Numerical Analysis of Electromagnetic Field Exposure from 5G Mobile Communications at 28 GHZ in Adults and Children Users for Real-World Exposure Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antenna Model
2.2. Exposure Scenarios
- Phone call scenario: the smartphone is close to the right ear of the model. The phone case was in contact with the ear so the antenna-skin distance was 2 mm.
- Message writing scenario: the terminal in front of the chest. The phone case was in line with the beginning of the sternum (jugular notch).
- Browsing scenario: the terminal in front of the abdomen. The phone case was in line with the last ribs. This scenario simulates the use of a smartphone to consult social applications.
2.3. Numerical Simulations
2.4. Data Processing
3. Results
3.1. Phone Call Scenario
3.2. Message Writing Scenario
3.3. Browsing Scenario
4. Discussion
Limitations and Further Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Li, S.; Xu, L.D.; Zhao, S. 5G Internet of Things: A survey. J. Ind. Inf. Integr. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G.N.; Schulz, J.K.; Samimi, M.; Gutierrez, F. Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access 2013, 1, 335–349. [Google Scholar] [CrossRef]
- Morgado, A.; Saidul Huq, K.M.M.; Mumtaz, S.; Rodriguez, J. A survey of 5G technologies: Regulatory, standardization and industrial perspectives. Digit. Commun. Netw. 2018, 4, 87–97. [Google Scholar] [CrossRef]
- Federal Communications Commission. Radio Frequency Radiation Exposure Limits, Code of Federal Regulation Title 47, Part 1.1310; Federal Communications Commission: Washington, DC, USA, 2017.
- The European Commission. Commission Implementing Decision (EU) 2019/784 of 14 May 2019 on harmonisation of the 24.25–27.5 GHz frequency band for terrestrial systems capable of providing wireless broadband electronic communications services in the Union. Off. J. Eur. Union 2020, 2019, 13–22. [Google Scholar]
- Wu, T.; Rappaport, T.S.; Collins, C.M. Safe for Generations to Come. IEEE Microw. Mag. 2015, 16, 65–84. [Google Scholar] [CrossRef] [Green Version]
- ICNIRP. ICNIRP Guidelines for limiting exposure to electromagnetic fields (100 kHz TO 300 GHz). Health Phys. 2020, 118, 483–524. [Google Scholar] [CrossRef]
- IEEE. IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz Developed by the IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnet; IEEE: Toulouse, France, 2019; ISBN 9781504455480. [Google Scholar]
- Markov, M. Dosimetry in Bioelectromagnetics; CRC Press: New York, NY, USA, 2017; ISBN 1351650602. [Google Scholar]
- Siervo, B.; Morelli, M.S.; Landini, L.; Hartwig, V. Numerical evaluation of human exposure to WiMax patch antenna in tablet or laptop. Bioelectromagnetics 2018, 39, 414–422. [Google Scholar] [CrossRef]
- Morelli, M.S.; Hartwig, V.; Tassano, S.; Vanello, N.; Positano, V.; Santarelli, M.F.M.F.; Carrozzi, A.; Landini, L.; Giovannetti, G. FDTD Analysis of a Radiofrequency Knee Coil for Low-Field MRI: Sample-Induced Resistance and Decoupling Evaluation. Appl. Magn. Reson. 2013, 44, 1393–1403. [Google Scholar] [CrossRef]
- Hartwig, V.; Giovannetti, G.; Vanello, N.; Landini, L.; Santarelli, M.F.F. Numerical Calculation of Peak-to-Average Specific Absorption Rate on Different Human Thorax Models for Magnetic Resonance Safety Considerations. Appl. Magn. Reson. 2010, 38, 337–348. [Google Scholar] [CrossRef]
- Jeladze, V.; Nozadze, T.; Petoev-Darsavelidze, I.; Partsvania, B. Mobile phone antenna-matching study with different finger positions on an inhomogeneous human model. Electromagn. Biol. Med. 2019, 38, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Diao, Y.; Rashed, E.A.; Hirata, A. Assessment of absorbed power density and temperature rise for nonplanar body model under electromagnetic exposure above 6 GHz. Phys. Med. Biol. 2020, 65, 224001. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Sasaki, K.; Watanabe, S.; Shirai, H. Relationship between power density and surface temperature elevation for human skin exposure to electromagnetic waves with oblique incidence angle from 6 GHz to 1 THz. Phys. Med. Biol. 2019, 64, 065016. [Google Scholar] [CrossRef] [PubMed]
- Nakae, T.; Funahashi, D.; Higashiyama, J.; Onishi, T.; Hirata, A. Skin Temperature Elevation for Incident Power Densities from Dipole Arrays at 28 Ghz. IEEE Access 2020, 8, 26863–26871. [Google Scholar] [CrossRef]
- Neufeld, E.; Carrasco, E.; Murbach, M.; Balzano, Q.; Christ, A.; Kuster, N. Theoretical and numerical assessment of maximally allowable power-density averaging area for conservative electromagnetic exposure assessment above 6 GHz. Bioelectromagnetics 2018, 39, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Guraliuc, A.R.; Zhadobov, M.; Sauleau, R.; Marnat, L.; Dussopt, L. Near-Field User Exposure in Forthcoming 5G Scenarios in the 60 GHz Band. IEEE Trans. Antennas Propag. 2017, 65, 6606–6615. [Google Scholar] [CrossRef]
- Hamed, T.; Maqsood, M. SAR calculation & temperature response of human body exposure to electromagnetic radiations at 28, 40 and 60 GHz mmWave frequencies. Prog. Electromagn. Res. M 2018, 73, 47–59. [Google Scholar] [CrossRef]
- He, W.; Xu, B.; Gustafsson, M.; Ying, Z.; He, S. RF Compliance Study of Temperature Elevation in Human Head Model Around 28 GHz for 5G User Equipment Application: Simulation Analysis. IEEE Access 2017, 6, 830–838. [Google Scholar] [CrossRef]
- Vilagosh, Z.; Lajevardipour, A.; Wood, A. Computer simulation study of the penetration of pulsed 30, 60 and 90 GHz radiation into the human ear. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gultekin, D.H.; Siegel, P.H. Absorption of 5G Radiation in Brain Tissue as a Function of Frequency, Power and Time. IEEE Access 2020, 8, 115593–115612. [Google Scholar] [CrossRef]
- Morgan, L.L.; Kesari, S.; Davis, D. Why children absorb more microwave radiation than adults: The consequences. J. Microsc. Ultrastruct. 2014, 2, 197. [Google Scholar] [CrossRef] [Green Version]
- Morris, R.D.; Morgan, L.L.; Davis, D. Children absorb higher doses of radio frequency electromagnetic radiation from mobile phones than adults. IEEE Access 2015, 3, 2379–2387. [Google Scholar] [CrossRef] [Green Version]
- Dimbylow, P.J. Fine resolution calculations of SAR in the human body for frequencies up to 3 GHz. Phys. Med. Biol. 2002, 47, 2835–2846. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, O.P. Yes the children are more exposed to radiofrequency energy from mobile telephones than adults. IEEE Access 2015, 3, 985–988. [Google Scholar] [CrossRef]
- Foster, K.R.; Chou, C.K. Are children more exposed to radio frequency energy from mobile phones than adults? IEEE Access 2014, 2, 1497–1509. [Google Scholar] [CrossRef]
- Rashid, M.; Hossain, S. Antenna solution for millimeter wave mobile communication (MWMC): 5G. Int. J. Sci. Res. Eng. Technol. 2014, 3, 1157–1161. [Google Scholar]
- Colombi, D.; Thors, B.; Törnevik, C. Implications of EMF Exposure Limits on Output Power Levels for 5G Devices Above 6 GHz. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1247–1249. [Google Scholar] [CrossRef]
- Thors, B.; Colombi, D.; Ying, Z.; Bolin, T.; Tornevik, C. Exposure to RF EMF from Array Antennas in 5G Mobile Communication Equipment. IEEE Access 2016, 4, 7469–7478. [Google Scholar] [CrossRef]
- Xu, B.; Zhao, K.; Ying, Z.; Sjoberg, D.; He, W.; He, S. Analysis of Impacts of Expected RF EMF Exposure Restrictions on Peak EIRP of 5G User Equipment at 28 GHz and 39 GHz Bands. IEEE Access 2019, 7, 20996–21005. [Google Scholar] [CrossRef]
- 3GPP. ETSI TS 138 101-1 V16.4.0 (2020-07): User Equipment (UE) Radio Transmission and Reception; Part 1: Range 1 Standalone (3GPP TS 38.101-1 Version 16.4.0 Release 16); ETSI: Valbonne, France, 2020. [Google Scholar]
- Duan, Y.; Ibrahim, T.S.; Peterson, B.S.; Liu, F.; Kangarlu, A. Assessment of a PML Boundary Condition for Simulating an MRI Radio Frequency Coil. Int. J. Antennas Propag. 2008, 2008, 563196. [Google Scholar] [CrossRef] [Green Version]
- Christ, A.; Kainz, W.; Hahn, E.G.; Honegger, K.; Zefferer, M.; Neufeld, E.; Rascher, W.; Janka, R.; Bautz, W.; Chen, J.; et al. The Virtual Family—Development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys. Med. Biol. 2010, 55, N23. [Google Scholar] [CrossRef]
- Gabriel, C. Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies. Environ. Health 1996, 21. [Google Scholar] [CrossRef] [Green Version]
- Zhadobov, M.; Chahat, N.; Sauleau, R.; Le Quement, C.; Le Drean, Y. Millimeter-wave interactions with the human body: State of knowledge and recent advances. Int. J. Microw. Wirel. Technol. 2011, 3, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Ziskin, M.C.; Alekseev, S.I.; Foster, K.R.; Balzano, Q. Tissue models for RF exposure evaluation at frequencies above 6 GHz. Bioelectromagnetics 2018, 39, 173–189. [Google Scholar] [CrossRef] [PubMed]
Phone Call | Message Writing | Browsing | ||||
---|---|---|---|---|---|---|
d1 (mm) | d2 (mm) | d1 (mm) | d2 (mm) | d1 (mm) | d2 (mm) | |
Duke | 2 | 124 | 157 | 346 | 207 | 642 |
Ella | 2 | 121 | 157 | 317 | 207 | 596 |
Billie | 2 | 110 | 157 | 281 | 207 | 541 |
Thelonious | 2 | 108 | 157 | 241 | 207 | 457 |
Phone Call | Message Writing | Browsing | ||||
---|---|---|---|---|---|---|
Max Local SAR (W/kg) | Sab (W/m2) | Max Local SAR (W/kg) | Sab (W/m2) | Max Local SAR (W/kg) | Sab (W/m2) | |
Duke | 2.82 | 0.13 | 0.17 | 8.30 × 10−3 | 0.02 | 2 × 10−3 |
Ella | 2.60 | 0.05 | 0.37 | 32.10 × 10−3 | 0.06 | 6.10 × 10−3 |
Billie | 12.75 | 0.43 | 0.12 | 11 × 10−3 | 0.02 | 2.20 × 10−3 |
Thelonious | 8.44 | 0.21 | 0.10 | 14.60 × 10−3 | 7.15 × 10−3 | 0.5 × 10−3 |
SAR Depth of Penetration (mm) | SAR at 1 mm (%) | |
---|---|---|
Duke | 1.77 | 32.33 |
Ella | 0.49 | 1.73 |
Billie | 0.56 | 2.81 |
Thelonious | 0.52 | 2.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morelli, M.S.; Gallucci, S.; Siervo, B.; Hartwig, V. Numerical Analysis of Electromagnetic Field Exposure from 5G Mobile Communications at 28 GHZ in Adults and Children Users for Real-World Exposure Scenarios. Int. J. Environ. Res. Public Health 2021, 18, 1073. https://doi.org/10.3390/ijerph18031073
Morelli MS, Gallucci S, Siervo B, Hartwig V. Numerical Analysis of Electromagnetic Field Exposure from 5G Mobile Communications at 28 GHZ in Adults and Children Users for Real-World Exposure Scenarios. International Journal of Environmental Research and Public Health. 2021; 18(3):1073. https://doi.org/10.3390/ijerph18031073
Chicago/Turabian StyleMorelli, Maria Sole, Silvia Gallucci, Beatrice Siervo, and Valentina Hartwig. 2021. "Numerical Analysis of Electromagnetic Field Exposure from 5G Mobile Communications at 28 GHZ in Adults and Children Users for Real-World Exposure Scenarios" International Journal of Environmental Research and Public Health 18, no. 3: 1073. https://doi.org/10.3390/ijerph18031073
APA StyleMorelli, M. S., Gallucci, S., Siervo, B., & Hartwig, V. (2021). Numerical Analysis of Electromagnetic Field Exposure from 5G Mobile Communications at 28 GHZ in Adults and Children Users for Real-World Exposure Scenarios. International Journal of Environmental Research and Public Health, 18(3), 1073. https://doi.org/10.3390/ijerph18031073