Veno-Venous Extracorporeal Membrane Oxygenation in COVID-19—Where Are We Now?
Abstract
:1. Introduction
2. A Few Words About the Procedure
3. What Are the Indications and Contraindications for VV-ECMO?
4. VV-ECMO Efficacy: Glimpse of the Recent Past
5. Is There a Place for VV-ECMO in the Times of the COVID-19 Pandemic?
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Brodie, D.; Slutsky, A.S.; Combes, A. Extracorporeal Life Support for Adults with Respiratory Failure and Related Indications: A Review. JAMA 2019, 322, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Combes, A.; Hajage, D.; Capellier, G.; Demoule, A.; Lavoué, S.; Guervilly, C.; Da Silva, D.; Zafrani, L.; Tirot, P.; Veber, B.; et al. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2018, 378, 1965–1975. [Google Scholar] [CrossRef] [PubMed]
- Peek, G.J.; Clemens, F.; Elbourne, D.; Firmin, R.; Hardy, P.; Hibbert, C.; Killer, H.; Mugford, M.; Thalanany, M.; Tiruvoipati, R.; et al. CESAR: Conventional ventilatory support vs extracorporeal membrane oxygenation for severe adult respiratory failure. BMC Health Serv. Res. 2006, 6, 163. [Google Scholar] [CrossRef] [PubMed]
- Australia and New Zealand Extracorporeal Membrane Oxygenation (ANZ ECMO) Influenza Investigators. Extracorporeal Membrane Oxygenation for 2009 Influenza A(H1N1) Acute Respiratory Distress Syndrome. JAMA 2009, 302, 1888–1895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshahrani, M.S.; Sindi, A.; Alshamsi, F.; Al-Omari, A.; El Tahan, M.; Alahmadi, B.; Zein, A.; Khatani, N.; Al-Hameed, F.; Alamri, S.; et al. Extracorporeal membrane oxygenation for severe Middle East respiratory syndrome coronavirus. Ann. Intensive Care 2018, 8, 3. [Google Scholar] [CrossRef] [PubMed]
- Zapol, W.M.; Snider, M.T.; Hill, J.D.; Fallat, R.J.; Bartlett, R.H.; Edmunds, L.H.; Morris, A.H.; Peirce, E.C.; Thomas, A.N.; Proctor, H.J.; et al. Extracorporeal membrane oxygenation in severe acute respiratory failure. A randomized prospective study. JAMA 1979, 242, 2193–2196. [Google Scholar] [CrossRef]
- Ma, X.; Liang, M.; Ding, M.; Liu, W.; Ma, H.; Zhou, X.; Ren, H. Extracorporeal Membrane Oxygenation (ECMO) in Critically Ill Patients with Coronavirus Disease 2019 (COVID-19) Pneumonia and Acute Respiratory Distress Syndrome (ARDS). Med. Sci. Monit. 2020, 26, 925364. [Google Scholar]
- Ricard, J.D.; Dreyfuss, D.; Saumon, G. Ventilator-induced lung injury. Eur. Respir. J. Suppl. 2003, 42, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.; Pellegrino, V.; Combes, A.; Scheinkestel, C.; Cooper, D.J.; Hodgson, C. Mechanical ventilation during extracorporeal membrane oxygenation. Crit. Care 2014, 18, 203. [Google Scholar] [CrossRef] [Green Version]
- Extracorporeal Life Support Organization. ELSO Guidelines for Cardiopulmonary Extracorporeal Life Support and Patient Specific Supplements to the ELSO General Guidelines; ELSO: An Arbor, MI, USA, 2015. [Google Scholar]
- Tzotzos, S.J.; Fischer, B.; Fischer, H.; Zeitlinger, M. Incidence of ARDS and outcomes in hospitalized patients with COVID-19: A global literature survey. Crit. Care 2020, 24, 516. [Google Scholar] [CrossRef]
- Lang, C.; Jaksch, P.; Hoda, M.A.; Lang, G.; Staudinger, T.; Tschernko, E.; Zapletal, B.; Geleff, S.; Prosch, H.; Gawish, R.; et al. Lung transplantation for COVID-19-associated acute respiratory distress syndrome in a PCR-positive patient. Lancet Respir. Med. 2020, 8, 1057–1060. [Google Scholar] [CrossRef]
- Chow, J.; Alhussaini, A.; Calvillo-Argüelles, O.; Billia, F.; Luk, A. Cardiovascular Collapse in COVID-19 Infection: The Role of Venoarterial Extracorporeal Membrane Oxygenation (VA-ECMO). CJC Open 2020, 2, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Pavlushkov, E.; Berman, M.; Valchanov, K. Cannulation techniques for extracorporeal life support. Ann. Transl. Med. 2017, 5, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Combes, A.; Schmidt, M.; Hodgson, C.L.; Fan, E.; Ferguson, N.D.; Fraser, F.J.; Jaber, S.; Pesenti, A.; Ranieri, M.; Rowan, K.; et al. Extracorporeal life support for adults with acute respiratory distress syndrome. Intensive Care Med. 2020, 46, 2464–2476. [Google Scholar] [CrossRef] [PubMed]
- Maciejewski, D.; Wojnar-Gruszka, K. Wentylacja Mechaniczna—Teoria i Praktyka; Alfa Medica Press: Bielsko-Biała, Poland, 2016; pp. 311–312. (In Polish) [Google Scholar]
- Palmér, O.; Palmér, K.; Hultman, J.; Broman, M. Cannula Design and Recirculation During Venovenous Extracorporeal Membrane Oxygenation. ASAIO J. 2016, 62, 737–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidebotham, D.; Allen, S.J.; McGeorge, A.; Ibbott, N.; Willcox, T. Venovenous Extracorporeal Membrane Oxygenation in Adults: Practical Aspects of Circuits, Cannulae, and Procedures. J. Cardiothorac. Vasc. Anesthesia 2012, 26, 893–909. [Google Scholar] [CrossRef]
- Millar, J.E.; Fanning, J.P.; McDonald, C.I.; Fraser, J.F. The inflammatory response to extracorporeal membrane oxygenation (ECMO): A review of the pathophysiology. Crit. Care 2016, 20, 387. [Google Scholar] [CrossRef] [Green Version]
- Murphy, D.A.; Hockings, L.E.; Andrews, R.K.; Aubron, C.; Gardiner, E.E.; Pellegrino, V.A.; Davis, A.K. Extracorporeal membrane oxygenation-hemostatic complications. Transfus. Med. Rev. 2015, 29, 90–101. [Google Scholar] [CrossRef]
- Netley, J.; Roy, J.; Greenlee, J.; Hart, S.; Todt, M.; Statz, B. Bivalirudin Anticoagulation Dosing Protocol for Extracorporeal Membrane Oxygenation: A Retrospective Review. J. Extra Corpor. Technol. 2018, 50, 161–166. [Google Scholar]
- Chlebowski, M.M.; Baltagi, S.; Carlson, M.; Levy, J.H.; Spinella, P.C. Clinical controversies in anticoagulation monitoring and antithrombin supplementation for ECMO. Crit. Care 2020, 24, 19. [Google Scholar] [CrossRef] [Green Version]
- Olson, S.R.; Murphree, C.R.; Zonies, D.; Meyer, A.D.; Mccarty, O.J.T.; Deloughery, T.G.; Shatzel, J.J. Thrombosis and Bleeding in Extracorporeal Membrane Oxygenation (ECMO) Without Anticoagulation: A Systematic Review. ASAIO J. 2020. [Google Scholar] [CrossRef] [PubMed]
- Morales-Quinteros, L.; Del Sorbo, L.; Artigas, A. Extracorporeal carbon dioxide removal for acute hypercapnic respiratory failure. Ann. Intensive Care. 2019, 9, 79. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, E.; Bartlett, R.H. Relationship between hemoglobin concentration and extracorporeal blood flow as determinants of oxygen delivery during venovenous extracorporeal membrane oxygenation: A mathematical model. ASAIO J. 2014, 60, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Crowell, J.W.; Smith, E.E. Determinant of the optimal hematocrit. J. Appl. Physiol. 1967, 22, 501–504. [Google Scholar] [CrossRef]
- Spinelli, E.; Bartlett, R.H. Anemia and Transfusion in Critical Care: Physiology and Management. J. Intensive Care Med. 2016, 31, 295–306. [Google Scholar] [CrossRef]
- Abrams, D.; Javidfar, J.; Farrand, E.; Mongero, L.B.; Agerstrand, C.L.; Ryan, P.; Zemmel, D.; Galuskin, C.; Morrone, T.M.; Boerem, P.; et al. Early mobilization of patients receiving extracorporeal membrane oxygenation: A retrospective cohort study. Crit. Care 2014, 18, 38. [Google Scholar] [CrossRef] [Green Version]
- Balas, M.C.; Burke, W.J.; Gannon, D.; Cohen, M.Z.; Colburn, L.; Bevil, C.; Franz, D.; Olsen, K.M.; Ely, E.W.; Vasilevskis, E.E. Implementing the awakening and breathing coordination, delirium monitoring/management, and early exercise/mobility bundle into everyday care: Opportunities, challenges, and lessons learned for implementing the ICU Pain, Agitation, and Delirium Guidelines. Crit. Care Med. 2013, 41, 116–127. [Google Scholar] [CrossRef]
- Langer, T.; Santini, A.; Bottino, N.; Crotti, S.; Batchinsky, A.I.; Pesenti, A.; Gattinoni, L. “Awake” extracorporeal membrane oxygenation (ECMO): Pathophysiology, technical considerations, and clinical pioneering. Crit. Care 2016, 20, 150. [Google Scholar] [CrossRef] [Green Version]
- Lango, R.; Szkulmowski, Z.; Maciejewski, D.; Sosnowski, A.; Kusza, K. Updated protocol of treatment in patients requiring extracorporeal membrane oxygenation (ECMO) in the treatment of acute respiratory failure of adults, recommendations and guidelines of the ECMO Venous and Compassionate Therapy team, established by national consultant in the field of anaesthesiology and intensive care in February 2016. Anaesth. Intens. Ther. 2017, 49, 92–104. (In Polish) [Google Scholar]
- Shekar, K.; Badulak, J.; Peek, G.; Boeken, U.; Dalton, H.J.; Arora, L.; Zakhary, B.; Ramanathan, K.; Starr, J.; Akkanti, B.; et al. Extracorporeal Life Support Organization COVID-19 Interim Guidelines. ASAIO J. 2020, 29, 10. [Google Scholar]
- MacLaren, G. When to initiate ECMO with low likelihood of success. Crit. Care 2018, 22, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, J.F.; Matthay, M.A.; Luce, J.M.; Flick, M.R. An Expanded Definition of the Adult Respiratory Distress Syndrome. Am. Rev. Respir. Dis. 1988, 138, 720–723. [Google Scholar] [CrossRef] [PubMed]
- Na, S.J.; Chung, C.R.; Choi, H.J.; Cho, Y.H.; Sung, K.; Yang, J.H.; Young, G.; Jeon, K. The effect of multidisciplinary extracorporeal membrane oxygenation team on clinical outcomes in patients with severe acute respiratory failure. Ann. Intens. Care. 2018, 8, 31. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, K.; Antognini, D.; Combes, A.; Paden, M.; Zackary, B.; Ogino, M.; MacLaren, G.; Brodie, D.; Shekar, K. Planning and provision of ECMO services for severe ARDS during the COVID-19 pandemic and other outbreaks of emerging infectious diseases. Lancet Respir. Med. 2020, 8, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Rozencwajg, S.; Pilcher, D.; Combes, A.; Schmidt, M. Outcomes and survival prediction models for severe adult acute respiratory distress syndrome treated with extracorporeal membrane oxygenation. Crit. Care 2016, 20, 392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, M.; Zogheib, E.; Rozé, H.; Repesse, X.; Lebreton, G.; Luyt, C.E.; Trouillet, J.L.; Bréchot, N.; Nieszkowska, A.; Dupont, H.; et al. The PRESERVE mortality risk score and analysis of long-term outcomes after extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. Intensive Care Med. 2013, 39, 1704–1713. [Google Scholar] [CrossRef]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, B.; Zhang, X.; Yi, C. Clinical characteristics of 9 cancer patients with SARS-CoV-2 infection. Chin. Med. 2020, 15, 47. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, H.; Mu, S.; Wei, W.; Jin, C.; Tong, C.; Song, Z.; Zha, Y.; Xue, Y.; Gu, G. Lactate dehydrogenase, an independent risk factor of severe COVID-19 patients: A retrospective and observational study. Aging 2020, 12, 11245–11258. [Google Scholar] [CrossRef]
- Gattinoni, L.; Chiumello, D.; Caironi, P.; Busana, M.; Romitti, F.; Brazzi, L.; Camporota, L. COVID-19 pneumonia: Different respiratory treatments for different phenotypes? Intensive Care Med. 2020, 46, 1099–1102. [Google Scholar] [CrossRef]
- Hussain, A.; Mahawar, K.; Xia, Z.; Yang, W.; El-Hasani, S. RETRACTED: Obesity and mortality of COVID-19. Meta-analysis. Obes. Res. Clin. Pr. 2020, 14, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Goligher, E.C.; Tomlinson, G.; Hajage, D.; Wijeysundera, D.N.; Fan, E.; Jüni, P.; Brodie, D.; Slutsky, A.S.; Combes, A. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome and Posterior Probability of Mortality Benefit in a Post Hoc Bayesian Analysis of a Randomized Clinical Trial. JAMA 2018, 320, 2251–2259. [Google Scholar] [CrossRef] [PubMed]
- Combes, A.; Peek, G.J.; Hajage, D.; Hardy, P.; Abrams, D.; Schmidt, A.; Dechartres, A.; Elbourne, D. ECMO for severe ARDS: Systematic review and individual patient data meta-analysis. Intensive Care Med. 2020, 46, 2048–2057. [Google Scholar] [CrossRef] [PubMed]
- Wiedemann, D.; Bernardi, M.H.; Distelmaier, K.; Goliasch, G.; Hengstenberg, C.; Hermann, A.; Holzer, M.; Hoetzenecker, K.; Klepetko, W.; Lang, G.; et al. Recommendations for extracorporeal membrane oxygenation (ECMO) in COVID-19 patients. Wien Klin Wochenschr. 2020, 132, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Dong, Y.-Q.; Yin, J.; He, G. Critically ill patients with COVID-19 with ECMO and artificial liver plasma exchange: A retrospective study. Medicine 2020, 99, 21012. [Google Scholar] [CrossRef] [PubMed]
- Osho, A.A.; Moonsamy, P.; Hibbert, K.A.; Shelton, K.T.; Trahanas, J.M.; Attia, R.Q.; Bloom, J.P.; Onwugbufor, M.T.; D’Alessandro, D.A.; Villavicencio, M.A.; et al. Veno-venous Extracorporeal Membrane Oxygenation for Respiratory Failure in COVID-19 Patients: Early Experience from a Major Academic Medical Center in North America. Ann. Surg. 2020, 272, 75–78. [Google Scholar] [CrossRef]
- Beyls, C.; Huette, P.; Abou-Arab, O.; Berna, P.; Mahjoub, Y. Extracorporeal membrane oxygenation for COVID-19-associated severe acute respiratory distress syndrome and risk of thrombosis. Br. J. Anaesth. 2020, 125, e260–e262. [Google Scholar] [CrossRef]
- Schmidt, M.; Hajage, D.; Lebreton, G.; Monsel, A.; Voiriot, G.; Levy, D.; Baron, E.; Beurton, A.; Chommeloux, J.; Meng, P.; et al. Groupe de Recherche Clinique en REanimation et Soins intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université; Paris-Sorbonne ECMO-COVID investigators. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome associated with COVID-19: A retrospective cohort study. Lancet Respir. Med. 2020, 8, 1121–1131. [Google Scholar]
- Falcoz, P.E.; Monnier, A.; Puyraveau, M.; Perrier, S.; Ludes, P.O.; Olland, A.; Mertes, P.M.; Schneider, F.; Helms, J.; Meziani, F. Extracorporeal Membrane Oxygenation for Critically Ill Patients with COVID-19-related Acute Respiratory Distress Syndrome: Worth the Effort? Am. J. Respir. Crit. Care Med. 2020, 202, 460–463. [Google Scholar] [CrossRef]
- Sultan, I.; Habertheuer, A.; Usman, A.A.; Kilic, A.; Gnall, E.; Friscia, M.E.; Zubkus, D.; Hirose, H.; Sanchez, P.; Okusanya, O.; et al. The role of extracorporeal life support for patients with COVID-19: Preliminary results from a statewide experience. J. Card. Surg. 2020, 35, 1410–1413. [Google Scholar] [CrossRef]
- Mustafa, A.K.; Alexander, P.J.; Joshi, D.J.; Tabachnick, D.R.; Cross, C.A.; Pappas, P.S.; Tatooles, A.J. Extracorporeal Membrane Oxygenation for Patients With COVID-19 in Severe Respiratory Failure. JAMA Surg. 2020, 155, 990–992. [Google Scholar] [CrossRef] [PubMed]
- Barbaro, R.P.; MacLaren, G.; Boonstra, P.S.; Iwashyna, T.J.; Slutsky, A.S.; Fan, E.; Bartlett, R.H.; Tonna, J.E.; Hyslop, R.; Fanning, J.J.; et al. Extracorporeal Life Support Organization. Extracorporeal membrane oxygenation support in COVID-19: An international cohort study of the Extracorporeal Life Support Organization registry. Lancet 2020, 396, 1071–1078. [Google Scholar] [CrossRef]
- Schmidt, M.; Pham, T.; Arcadipane, A.; Agerstrand, C.; Ohshimo, S.; Pellegrino, V.; Vuylsteke, A.; Guervilly, C.; McGuinness, S.; Pierard, S.; et al. Mechanical Ventilation Management during Extracorporeal Membrane Oxygenation for Acute Respiratory Distress Syndrome. An International Multicenter Prospective Cohort. Am. J. Respir. Crit. Care Med. 2019, 200, 1002–1012. [Google Scholar] [CrossRef] [PubMed]
- Chiumello, D.; Busana, M.; Coppola, S.; Romitti, F.; Formenti, P.; Bonifazi, M.; Pozzi, T.; Palumbo, M.M.; Cressoni, M.; Herrmann, P.; et al. Physiological and quantitative CT-scan characterization of COVID-19 and typical ARDS: A matched cohort study. Intensive Care Med. 2020, 46, 2187–2196. [Google Scholar] [CrossRef]
- Desborough, M.J.R.; Doyle, A.J.; Griffiths, A.; Retter, A.; Breen, K.A.; Hunt, B.J. Image-proven thromboembolism in patients with severe COVID-19 in a tertiary critical care unit in the United Kingdom. Thromb. Res. 2020, 193, 1–4. [Google Scholar] [CrossRef]
- Ciceri, F.; Beretta, L.; Scandroglio, A.M.; Colombo, S.; Landoni, G.; Ruggeri, A.; Peccatori, J.; D’Angelo, A.; De Cobelli, F.; Rovere-Querini, P.; et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): An atypical acute respiratory distress syndrome working hypothesis. Crit. Care Resusc. 2020, 22, 95–97. [Google Scholar]
- Fan, E.; Beitler, J.R.; Brochard, L.; Calfee, C.S.; Ferguson, N.D.; Slutsky, A.S.; Brodie, D. COVID-19-associated acute respiratory distress syndrome: Is a different approach to management warranted? Lancet Respir. Med. 2020, 8, 816–821. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, M.; Zhang, S.; Xia, P.; Cao, W.; Jiang, W.; Chen, H.; Ding, X.; Zhao, H.; Zhang, H.; et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N. Engl. J. Med. 2020, 382, 38. [Google Scholar] [CrossRef]
- Christensen, B.; Favaloro, E.J.; Lippi, G.; Van Cott, E.M. Hematology Laboratory Abnormalities in Patients with Coronavirus Disease 2019 (COVID-19). Semin. Thromb. Hemost. 2020, 46, 845–849. [Google Scholar] [CrossRef]
- Robba, C.; Battaglini, D.; Ball, L.; Patroniti, N.; Loconte, M.; Brunetti, I.; Vena, A.; Giacobbe, D.; Bassetti, N.; Rocco, P.; et al. Distinct phenotypes require distinct respiratory management strategies in severe COVID-19. Respir. Physiol. Neurobiol. 2020, 279, 103455. [Google Scholar] [CrossRef]
- Lumb, A.B.; Nunn, J.F. Nunn’s Applied Respiratory Physiology; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Morales-Quinteros, L.; Camprubí-Rimblas, M.; Bringué, J.; Bos, L.D.; Schultz, M.J.; Artigas, A. The role of hypercapnia in acute respiratory failure. Intensive Care Med. Exp. 2019, 7, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grasselli, G.; Tonetti, T.; Protti, A.; Langer, T.; Girardis, M.; Bellani, G.; Laffey, J.; Carrafiello, G.; Carsana, L.; Rizzuto, C.; et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: A multicentre prospective observational study. Lancet Respir. Med. 2020, 8, 1201–1208. [Google Scholar] [CrossRef]
- Paranjpe, I.; Fuster, V.; Lala, A.; Russak, A.J.; Glicksberg, B.S.; Levin, M.A.; Charney, A.W.; Narula, J.; Fayad, Z.A.; Bagiella, E.; et al. Association of Treatment Dose Anticoagulation with In-Hospital Survival Among Hospitalized Patients With COVID-19. J. Am. Coll. Cardiol. 2020, 76, 122–124. [Google Scholar] [CrossRef] [PubMed]
- Helms, J.; Tacquard, C.; Severac, F.; Leonard-Lorant, I.; Ohana, M.; Delabranche, X.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Fagot Gandet, F.; et al. CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis). High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensive Care Med. 2020, 46, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Rieder, M.; Wengenmayer, T.; Staudacher, D.; Duerschmied, D.; Supady, A. Cytokine adsorption in patients with severe COVID-19 pneumonia requiring extracorporeal membrane oxygenation. Crit. Care 2020, 24, 435. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of Immune Response in Patients with Coronavirus 2019 (COVID-19) in Wuhan. China Clin. Infect. Dis. 2020, 71, 762–768. [Google Scholar] [CrossRef] [PubMed]
Exclusion or removal of potentially reversible causes of deterioration in lungs function: pneumothorax, significant pleural effusion, bronchial obstruction with respiratory secretion or clot, congestion in pulmonary vasculature, increased extravascular lung water |
Protective mechanical ventilation: VT ≤ 6 mL kg−1 of ideal body weight according to the ARDSNet table, Pplat < 30 cmH2O, permissive hypercapnia, driving pressure < 14 cmH2O |
Adequate sedation (RASS -4/-5). If there is poor tolerance of ventilation with low tidal volumes and difficulties in patient-ventilator synchronization, in severe cases of ARDS (PaO2/FiO2 < 120 mmHg), implementation of muscle relaxants for a maximum of 48 h should be considered |
PEEP titration (5-10-15-20 cmH2O) to optimal lung compliance considering hemodynamic effects and optimal PaO2/FiO2 values, preferably by derecruitment technique |
Frequent bronchial tree toilet (closed suction system), daily bronchoscopy + subsequent recruitment maneuvers |
Optimization of fluid therapy—negative fluid balance (forced diuresis, CRRT), preferably according to EVLW (extra-vascular lung water) < 10 mL kg−1 |
Optimization of the circulatory system and appropriate vasopressor support |
If prone positioning results in significant improvement of oxygenation, it should be implemented at least twice a day for 6–8 h + recruitment maneuvers in the prone position and determination of optimal PEEP |
To reduce the risk of pneumonia associated with mechanical ventilation: rational antibiotic therapy, avoiding reintubation, gastric probe inserted through the mouth, elevation of the head of the bed to 30°–45°, suction from above the cuff of the endotracheal tube, monitoring depth of sedation, early enteral nutrition, glycemia control, peptic ulcer prophylaxis (sucralfate), venous thromboembolism prophylaxis |
Indications | Contraindications |
---|---|
Potentially reversible acute respiratory failure | Irreversible cardiac or pulmonary disease |
Severe ARDS refractory to standard treatment (Figure 2) | Severe brain injury |
Pulmonary thromboembolism with preserved cardiac function | Polytrauma with a high risk of bleeding |
Trauma (pulmonary contusion) | Severe pulmonary hypertension |
Murray score ≥ 3 pts (Table 3) | Uncontrolled bleeding |
Failed lung transplant graft | Mechanical ventilation for >14 days before initiation of ECMO or ventilation at high settings (FiO2 > 0.9, Pplat > 30) for ≥7 days |
Parameter/Score | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
PaO2/FiO2 (mmHg) | ≥300 | 225–299 | 175–224 | 100–174 | <100 |
Chest X-Ray (quadrants infiltrated) | normal | 1 | 2 | 3 | 4 |
PEEP (cmH2O) | ≤5 | 6–8 | 9–11 | 12–14 | ≥15 |
Compliance (ml/cmH2O) | ≥80 | 60–79 | 40–59 | 20–39 | ≤19 |
Name | Mode | AUROC | 95% CI |
---|---|---|---|
RESP score | VV. VA | 0.74 | 0.72–0.76 |
ECMOnet score | VV | 0.86 | 0.74–0.96 |
Score by Roch et al. | VV | 0.8 | 0.71–0.89 |
PRESERVE score | VV | 0.89 | 0.83–0.94 |
Score by Enger et al. | VV | 0.75 | NA |
VV ECMO mortality score | VV | 0.76 | 0.67–0.85 |
Study | Type of the Study | Population | Time of VV-ECMO Implementation | Effect |
---|---|---|---|---|
Liu et al. [47] | Retrospective observational | 6 patients | 12 days (median time) after MV initiation | No patient who received ECMO died (at day 28 from admission) |
Osho et al. [48] | Prospective observational | 6 patients | 5.5 days (median time) after MV initiation | 1 patient died during ECMO |
Beyls et al. [49] | Retrospective observational | 12 patients | 4 days (median time) after MV initiation | 2 patients died during ECMO (however, at the time of analysis, 8 patients were still on ECMO) |
Schmidt et al. [50] | Retrospective observational | 83 patients | 4 days (median time) after MV initiation | 30 patients (36%) died. Importantly non-survivors received ECMO later than survivors (6 days vs. 4 days) |
Falcoz et al. [51] | Prospective observational | 16 patients | 4 days (median time) after MV initiation | 6 patients died (mortality at day 60 was 38%) |
Sultan et al. [52] | Retrospective observational | 10 patients | 3 days (median time) after MV initiation | 1 patient died (mortality was assessed on day 9) |
Mustafa et al. [53] | Retrospective observational | 40 patients | 4 days (mean time) after MV initiation | 6 patients died (15%). 29 patients (73%) have been discharged from the hospital. |
Barbaro et al. [54] | Retrospective, observational | 1035 patients | 4 days (median time) after endotracheal intubation | 38% mortality at day 90 |
D-Dimer | Elevated |
---|---|
Fibrinogen | Elevated |
FDPs | Elevated |
Platelet count | Normal or mildly decreased |
Plasma viscosity | Increased |
Factor VIII activity | Increased |
Von Willebrand factor | Increased |
Protein C i S | Modestly decreased |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Putowski, Z.; Szczepańska, A.; Czok, M.; Krzych, Ł.J. Veno-Venous Extracorporeal Membrane Oxygenation in COVID-19—Where Are We Now? Int. J. Environ. Res. Public Health 2021, 18, 1173. https://doi.org/10.3390/ijerph18031173
Putowski Z, Szczepańska A, Czok M, Krzych ŁJ. Veno-Venous Extracorporeal Membrane Oxygenation in COVID-19—Where Are We Now? International Journal of Environmental Research and Public Health. 2021; 18(3):1173. https://doi.org/10.3390/ijerph18031173
Chicago/Turabian StylePutowski, Zbigniew, Anna Szczepańska, Marcelina Czok, and Łukasz J. Krzych. 2021. "Veno-Venous Extracorporeal Membrane Oxygenation in COVID-19—Where Are We Now?" International Journal of Environmental Research and Public Health 18, no. 3: 1173. https://doi.org/10.3390/ijerph18031173
APA StylePutowski, Z., Szczepańska, A., Czok, M., & Krzych, Ł. J. (2021). Veno-Venous Extracorporeal Membrane Oxygenation in COVID-19—Where Are We Now? International Journal of Environmental Research and Public Health, 18(3), 1173. https://doi.org/10.3390/ijerph18031173