Predictors of Metabolic Syndrome in Adults and Older Adults from Amazonas, Brazil
Abstract
:1. Introduction
2. Methods
2.1. Sample and Study Design
2.2. Instruments
2.2.1. Clinical Analysis
2.2.2. Blood Pressure
2.2.3. Anthropometric Measurements
2.2.4. Physical Activity
2.2.5. Socioeconomic Status
2.2.6. Determination of Metabolic Syndrome
2.3. Statistics
3. Results
3.1. Descriptives
3.2. The Prevalence of Each Risk Factor for Metabolic Syndrome
3.3. Predicting the Likelihood of Presenting Metabolic Syndrome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed] [Green Version]
- Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z. The metabolic syndrome. Lancet 2005, 365, 1415–1428. [Google Scholar] [CrossRef]
- Ihle, A.; Gouveia, É.R.; Gouveia, B.R.; Freitas, D.L.; Jurema, J.; Machado, F.T.; Kliegel, M. The Relation of Hypertension to Performance in Immediate and Delayed Cued Recall and Working Memory in Old Age: The Role of Cognitive Reserve. J. Aging Health 2018, 30, 1171–1187. [Google Scholar] [CrossRef] [PubMed]
- Ihle, A.; Gouveia, É.R.; Gouveia, B.R.; Freitas, D.L.; Jurema, J.; Tinôco, M.A.; Kliegel, M. High-Density Lipoprotein Cholesterol Level Relates to Working Memory, Immediate and Delayed Cued Recall in Brazilian Older Adults: The Role of Cognitive Reserve. Dement. Geriatr. Cogn. Disord. 2017, 44, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Ihle, A.; Oris, M.; Fagot, D.; Chicherio, C.; van der Linden, B.W.A.; Sauter, J.; Kliegel, M. Associations of educational attainment and cognitive level of job with old age verbal ability and processing speed: The mediating role of chronic diseases. Appl. Neuropsychol. Adult 2018, 25, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Mazloomzadeh, S.; Rashidi Khazaghi, Z.; Mousavinasab, N. The Prevalence of Metabolic Syndrome in Iran: A Systematic Review and Meta-analysis. Iran J. Public Health 2018, 47, 473–480. [Google Scholar] [PubMed]
- Márquez-Sandoval, F.; Macedo-Ojeda, G.; Viramontes-Hörner, D.; Fernández Ballart, J.D.; Salas Salvadó, J.; Vizmanos, B. The prevalence of metabolic syndrome in Latin America: A systematic review. Public Health Nutr. 2011, 14, 1702–1713. [Google Scholar] [CrossRef]
- Azimi-Nezhad, M.; Herbeth, B.; Siest, G.; Dadé, S.; Ndiaye, N.C.; Esmaily, H.; Hosseini, S.J.; Ghayour-Mobarhan, M.; Visvikis-Siest, S. High prevalence of metabolic syndrome in Iran in comparison with France: What are the components that explain this? Metab. Syndr. Relat. Disord. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Salas, R.; Bibiloni, M.d.M.; Ramos, E.; Villarreal, J.Z.; Pons, A.; Tur, J.A.; Sureda, A. Metabolic syndrome prevalence among Northern Mexican adult population. PLoS ONE 2014, 9, e105581. [Google Scholar] [CrossRef] [Green Version]
- de Hipertensão, S.B.; de Cardiologia, S.B.; de Endocrinologia e Metabologia, S.B.; de Diabetes, S.B.; de Estudos da Obesidade, S.B. I Diretriz brasileira de diagnóstico e tratamento da síndrome metabólica. Arq. Bras. Cardiol. 2005, 84, 3–28. [Google Scholar]
- International Diabetes Federation (IDF). The IDF Consensus Worldwide Definition of the Metabolic Syndrome; IDF: Brussels, Belgium, 2006. [Google Scholar]
- Ramires Elyssia, M.; Menezes, R.C.; Longo-Silva, G.; Santos, T.G.; Marinho, P.M.; Silveira, J.C. Prevalência e Fatores Associados com a Síndrome Metabólica na População Adulta Brasileira: Pesquisa Nacional de Saúde—2013. Arq. Bras. Cardiol. 2018, 110, 455–466. [Google Scholar]
- de Carvalho Vidigal, F.; Bressan, J.; Babio, N.; Salas-Salvadó, J. Prevalence of metabolic syndrome in Brazilian adults: A systematic review. BMC Public Health 2013, 13, 1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, A.C.; Severo, M.; Barros, H. Incidence and risk factors for the metabolic syndrome in an urban South European population. Prev. Med. 2010, 50, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Sigit, F.S.; Tahapary, D.L.; Trompet, S.; Sartono, E.; Van Dijk, K.W.; Rosendaal, F.R.; De Mutsert, R. The prevalence of metabolic syndrome and its association with body fat distribution in middle-aged individuals from Indonesia and the Netherlands: A cross-sectional analysis of two population-based studies. Diabetol. Metab. Syndr. 2020, 12, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garnelo, L.; Sousa, A.B.L.; Silva, C.D.O.D. Regionalização em Saúde no Amazonas: Avanços e desafios. Cien. Saude Colet. 2017, 22, 1225–1234. [Google Scholar] [CrossRef] [Green Version]
- López-Martínez, S.; Sánchez-López, M.; Solera-Martinez, M.; Arias-Palencia, N.; Fuentes-Chacón, R.M.; Martínez-Vizcaíno, V. Physical activity, fitness, and metabolic syndrome in young adults. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 312–321. [Google Scholar] [CrossRef]
- Pérez-Martínez, P.; Mikhailidis, D.P.; Athyros, V.G.; Bullo, M.; Couture, P.; Covas, M.I.; Koning, L.; Delgado-Lista, J.; Díaz-López, A.; Drevon, C.A.; et al. Lifestyle recommendations for the prevention and management of metabolic syndrome: An international panel recommendation. Nutr. Rev. 2017, 75, 307–326. [Google Scholar] [CrossRef] [Green Version]
- Abou Ziki, M.D.; Mani, A. Metabolic syndrome: Genetic insights into disease pathogenesis. Curr. Opin. Lipidol. 2016, 27, 162–171. [Google Scholar] [CrossRef]
- Salaroli, L.B.; Barbosa, G.C.; Mill, J.G.; Molina, M.C.B. Prevalência de síndrome metabólica em estudo de base populacional, Vitória, ES–Brasil. Arq. Bras. Endocrinol. Metabol. 2007, 51, 1143–1152. [Google Scholar] [CrossRef] [Green Version]
- Marquezine, G.F.; Oliveira, C.M.; Pereira, A.C.; Krieger, J.E.; Mill, J.G. Metabolic syndrome determinants in an urban population from Brazil: Social class and gender-specific interaction. Int. J. Cardiol. 2008, 129, 259–265. [Google Scholar] [CrossRef]
- Gronner, M.F.; Bosi, P.L.; Carvalho, A.M.; Casale, G.; Contrera, D.; Pereira, M.A.; Diogo, T.M.; Torquato, M.T.C.G.; Souza, G.M.D.; Oishi, J.; et al. Prevalence of metabolic syndrome and its association with educational inequalities among Brazilian adults: A population-based study. Braz. J. Med. Biol. Res. 2011, 44, 713–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutra, E.S.; de Carvalho, K.M.B.; Miyazaki, E.; Merchán-Hamann, E.; Ito, M.K. Metabolic syndrome in central Brazil: Prevalence and correlates in the adult population. Diabetol. Metab. Syndr. 2012, 4, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaughan, C.; Schoo, A.; Janus, E.D.; Philpot, B.; Davis-Lameloise, N.; Lo, S.K.; Laatikainen, T.; Vartiainen, E.; Dunbar, J.A. The association of levels of physical activity with metabolic syndrome in rural Australian adults. BMC Public Health 2009, 9, 273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pimenta, A.M.; Gazzinelli, A.; Velásquez-Meléndez, G. Prevalência da síndrome metabólica e seus fatores associados em área rural de Minas Gerais (MG, Brasil). Cien. Saude Colet. 2011, 16, 3297–3306. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, G.F.; de Oliveira, T.R.; Rodrigues, F.F.; Corrêa, L.F.; de Arruda, T.B.; Casulari, L.A. Prevalence of metabolic syndrome in the indigenous population, aged 19 to 69 years, from Jaguapiru Village, Dourados (MS). Braz. Ethn. Dis. 2011, 21, 301–306. [Google Scholar]
- da Rocha, A.K.S.; Bós, A.J.G.; Huttner, E.; Machado, D.C. Prevalence of metabolic syndrome in indigenous people over 40 years of age in Rio Grande do Sul, Brazil. Rev. Panam. Salud Publica 2011, 29, 41–45. [Google Scholar]
- Pucci, G.; Alcidi, R.; Tap, L.; Battista, F.; Mattace-Raso, F. Sex- and gender-related prevalence, cardiovascular risk and therapeutic approach in metabolic syndrome: A review of the literature. Pharmacol. Res. 2017, 120, 34–42. [Google Scholar] [CrossRef]
- Kuk, J.L.; Ardern, C. Age and sex differences in the clustering of metabolic syndrome factors: Association with mortality risk. Diabetes Care 2010, 33, 2457–2461. [Google Scholar] [CrossRef] [Green Version]
- Blanquet, M.; Legrand, A.; Pélissier, A.; Mourgues, C. Socio-economics status and metabolic syndrome: A meta-analysis. Diabetes Metab. Syndr. 2019, 13, 1805–1812. [Google Scholar] [CrossRef]
- Yang, X.; Telama, R.; Hirvensalo, M.; Mattsson, N.; Viikari, J.S.; Raitakari, O.T. The longitudinal effects of physical activity history on metabolic syndrome. Med. Sci. Sports Exerc. 2008, 40, 1424–1431. [Google Scholar] [CrossRef]
- Wang, H.H.; Lee, D.K.; Liu, M.; Portincasa, P.; Wang, D.Q. Novel Insights into the Pathogenesis and Management of the Metabolic Syndrome. Pediatric Gastroenterol. Hepatol. Nutr. 2020, 23, 189–230. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Marfell, J.S.; Olds, T.; Stewart, A.A. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry (ISAK): Glasgow, Scotland, 2006. [Google Scholar]
- Baecke, J.; Burema, J.; Frijters, J. A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am. J. Clin. Nutr. 1982, 36, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Associação Brasileira de Empresas de Pesquisa. Critério de Classificação Econômica Brasil. 2003. Available online: http://www.abep.org (accessed on 25 November 2020).
- Ghosh, S.; Mukhopadhyay, S.; Barik, A. Sex differences in the risk profile of hypertension: A cross-sectional study. BMJ Open 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.M.; Kim, H.C.; Kang, D.R. Sex differences in hypertension prevalence and control: Analysis of the 2010-2014 Korea National Health and Nutrition Examination Survey. PLoS ONE 2017, 12, e0178334. [Google Scholar] [CrossRef] [Green Version]
- Oertelt-Prigione, S.; Seeland, U.; Kendel, F.; Rücke, M.; Flöel, A.; Gaissmaier, W.; Heim, C.; Schnabel, R.; Stangl, V.; Regitz-Zagrosek, V. Cardiovascular risk factor distribution and subjective risk estimation in urban women--the BEFRI study: A randomized cross-sectional study. BMC Med. 2015, 13, 52. [Google Scholar] [CrossRef] [Green Version]
- Islam, J.Y.; Zaman, M.M.; Ahmed, J.U.; Choudhury, S.R.; Khan, H.; Zissan, T. Sex differences in prevalence and determinants of hypertension among adults: A cross-sectional survey of one rural village in Bangladesh. BMJ Open 2020, 10, e037546. [Google Scholar] [CrossRef]
- Zaleski, A.L.; Taylor, B.A.; Park, C.L.; Santos, L.P.; Panza, G.; Kramarz, M.; McCormick, K.; Thompson, P.D.; Fernandez, A.B.; Chen, M.H.; et al. Using the immediate blood pressure benefits of exercise to improve exercise adherence among adults with hypertension: A randomized clinical trial. J. Hypertens. 2019, 37, 1877–1888. [Google Scholar] [CrossRef]
- Hopkins, S.E.; Austin, M.A.; Metzger, J.S.; Koller, K.R.; Umans, J.G.; Kaufmann, C.; Wolfe, A.W.; Howard, B.V.; Boyer, B.B. Sex differences in obesity prevalence and cardiometabolic factors among Western Alaska Native people. Nutr. Metab. Cardiovasc. Dis. NMCD 2015, 25, 312–318. [Google Scholar] [CrossRef] [Green Version]
- de Freitas, E.V.; Brandão, A.A.; Pozzan, R.; Magalhães, M.E.; Fonseca, F.; Pizzi, O.; Campana, É.; Brandão, A.P. Importance of high-density lipoprotein-cholesterol (HDL-C) levels to the incidence of cardiovascular disease (CVD) in the elderly. Arch. Gerontol. Geriatr. 2011, 2, 217–222. [Google Scholar] [CrossRef]
- Wang, X.; Magkos, F.; Mittendorfer, B. Sex differences in lipid and lipoprotein metabolism: It’s not just about sex hormones. J. Clin. Endocrinol. Metab. 2011, 96, 885–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maas, A.; Appelman, Y. Gender differences in coronary heart disease. Neth. Heart J. 2010, 18, 598–603. [Google Scholar] [CrossRef]
- Ministério da Saúde, Pesquisa Nacional de Saúde: Percepção do Estado de Saúde, Estilos de vida, Doenças Crônicas e Saúde Buca; IBGE: Rio de Janeiro, Brazil, 2020.
- Myers, J.; Kokkinos, P.; Nyelin, E. Physical Activity, Cardiorespiratory Fitness, and the Metabolic Syndrome. Nutrients 2019, 11, 1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, A.S.; Pereira, L.C.; Silva, D.R.P.; Santos, L.D.; Schoenfeld, B.J.; Teixeira, D.C.; Cyrino, E.S.; Guedes, D.P. Physical Activity and Sitting Time Are Specifically Associated with Multiple Chronic Diseases and Medicine Intake in Brazilian Older Adults. J. Aging Phys. Act. 2018, 26, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Brooks, H.L.; Pollow, D.P.; Hoyer, P.B. The VCD Mouse Model of Menopause and Perimenopause for the Study of Sex Differences in Cardiovascular Disease and the Metabolic Syndrome. Physiology 2016, 31, 250–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Men (n = 332) | Women (n = 558) | p | ||||
---|---|---|---|---|---|---|---|
Mean | SD | CI (95%) | Mean | SD | CI (95%) | ||
Age (y) | 61.0 | 20.1 | 60.0–64.1 | 59.1 | 19.3 | 59.1–62.1 | 0.141 |
SBP (mm Hg) | 133.8 | 17.0 | 132.2–135.8 | 127.8 | 17.3 | 126.7–129.6 | <0.001 |
DBP (mm Hg) | 77.1 | 12.2 | 75.3–77.9 | 74.4 | 11.8 | 72.9–74.9 | 0.001 |
HR (bpm) | 72.3 | 11.1 | 71.1–73.4 | 75.6 | 10.8 | 74.3–76.4 | <0.001 |
GLI (mg·dL−1) | 94.9 | 37.1 | 90.6–98.5 | 101.6 | 42.6 | 98.3–105.5 | 0.015 |
CHOL—total (mg·dL−1) | 171.9 | 45.2 | 166.9–176.3 | 190.8 | 54.6 | 187.0–195.9 | <0.001 |
HDL (mg·dL−1) | 42.4 | 13.0 | 41.0–43.8 | 47.2 | 12.4 | 46.3–48.4 | <0.001 |
LDL (mg·dL−1) | 104.9 | 37.1 | 100.7–108.7 | 118.5 | 40.2 | 115.3–122.0 | <0.001 |
TG (mg·dL−1) | 149.2 | 106.6 | 132.7–152.1 | 150.9 | 92.1 | 140.3–154.5 | 0.800 |
WACI (cm) | 89.0 | 12.4 | 88.1–90.7 | 85.1 | 11.9 | 84.6–86.5 | <0.001 |
BMI (kg·m−2) | 26.8 | 4.7 | 26.4–27.4 | 28.1 | 5.5 | 27.8–28.7 | <0.001 |
PA (units) | 7.9 | 1.1 | 7.8–8.0 | 7.5 | 1.1 | 7.5–7.7 | <0.001 |
Education (n) | 1.1 | 1.3 | 0.91–1.20 | 1.5 | 1.4 | 1.3–1.56 | <0.001 |
Rsk Factors for Metabolic Syndrome | Sex | Total | ||||
---|---|---|---|---|---|---|
Men | Women | |||||
n (%) | CI (%) | n (%) | CI (%) | n (%) | CI (%) | |
Below cut-off WACI | 221 (62.8) | 57.5–67.9 | 193 (32.7) | 28.9–36.7 | 414 (43.9) | 40.8–47.2 |
Above cut-off WACI | 131 (37.2) | 32.2–42.5 | 397 (67.3) ** | 63.3–71.1 | 528 (56.1) | 52.8–59.3 |
Below cut-off TG | 221 (64.2) | 58.9–69.3 | 356 (61.9) | 57.8–65.9 | 577 (62.8) | 59.6–65.9 |
Above cut-off TG | 123 (35.8) | 32.9–43.4 | 219 (38.1) | 65.1–72.8 | 342 (37.2) | 34.1–40.4 |
Below cut-off HDL-C | 163 (47.8) | 43.4–53.3 | 199 (35.0) | 31.1–39.1 | 362 (39.8) | 36.6–43.0 |
Above cut-off HDL-C | 178 (52.2) | 46.8–57.6 | 370 (65.0) ** | 61.0–69.0 | 548 (60.2) | 56.9–63.4 |
Below cut-off BP | 132 (37.5) | 32.4–42.8 | 303 (51.4) | 47.2–55.5 | 435 (46.2) | 43.0–49.4 |
Above cut-off BP | 220 (62.5) | 57.2–67.6 | 287 (48.6) ** | 44.5–52.8 | 507 (53.8) | 50.6–57.0 |
Below cut-off GLI | 250 (72.0) | 67.0–76.7 | 393 (67.4) | 63.4–71.2 | 643 (69.1) | 66.1–72.1 |
Above cut-off GLI | 97 (28.0) | 23.3–33.0 | 190 (32.6) | 28.8–36.6 | 287 (30.9) | 27.9–33.9 |
Below cut-off MS | 206 (60.4) | 55.0–65.6 | 227 (47.8) | 43.6–52.0 | 478 (52.5) | 49.2–55.8 |
Above cut-off MS | 153 (39.6) | 34.4–45.0 | 297 (52.2) ** | 48.0–56.4 | 432 (47.5) | 44.2–50.8 |
Predictors | B | S.E. | Wald | df | p | Odds Ratio | 95% C.I. for EXP(B) | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Age (y) | 0.03 | 0.00 | 32.43 | 1.00 | <0.001 | 1.03 | 1.02 | 1.04 |
Sex (M = 1; W = 0) | −0.52 | 0.16 | 10.63 | 1.00 | 0.001 | 1.67 | 1.23 | 2.27 |
BMI (kg/m−2) | 0.17 | 0.02 | 93.68 | 1.00 | <0.001 | 1.18 | 1.14 | 1.22 |
Education (n) | −0.12 | 0.06 | 4.05 | 1.00 | 0.044 | 1.12 | 1.00 | 1.35 |
PA (units) | 0.03 | 0.07 | 0.13 | 1.00 | 0.717 | 1.03 | 0.89 | 1.18 |
Constant | −6.82 | 0.79 | 74.99 | 1.00 | <0.001 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gouveia, É.R.; Gouveia, B.R.; Marques, A.; Peralta, M.; França, C.; Lima, A.; Campos, A.; Jurema, J.; Kliegel, M.; Ihle, A. Predictors of Metabolic Syndrome in Adults and Older Adults from Amazonas, Brazil. Int. J. Environ. Res. Public Health 2021, 18, 1303. https://doi.org/10.3390/ijerph18031303
Gouveia ÉR, Gouveia BR, Marques A, Peralta M, França C, Lima A, Campos A, Jurema J, Kliegel M, Ihle A. Predictors of Metabolic Syndrome in Adults and Older Adults from Amazonas, Brazil. International Journal of Environmental Research and Public Health. 2021; 18(3):1303. https://doi.org/10.3390/ijerph18031303
Chicago/Turabian StyleGouveia, Élvio Rúbio, Bruna R. Gouveia, Adilson Marques, Miguel Peralta, Cíntia França, Alex Lima, Alderlane Campos, Jefferson Jurema, Matthias Kliegel, and Andreas Ihle. 2021. "Predictors of Metabolic Syndrome in Adults and Older Adults from Amazonas, Brazil" International Journal of Environmental Research and Public Health 18, no. 3: 1303. https://doi.org/10.3390/ijerph18031303
APA StyleGouveia, É. R., Gouveia, B. R., Marques, A., Peralta, M., França, C., Lima, A., Campos, A., Jurema, J., Kliegel, M., & Ihle, A. (2021). Predictors of Metabolic Syndrome in Adults and Older Adults from Amazonas, Brazil. International Journal of Environmental Research and Public Health, 18(3), 1303. https://doi.org/10.3390/ijerph18031303