Assessing Comfort in Urban Public Spaces: A Structural Equation Model Involving Environmental Attitude and Perception
Abstract
:1. Introduction
2. Conceptual Framework
3. Methodology
3.1. Structural Equation Modeling (SEM)
3.2. Data Collection
3.2.1. Study Sites
3.2.2. Field Measurement and Survey
4. Result and Discussion
4.1. Descriptive Statistics
4.2. Results of SEM
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Att1 | Answer to “Do you agree that public green space is the most important infrastructure?” |
Att2 | Answer to “Do you agree that public green space is conductive to spirit restoration and relaxation?” |
Att3 | Answer to “Do you agree that open space is necessary in both residential neighborhoods and business districts?” |
Att4 | Answer to “Do you agree that you prefer outdoor activities to indoor activities?” |
Att5 | Answer to “Do you agree that people should spend more time for outdoor activities?” |
Att6 | Answer to “Do you agree that recent weather is conductive to outdoor activities?” |
Att7 | Answer to “Do you agree that more investments are needed to manage and maintain the public spaces?" |
GS | Perception on green space in study area |
Fa | Perception on facilities in study area |
BD | Perception on barrier-free design in study area |
HC | Perception on hygienic condition of study area |
OP | Perception on openness of study area |
NS | Sensation of noise in study area |
AQ | Sensation of air quality in study area |
TS | Thermal sensation in study area |
HS | Sensation of humidity in study area |
WS | Sensation of wind in study area |
RS | Sensation of radiation in study area |
SS | Sensation of sunlight in study area |
Age | Age of respondent |
Gd | Gender of respondent |
Edu | Education level of respondent |
Inc | Monthly income of respondent |
Fr | Frequency of visiting the study area |
PET | Physiological equivalent temperature |
References
- Lenzholzer, S.; Carsjens, G.J.; Brown, R.D.; Tavares, S.; Vanos, J.; Kim, Y.J.; Lee, K. Awareness of urban climate adaptation strategies—An international overview. Urban Clim. 2020, 34, 100705. [Google Scholar] [CrossRef]
- Fong, C.S.; Aghamohammadi, N.; Ramakreshnan, L.; Sulaiman, N.M.; Mohammadi, P. Holistic recommendations for future outdoor thermal comfort assessment in tropical Southeast Asia: A critical appraisal. Sustain. Cities Soc. 2019, 46, 101428. [Google Scholar] [CrossRef]
- World Urbanization Prospects, The 2018 Revision; The United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2019; p. 126. ISBN 978-92-1-148319-2.
- Nouri, A.S.; Costa, J.P.; Santamouris, M.; Matzarakis, A. Approaches to outdoor thermal comfort thresholds through public space design: A review. Atmosphere 2018, 9, 108. [Google Scholar] [CrossRef] [Green Version]
- Lai, D.; Liu, W.; Gan, T.; Liu, K.; Chen, Q. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Sci. Total Environ. 2019, 661, 337–353. [Google Scholar] [CrossRef] [PubMed]
- Lenzholzer, S.; van der Wulp, N.Y. Thermal experience and perception of the built environment in Dutch urban squares. J. Urban Des. 2010, 15, 375–401. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Steemers, K. Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy Build. 2003, 35, 95–101. [Google Scholar] [CrossRef]
- Johansson, E.; Emmanuel, R. The influence of urban design on outdoor thermal comfort in the hot, humid city of Colombo, Sri Lanka. Int. J. Biometeorol. 2006, 51, 119–133. [Google Scholar] [CrossRef]
- Chatzipoulka, C.; Steemers, K.; Nikolopoulou, M. Density and coverage values as indicators of thermal diversity in open spaces: Comparative analysis of London and Paris based on sun and wind shadow maps. Cities 2020, 100, 102645. [Google Scholar] [CrossRef]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Ng, E. Outdoor thermal comfort and outdoor activities: A review of research in the past decade. Cities 2012, 29, 118–125. [Google Scholar] [CrossRef]
- Blocken, B.; Carmeliet, J. Pedestrian wind environment around buildings: Literature review and practical examples. J. Therm. Envel. Build. Sci. 2004, 28, 107–159. [Google Scholar] [CrossRef]
- Weijs-Perrée, M.; Dane, G.; van den Berg, P. Analyzing the relationships between citizens’ emotions and their momentary satisfaction in urban public spaces. Sustainability 2020, 12, 7921. [Google Scholar] [CrossRef]
- Weijs-Perrée, M.; Dane, G.; van den Berg, P.; van Dorst, M. A multi-level path analysis of the relationships between the momentary experience characteristics, satisfaction with urban public spaces, and momentary- and long-term subjective wellbeing. Int. J. Environ. Res. Public Health 2019, 16, 3621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrett, J.K.; White, M.P.; Huang, J.; Ng, S.; Hui, Z.; Leung, C.; Tse, L.A.; Fung, F.; Elliott, L.R.; Depledge, M.H.; et al. Urban blue space and health and wellbeing in Hong Kong: Results from a survey of older adults. Health Place 2019, 55, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Spagnolo, J.; de Dear, R. A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Build. Environ. 2003, 38, 721–738. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Yan, H.; Lam, J.C. Thermal comfort and building energy consumption implications—A review. Appl. Energy 2014, 115, 164–173. [Google Scholar] [CrossRef]
- Li, J.; Pan, Q.; Peng, Y.; Feng, T.; Liu, S.; Cai, X.; Zhong, C.; Yin, Y.; Lai, W. Perceived quality of urban wetland parks: A second-order factor structure equation modeling. Sustainability 2020, 12, 7204. [Google Scholar] [CrossRef]
- Coccolo, S.; Kämpf, J.; Scartezzini, J.L.; Pearlmutter, D. Outdoor human comfort and thermal stress: A comprehensive review on models and standards. Urban Clim. 2016, 18, 33–57. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, A. Study on importance, procedure, and scope of outdoor thermal comfort—A review. Sustain. Cities Soc. 2020, 61, 102297. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Lykoudis, S. Thermal comfort in outdoor urban spaces: Analysis across different European countries. Build. Environ. 2006, 41, 1455–1470. [Google Scholar] [CrossRef] [Green Version]
- Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Jendritzky, G.; Maarouf, A.; Staiger, H. Looking for a universal thermal climate index UTCI for outdoor applications. In Proceedings of the Windsor-Conference Thermal Standarders, Windsor, UK, 5–8 April 2001; pp. 353–367. [Google Scholar]
- Bröde, P.; Krüger, E.; Rossi, F.; Fiala, D. Predicting urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI-a case study in Southern Brazil. Int. J. Biometeorol. 2012, 56, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Feng, T.; Timmermans, H. Expanded comfort assessment in outdoor urban public spaces using Box-Cox transformation. Landsc. Urban Plan. 2019, 190, 103594. [Google Scholar] [CrossRef]
- Tuomaala, P.; Holopainen, R.; Piira, K.; Airaksinen, M. Impact of individual characteristics-such as age, gender, BMI, and fitness-on human thermal sensation. In Proceedings of the BS2013 13th Conference International Building Performance Simulation Association, Chambéry, France, 26–28 August 2013; pp. 2305–2311. [Google Scholar]
- Lenzholzer, S.; de Vries, S. Exploring outdoor thermal perception—a revised model. Int. J. Biometeorol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Krüger, E. Impact of site-specific morphology on outdoor thermal perception: A case-study in a subtropical location. Urban Clim. 2017, 21, 123–135. [Google Scholar] [CrossRef]
- ASHRAE. ANSI/ASHRAE Standard 55-2017: Thermal Environmental Conditions for Human Occupancy; ASHRAE Inc.: Atlanta, GA, USA, 2017; Volume 2017, p. 66. [Google Scholar]
- de Dear, R.; Brager, G. Developing an adaptive model of thermal comfort and preference. ASHRAE Trans. 1998, 104, 1–18. [Google Scholar]
- Elnabawi, M.H.; Hamza, N. Behavioural Perspectives of Outdoor Thermal Comfort in Urban Areas: A Critical Review. Atmosphere 2019, 11, 51. [Google Scholar] [CrossRef] [Green Version]
- Nicol, F.; Humphreys, M. Adaptive thermal comfort and sustainable thermal standards for buildings. Energy Build. 2002, 34, 563–572. [Google Scholar] [CrossRef]
- Knez, I.; Thorsson, S.; Eliasson, I.; Lindberg, F. Psychological mechanisms in outdoor place and weather assessment: Towards a conceptual model. Int. J. Biometeorol. 2009, 53, 101–111. [Google Scholar] [CrossRef]
- Lenzholzer, S. Engrained experience-a comparison of microclimate perception schemata and microclimate measurements in Dutch urban squares. Int. J. Biometeorol. 2010, 54, 141–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Y.; Feng, T.; Timmermans, H. A path analysis of outdoor comfort in urban public spaces. Build. Environ. 2019, 148, 459–467. [Google Scholar] [CrossRef]
- Lenzholzer, S.; Koh, J. Immersed in microclimatic space: Microclimate experience and perception of spatial configurations in Dutch squares. Landsc. Urban Plan. 2010, 95, 1–15. [Google Scholar] [CrossRef]
- Saarloos, D.; Kim, J.E.; Timmermans, H. The built environment and health: Introducing individual space-time behavior. Int. J. Environ. Res. Public Health 2009, 6, 1724–1743. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.P. Thermal perception, adaptation and attendance in a public square in hot and humid regions. Build. Environ. 2009, 44, 2017–2026. [Google Scholar] [CrossRef]
- Tung, C.H.; Chen, C.P.; Tsai, K.T.; Kántor, N.; Hwang, R.L.; Matzarakis, A.; Lin, T.P. Outdoor thermal comfort characteristics in the hot and humid region from a gender perspective. Int. J. Biometeorol. 2014, 58, 1927–1939. [Google Scholar] [CrossRef]
- Lam, C.K.C.; Loughnan, M.; Tapper, N. Visitors’ perception of thermal comfort during extreme heat events at the Royal Botanic Garden Melbourne. Int. J. Biometeorol. 2018, 62, 97–112. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; Treiani, N.; Plos, R.; de Lieto Vollaro, A. On the outdoor thermal perception and comfort of a Mediterranean subject across other Koppen-Geiger’s climate zones. Environ. Res. 2018, 167, 115–128. [Google Scholar] [CrossRef]
- Vasilikou, C.; Nikolopoulou, M. Outdoor thermal comfort for pedestrians in movement: Thermal walks in complex urban morphology. Int. J. Biometeorol. 2019, 64, 277–291. [Google Scholar] [CrossRef] [Green Version]
- Krüger, E.; Minella, F.O.; Rasia, F. Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil. Build. Environ. 2011, 46, 621–634. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; Vollaro, A.D.L.; Vollaro, R.D.L. How high albedo and traditional buildings’ materials and vegetation affect the quality of urban microclimate. A case study. Energy Build. 2015, 99, 32–49. [Google Scholar] [CrossRef]
- Knez, I.; Thorsson, S. Thermal, emotional and perceptual evaluations of a park: Cross-cultural and environmental attitude comparisons. Build. Environ. 2008, 43, 1483–1490. [Google Scholar] [CrossRef]
- Bollen, K.A.; Noble, M.D. Structural equation models and the quantification of behavior. Proc. Natl. Acad. Sci. USA 2011, 108, 15639–15646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bollen, K.A. Structural Equations with Latent Variables; SE-xiv; Wiley: New York, NY, USA, 1989; 514p, ISBN1 0471011711. ISBN2 9780471011712. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Zeitschrift 2006, 15, 259–263. [Google Scholar] [CrossRef]
- ISO 7726 Ergonomics of the Thermal Environments—Instruments for Measuring Physical Quantities; International Organization of Standardizaion: Geneva, Switzerland, 1998; p. 51.
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. Int. J. Biometeorol. 2010, 54, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments—Application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef]
- WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Lai, D.; Chen, C.; Liu, W.; Shi, Y.; Chen, C. An ordered probability model for predicting outdoor thermal comfort. Energy Build. 2018, 168, 261–271. [Google Scholar] [CrossRef]
Variable | Sensor Model | Range | Accuracy |
---|---|---|---|
Ta | S-THB-M002 | −40–75 °C | ±0.2 K |
Tg | SPA 150 | −50–250 °C | ±0.3 K |
RH | S-THB-M002 | 0–100% | ±3% |
v | S-WSET-A | 0–45 m/s | ±1.1 m/s |
Variable | Mean | Median | Minimum | Maximum | SD |
---|---|---|---|---|---|
Ta (°C) | 25.8 | 25.6 | 17.6 | 35.4 | 3.7 |
RH (%) | 39.4 | 36.0 | 22.4 | 67.4 | 11.4 |
v (m/s) | 0.56 | 0.53 | 0.16 | 1.67 | 0.28 |
Tg (°C) | 29.3 | 29.3 | 16.9 | 41.5 | 6.4 |
Tmrt (°C) | 35.0 | 30.0 | 16.2 | 62.1 | 13.2 |
PET (°C) | 26.3 | 26.6 | 16.3 | 36.1 | 4.8 |
Variable | Class Condition | Percentage |
---|---|---|
Gender | Male | 41.9% |
Female | 58.1% | |
Age | <20 | 42.2% |
20–39 | 49.5% | |
40–59 | 6.5% | |
≥60 | 1.9% | |
BMI | <18.5 | 20.2% |
18.5–24 | 64.5% | |
≥24 | 15.3% | |
Civil status | Married | 21.2% |
Unmarried | 78.8% | |
Education | High school or below | 14.8% |
Graduate degree | 79.8% | |
Postgraduate degree | 5.4% | |
Employment | Employed | 42.2% |
Unemployed and others | 57.8% | |
Monthly income | <5000 CNY | 66.7% |
5000–10,000 CNY | 24.2% | |
≥10,000 CNY | 9.1% |
Variable | Class Condition | Percentage |
---|---|---|
Purpose | Taking a walk | 40.6% |
Social activity | 9.7% | |
Rest | 8.3% | |
Waiting for commute | 31.7% | |
Physical exercise | 1.9% | |
Others | 7.8% | |
Transportation mode | Walking | 18.8% |
Bike | 5.1% | |
Bus and metro | 55.4% | |
Taxi or online hailing car | 9.4% | |
Private car | 9.1% | |
Others | 2.2% | |
Total outdoor duration | <30 min | 6.2% |
30–60 min | 24.5% | |
60–90 min | 23.7% | |
90–120 min | 18.0% | |
≥120 min | 27.7% | |
Duration in study area | <15 min | 17.5% |
15–30 min | 25.8% | |
30–45 min | 19.4% | |
45–60 min | 12.4% | |
≥60 min | 25.0% | |
Frequency of visiting | First time | 19.9% |
Scarcely | 30.6% | |
Occasionally | 35.5% | |
Sometimes | 10.5% | |
Often | 3.5% |
Hypothesis | Related Variables | Estimate |
---|---|---|
H1a | Environmetal attitude and Att1 | Invalid |
H1b | Environmetal attitude and Att2 | Valid |
H1c | Environmetal attitude and Att3 | Valid |
H1d | Environmetal attitude and Att4 | Invalid |
H1e | Environmetal attitude and Att5 | Invalid |
H1f | Environmetal attitude and Att6 | Valid |
H1g | Environmetal attitude and Att7 | Valid |
H2a | Environmental perception and GS | Valid |
H2b | Environmental perception and Fa | Valid |
H2c | Environmental perception and BD | Invalid |
H2d | Environmental perception and HC | Valid |
H2e | Environmental perception and OP | Invalid |
H2f | Environmental perception and NS | Valid |
H2g | Environmental perception and AQ | Valid |
H3a | Comfort assessment and TS | Valid |
H3b | Comfort assessment and HS | Invalid |
H3c | Comfort assessment and WS | Invalid |
H3d | Comfort assessment and RS | Valid |
H3e | Comfort assessment and SS | Valid |
H4 | Age and Environmental attitude | Invalid |
H5 | Gd and Environmental attitude | Invalid |
H6 | Edu and Environmental attitude | Invalid |
H7 | Inc and Environmental attitude | Valid |
H8 | Age and Environmental perception | Valid |
H9 | Gd and Environmental perception | Invalid |
H10 | Edu and Environmental perception | Invalid |
H11 | Inc and Environmental perception | Invalid |
H12 | Fr and Environmental perception | Valid |
H13 | Age and Comfort assessment | Invalid |
H14 | Gd and Comfort assessment | Valid |
H15 | Edu and Comfort assessment | Valid |
H16 | Inc and Comfort assessment | Valid |
H17 | Fr and Comfort assessment | Invalid |
H18 | PET and Comfort assessment | Valid |
H19 | Environmental attitude and Environmental perception | Valid |
H20 | Environmental attitude and Comfort assessment | Invalid |
H21 | Environmental perception and Comfort assessment | Valid |
Criterion | CFI | TLI | RMSEA |
---|---|---|---|
Value | 0.947 | 0.938 | 0.045 |
Measurement Model | Variable | λ | S.E. | p-Value | |
Environmental perception | → | GS | 0.73 *** | 0.029 | 0.000 |
→ | Fa | 0.57 *** | 0.037 | 0.000 | |
→ | HC | 0.72 *** | 0.034 | 0.000 | |
→ | NS | −0.57 *** | 0.036 | 0.000 | |
→ | AQ | 0.79 *** | 0.030 | 0.000 | |
Comfort assessment | → | TS | 0.63 *** | 0.038 | 0.000 |
→ | RS | 0.74 *** | 0.034 | 0.000 | |
→ | SS | 0.78 *** | 0.033 | 0.000 | |
Attitude towards urban public spaces | → | Att2 | 0.73 *** | 0.024 | 0.000 |
→ | Att3 | 0.69 *** | 0.027 | 0.000 | |
→ | Att6 | 0.69 *** | 0.028 | 0.000 | |
→ | Att7 | 0.73 *** | 0.024 | 0.000 | |
Structure Model | β | S.E. | p-Value | ||
Environmental perception | ← | EA | 0.12 ** | 0.053 | 0.025 |
← | Age | 0.13 *** | 0.051 | 0.009 | |
← | Fr | −0.14 ** | 0.059 | 0.019 | |
Attitude towards urban public spaces | ← | Inc | 0.13 * | 0.068 | 0.053 |
Comfort assessment | ← | EP | 0.14 *** | 0.047 | 0.003 |
← | Sex | −0.12 ** | 0.056 | 0.028 | |
← | Edu | 0.12 ** | 0.054 | 0.033 | |
← | Inc | −0.17 ** | 0.078 | 0.033 | |
← | PET | 0.60 *** | 0.041 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Peng, Z.; Feng, T.; Zhong, C.; Wang, W. Assessing Comfort in Urban Public Spaces: A Structural Equation Model Involving Environmental Attitude and Perception. Int. J. Environ. Res. Public Health 2021, 18, 1287. https://doi.org/10.3390/ijerph18031287
Peng Y, Peng Z, Feng T, Zhong C, Wang W. Assessing Comfort in Urban Public Spaces: A Structural Equation Model Involving Environmental Attitude and Perception. International Journal of Environmental Research and Public Health. 2021; 18(3):1287. https://doi.org/10.3390/ijerph18031287
Chicago/Turabian StylePeng, You, Zhikai Peng, Tao Feng, Chixing Zhong, and Wei Wang. 2021. "Assessing Comfort in Urban Public Spaces: A Structural Equation Model Involving Environmental Attitude and Perception" International Journal of Environmental Research and Public Health 18, no. 3: 1287. https://doi.org/10.3390/ijerph18031287
APA StylePeng, Y., Peng, Z., Feng, T., Zhong, C., & Wang, W. (2021). Assessing Comfort in Urban Public Spaces: A Structural Equation Model Involving Environmental Attitude and Perception. International Journal of Environmental Research and Public Health, 18(3), 1287. https://doi.org/10.3390/ijerph18031287