise performance. Med. Sci. Sports Exerc. 2007, 39, 1817–1824. [Google Scholar] [CrossRef]
- Zubac, D.; Buoite Stella, A.; Morrison, S.A. Up in the Air: Evidence of Dehydration Risk and Long-Haul Flight on Athletic Performance. Nutrients 2020, 12, 2574. [Google Scholar] [CrossRef]
- García-Ramos, A.; Torrejon, A.; Pérez-Castilla, A.; Morales-Artacho, A.J.; Jaric, S. Selective changes in the mechanical capacities of lower-body muscles after cycle-ergometer sprint training against heavy and light resistances. Int. J. Sports Physiol. Perform. 2018, 13, 290–297. [Google Scholar] [CrossRef]
- Vandewalle, H.; Peres, G.; Heller, J.; Panel, J.; Monod, H. Force-velocity relationship and maximal power on a cycle ergometer. Eur. J. Appl. Physiol. Occup. Physiol. 1987, 56, 650–656. [Google Scholar] [CrossRef]
- Bohannon, R.W. Hand-grip dynamometry predicts future outcomes in aging adults. J. Geriatr. Phys. Ther. 2008, 31, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Castilla, A.; Jaric, S.; Feriche, B.; Padial, P.; García-Ramos, A. Evaluation of muscle mechanical capacities through the two-load method: Optimization of the load selection. J. Strength Cond. Res. 2018, 32, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Pojednic, R.M.; Clark, D.J.; Patten, C.; Reid, K.; Phillips, E.M.; Fielding, R.A. The specific contributions of force and velocity to muscle power in older adults. Exp. Gerontol. 2012, 47, 608–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendez-Villanueva, A.; Fernandez-Fernandez, J.; Bishop, D.; Fernandez-Garcia, B.; Terrados, N. Activity patterns, blood lactate concentrations and ratings of perceived exertion during a professional singles tennis tournament. Br. J. Sports Med. 2007, 41, 296–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pazin, N.; Berjan, B.; Nedeljkovic, A.; Markovic, G.; Jaric, S. Power output in vertical jumps: Does optimum loading depend on activity profiles? Eur. J. Appl. Physiol. 2013, 113, 577–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frederick, F.A.; Langevin, R.C.; Miletti, J.; Sacco, M.; Murphy, M.M.; Patton, J.F. Development and Assessment of the Monark Cycle Ergometer for Anaerobic Muscular Exercise; Army Research Institute of Environmental Medicine: Natick, MA, USA, 1983. [Google Scholar]
- Brown, L.E.; Whitehurst, M.; Gilbert, R.; Buchalter, D.N. The effect of velocity and gender on load range during knee extension and flexion exercise on an isokinetic device. J. Orthop. Sport. Phys. Ther. 1995, 21, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Dauty, M.; Menu, P.; Mesland, O.; Fouasson-Chailloux, A. Muscle strength particularity of grand tour cyclists from knee isokinetic assessment. Sci. Sports 2020, 35, 82–90. [Google Scholar] [CrossRef]
- Rodríguez-Rosell, D.; Pareja-Blanco, F.; Aagaard, P.; González-Badillo, J.J. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle. Clin. Physiol. Funct. Imaging 2018, 38, 743–762. [Google Scholar] [CrossRef] [PubMed]
- Mandic, R.; Knezevic, O.M.; Mirkov, D.M.; Jaric, S. Control strategy of maximum vertical jumps: The preferred countermovement depth may not be fully optimized for jump height. J. Hum. Kinet. 2016, 52, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Holm, I.; Fredriksen, P.M.; Fosdahl, M.; Vøllestad, N. A normative sample of isotonic and isokinetic muscle strength measurements in children 7 to 12 years of age. Acta Paediatr. 2008, 97, 602–607. [Google Scholar] [CrossRef]
- Garcia-Ramos, A.; Jaric, S. Two-point method: A quick and fatigue-free procedure for assessment of muscle mechanical capacities and the 1 repetition maximum. Strength Cond. J. 2018, 40, 54–66. [Google Scholar] [CrossRef]
- Sheppard, J.M.; Cormack, S.; Taylor, K.-L.; McGuigan, M.R.; Newton, R.U. Assessing the force-velocity characteristics of the leg extensors in well-trained athletes: The incremental load power profile. J. Strength Cond. Res. 2008, 22, 1320–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Castilla, A.; García-Ramos, A.; Feriche, B.; Padial, P.; Jaric, S. Reliability and validity of the “two-load method” to determine leg extensors maximal mechanical capacities. Curr. Res. Mot. Control. V. Bridg. Mot. Control. Biomech. Katowice Pol. BiuroTEXT 2016, 32, 219–225. [Google Scholar]
Standard Tests | Two-Point Method | ||
---|---|---|---|
F | JUMP-CYCLING | 0.55 (−0.04–0.85) | 0.49 (−0.12–0.83) |
JUMP-ISOKINETIC | 0.49 (−0.12–0.83) | 0.23 (−0.39–0.71) | |
CYCLING-ISOKINETIC | 0.57 (−0.01–0.86) | −0.47 (−0.14–0.82) | |
P | JUMP-CYCLING | 0.66 * (0.14–0.89) | 0.49 (−0.12–0.83) |
JUMP-ISOKINETIC | 0.78 ** (0.37–0.94) | 0.72 ** (0.25–0.92) | |
CYCLING-ISOKINETIC | 0.77 ** (0.35–0.93) | 0.66 * (0.14–0.89) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Đurić, S.; Grbić, V.; Živković, M.; Majstorović, N.; Sember, V. Are the Parameters of Novel Two-Point Force-Velocity Model Generalizable in Leg Muscles? Int. J. Environ. Res. Public Health 2021, 18, 1032. https://doi.org/10.3390/ijerph18031032
Đurić S, Grbić V, Živković M, Majstorović N, Sember V. Are the Parameters of Novel Two-Point Force-Velocity Model Generalizable in Leg Muscles? International Journal of Environmental Research and Public Health. 2021; 18(3):1032. https://doi.org/10.3390/ijerph18031032
Chicago/Turabian StyleĐurić, Saša, Vladimir Grbić, Milena Živković, Nikola Majstorović, and Vedrana Sember. 2021. "Are the Parameters of Novel Two-Point Force-Velocity Model Generalizable in Leg Muscles?" International Journal of Environmental Research and Public Health 18, no. 3: 1032. https://doi.org/10.3390/ijerph18031032
APA StyleĐurić, S., Grbić, V., Živković, M., Majstorović, N., & Sember, V. (2021). Are the Parameters of Novel Two-Point Force-Velocity Model Generalizable in Leg Muscles? International Journal of Environmental Research and Public Health, 18(3), 1032. https://doi.org/10.3390/ijerph18031032