Internet of Things for Mental Health: Open Issues in Data Acquisition, Self-Organization, Service Level Agreement, and Identity Management
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.1.1. Sources
2.1.2. Terms
2.2. Study Eligibility Criteria
3. Prevalent Mental Health Disorders: Assessment and Challenges
4. Measuring Mental Health Related Data
4.1. Behavioral Data
4.2. Physiological Data
4.3. Social Data
5. IoT Systems for Mental Health and Wellbeing
5.1. Bipolar Disorders
5.2. Depressive Disorders
5.3. Schizophrenia Spectrum Disorder
5.4. Stress-Related Disorders
6. Research Challenges in IoT Enabled Mental Health Systems
6.1. Data Acquisition for IoT-Enabled Mental Health Systems
6.2. Self-Organization of IoT Devices in Mental Health Systems
6.3. Service Level Agreement in IoT Enabled Mental Health Systems
6.4. Identity Management
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WHO | World Health Organization |
IoT | Internet of things |
DSM 5 | Diagnostic and statistical manual of mental disorders 5 |
SLA | Service level agreement |
EDA | Electrodermal activity |
ECG | Electrocardiogram |
EEG | Electroencephalogram |
EMG | Electromyogram |
EOG | Electrooculogram |
EMA | Ecological momentary assessment |
GSR | Galvanic skin response |
GPS | Global Positioning System |
RSFC | Resting-state functional connectivity |
References
- Wongkoblap, A.; Vadillo, M.A.; Curcin, V. Detecting and Treating Mental Illness on Social Networks. In Proceedings of the 2017 IEEE International Conference on Healthcare Informatics (ICHI 2017), Park City, UT, USA, 23–26 August 2017; p. 330. [Google Scholar] [CrossRef]
- Grigg, M.; Saxena, S. Promoting Mental Health Nursing Research in Low and Middle Income Countries; International Nursing Review: Geneva, Switzerland, 2004. [Google Scholar] [CrossRef]
- WHO. Depression and Other Common Mental Disorders; Global Health Estimates: Geneva, Switzerland, 2017. [Google Scholar]
- Hadzic, M.; Chen, M.; Dillon, T.S. Towards the mental health ontology. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2008), Philadelphia, PA, USA, 3–5 November 2008. [Google Scholar] [CrossRef]
- Khan, S.F. Health care monitoring system in Internet of Things (IoT) by using RFID. In Proceedings of the 2017 6th International Conference on Industrial Technology and Management (ICITM 2017), Cambridge, UK, 7–10 March 2017. [Google Scholar] [CrossRef]
- Pang, Z. Technologies and Architectures of the Internet-of-Things (IoT) for Health and Well-Being. Ph.D. Thesis, Dept. Electron. Comput. Syst., KTH Royal Institute of Technology, Stockholm, Sweden, January 2013. [Google Scholar]
- Takpor, T.O.; Atayero, A.A. Integrating Internet of Things and EHealth Solutions for Students’ Healthcare. In Proceedings of the World Congress on Engineering, London, UK, 1–3 July 2015. Lecture Notes in Engineering and Computer Science. [Google Scholar]
- de la Torre Díez, I.; Alonso, S.G.; Hamrioui, S.; Cruz, E.M.; Nozaleda, L.M.; Franco, M.A. IoT-Based Services and Applications for Mental Health in the Literature. J. Med. Syst. 2019. [Google Scholar] [CrossRef] [PubMed]
- Manogaran, G.; Varatharajan, R.; Lopez, D.; Kumar, P.M.; Sundarasekar, R.; Thota, C. A new architecture of Internet of Things and big data ecosystem for secured smart healthcare monitoring and alerting system. Future Gener. Comput. Syst. 2018, 82, 375–387. [Google Scholar] [CrossRef]
- Haghi, M.; Thurow, K.; Stoll, R. Wearable devices in medical internet of things: Scientific research and commercially available devices. Healthc. Inform. Res. 2017, 23, 4. [Google Scholar] [CrossRef] [PubMed]
- Doukas, C.; Maglogiannis, I. Bringing IoT and cloud computing towards pervasive healthcare. In Proceedings of the 6th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS 2012), Palermo, Italy, 4–6 July 2012. [Google Scholar] [CrossRef]
- Mohanraj, I.; Ashokumar, K.; Naren, J. Field Monitoring and Automation Using IOT in Agriculture Domain. Procedia Comput. Sci. 2016, 93, 931–939. [Google Scholar] [CrossRef]
- Qiu, X.; Luo, H.; Xu, G.; Zhong, R.; Huang, G.Q. Physical assets and service sharing for IoT-enabled Supply Hub in Industrial Park (SHIP). Int. J. Prod. Econ. 2015, 159, 4–15. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, G.; Zhang, C.; Zhang, J.; Li, C. An IoT-based appliance control system for smart homes. In Proceedings of the 2013 International Conference on Intelligent Control and Information Processing (ICICIP 2013), Beijing, China, 9–11 June 2013. [Google Scholar] [CrossRef]
- Kamel Boulos, M.N.; Al-Shorbaji, N.M. On the Internet of Things, smart cities and the WHO Healthy Cities. Int. J. Health Geogr. 2014, 13, 10. [Google Scholar] [CrossRef] [PubMed]
- Gope, P.; Hwang, T. BSN-Care: A Secure IoT-Based Modern Healthcare System Using Body Sensor Network. IEEE Sens. J. 2016, 16, 1368–1376. [Google Scholar] [CrossRef]
- Hassanalieragh, M.; Page, A.; Soyata, T.; Sharma, G.; Aktas, M.; Mateos, G.; Kantarci, B.; Andreescu, S. Health Monitoring and Management Using Internet-of-Things (IoT) Sensing with Cloud-Based Processing: Opportunities and Challenges. In Proceedings of the 2015 IEEE International Conference on Services Computing (SCC 2015), New York, NY, USA, 27 June–2 July 2015. [Google Scholar] [CrossRef]
- Stellbrink, A.; Meisenzahl, E. Big data market analysis of e-health in medical neuroscience. Eur. Psychiatry 2017, 41, S39. [Google Scholar] [CrossRef]
- Yang, P.; Stankevicius, D.; Marozas, V.; Deng, Z.; Liu, E.; Lukosevicius, A.; Dong, F.; Xu, L.; Min, G. Lifelogging data validation model for internet of things enabled personalized healthcare. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 50–64. [Google Scholar] [CrossRef]
- YIN, Y.; Zeng, Y.; Chen, X.; Fan, Y. The internet of things in healthcare: An overview. J. Ind. Inf. Integr. 2016, 1, 3–13. [Google Scholar] [CrossRef]
- Arnrich, B.; Osmani, V.; Bardram, J. Mental Health and the Impact of Ubiquitous Technologies; Personal and Ubiquitous Computing: London, UK, 2013. [Google Scholar] [CrossRef]
- Luxton, D.D.; McCann, R.A.; Bush, N.E.; Mishkind, M.C.; Reger, G.M. MHealth for mental health: Integrating smartphone technology in behavioral healthcare. Prof. Psychol. Res. Pract. 2011, 42, 505. [Google Scholar] [CrossRef]
- Schulze, B. Stigma and mental health professionals: A review of the evidence on an intricate relationship. Int. Rev. Psychiatry 2007, 19, 137–155. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar] [CrossRef]
- Allsopp, K.; Read, J.; Corcoran, R.; Kinderman, P. Heterogeneity in psychiatric diagnostic classification. Psychiatry Res. 2019, 279, 15–22. [Google Scholar] [CrossRef]
- Amoretti, M.C.; Frixione, M.; Lieto, A.; Adamo, G. Ontologies, Mental Disorders and Prototypes. In On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence; Springer: Cham, Switzerland, 2019; pp. 189–204. [Google Scholar] [CrossRef]
- Weisel, K.K.; Fuhrmann, L.M.; Berking, M.; Baumeister, H.; Cuijpers, P.; Ebert, D.D. Standalone smartphone apps for mental health—A systematic review and meta-analysis. NPJ Digit. Med. 2019, 2, 118. [Google Scholar] [CrossRef] [PubMed]
- Bakker, D.; Kazantzis, N.; Rickwood, D.; Rickard, N. Mental Health Smartphone Apps: Review and Evidence-Based Recommendations for Future Developments. JMIR Ment. Health 2016, 3, e4984. [Google Scholar] [CrossRef] [PubMed]
- Vaidyam, A.N.; Wisniewski, H.; Halamka, J.D.; Kashavan, M.S.; Torous, J.B. Chatbots and Conversational Agents in Mental Health: A Review of the Psychiatric Landscape. Can. J. Psychiatry 2019, 64, 456–464. [Google Scholar] [CrossRef]
- Abd-alrazaq, A.A.; Alajlani, M.; Alalwan, A.A.; Bewick, B.M.; Gardner, P.; Househ, M. An overview of the features of chatbots in mental health: A scoping review. Int. J. Med. Inform. 2019, 132, 103978. [Google Scholar] [CrossRef]
- Frost, R.L.; Rickwood, D.J. A systematic review of the mental health outcomes associated with Facebook use. Comput. Hum. Behav. 2017, 76, 576–600. [Google Scholar] [CrossRef]
- Bardram, J.E.; Matic, A. A Decade of Ubiquitous Computing Research in Mental Health. IEEE Pervasive Comput. 2020, 19, 62–72. [Google Scholar] [CrossRef]
- Shatte, A.B.; Hutchinson, D.M.; Teague, S.J. Machine learning in mental health: A scoping review of methods and applications. Psychol. Med. 2019, 49, 1426–1448. [Google Scholar] [CrossRef]
- Hawton, K.; Sutton, L.; Haw, C.; Sinclair, J.; Harriss, L. Suicide and attempted suicide in bipolar disorder: A systematic review of risk factors. J. Clin. Psychiatry 2005, 66, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, J.C. Roadblocks in Cognitive-Behavioral Therapy: Transforming Challenges Into Opportunities for Change. Am. J. Psychiatry 2005, 162, 640–641. [Google Scholar] [CrossRef]
- Scott, J.; Paykel, E.; Morriss, R.; Bentall, R.; Kinderman, P.; Johnson, T.; Hayhurst, R.A.H. Cognitive-behavioural therapy for severe and recurrent bipolar disorders: Randomised controlled trial. Br. J. Psychiatry 2006, 188, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Beiwinkel, T.; Kindermann, S.; Maier, A.; Kerl, C.; Moock, J.; Barbian, G.; Rössler, W. Using Smartphones to Monitor Bipolar Disorder Symptoms: A Pilot Study. JMIR Ment. Health 2016, 3, e2. [Google Scholar] [CrossRef] [PubMed]
- Grünerbl, A.; Oleksy, P.; Bahle, G.; Haring, C.; Weppner, J.; Lukowicz, P. Towards smart phone based monitoring of bipolar disorder. In Proceedings of the Second ACM Workshop on Mobile Systems, Applications, and Services for HealthCare—mHealthSys’12, Toronto, ON, Canada, 6 November 2012; ACM Press: New York, NY, USA, 2012; p. 1. [Google Scholar] [CrossRef]
- Lanata, A.; Valenza, G.; Nardelli, M.; Gentili, C.; Scilingo, E.P. Complexity index from a personalized wearable monitoring system for assessing remission in mental health. IEEE J. Biomed. Health Inform. 2015, 19, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Paradiso, R.; Bianchi, A.M.; Lau, K.; Scilingo, E.P. PSYCHE: Personalised monitoring systems for care in mental health. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’10), Buenos Aires, Argentina, 31 August–4 September 2010. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Botella, C.; Moragrega, I.; Baños, R.; García-Palacios, A. Online predictive tools for intervention in mental illness: The OPTIMI project. In Studies in Health Technology and Informatics; IOS Press: Amsterdam, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Saeb, S.; Zhang, M.; Karr, C.J.; Schueller, S.M.; Corden, M.E.; Kording, K.P.; Mohr, D.C. Mobile phone sensor correlates of depressive symptom severity in daily-life behavior: An exploratory study. J. Med. Internet Res. 2015, 17. [Google Scholar] [CrossRef]
- Wang, R.; Wang, W.; DaSilva, A.; Huckins, J.F.; Kelley, W.M.; Heatherton, T.F.; Campbell, A.T. Tracking Depression Dynamics in College Students Using Mobile Phone and Wearable Sensing. Proc. ACM Interactive Mob. Wearable Ubiquitous Technol. 2018, 2, 43. [Google Scholar] [CrossRef]
- Heckers, S.; Barch, D.M.; Bustillo, J.; Gaebel, W.; Gur, R.; Malaspina, D.; Owen, M.J.; Schultz, S.; Tandon, R.; Tsuang, M.; et al. Structure of the psychotic disorders classification in DSM-5. Schizophr. Res. 2013, 150, 11–14. [Google Scholar] [CrossRef]
- Kasckow, J.; Zickmund, S.; Rotondi, A.; Mrkva, A.; Gurklis, J.; Chinman, M.; Fox, L.; Loganathan, M.; Hanusa, B.; Haas, G. Development of telehealth dialogues for monitoring suicidal patients with schizophrenia: Consumer feedback. Community Ment. Health J. 2014, 50, 339–342. [Google Scholar] [CrossRef]
- Wang, R.; Scherer, E.A.; Tseng, V.W.S.; Ben-Zeev, D.; Aung, M.S.H.; Abdullah, S.; Brian, R.; Campbell, A.T.; Choudhury, T.; Hauser, M.; et al. CrossCheck: Toward Passive Sensing and Detection of Mental Health Changes in People with Schizophrenia. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing—UbiComp’16, Heidelberg, Germany, 12–16 September 2016. [Google Scholar] [CrossRef]
- Wang, R.; Wang, W.; Aung, M.H.; Ben-Zeev, D.; Brian, R.; Campbell, A.T.; Choudhury, T.; Hauser, M.; Kane, J.; Scherer, E.A.; et al. Predicting Symptom Trajectories of Schizophrenia Using Mobile Sensing. GetMob. Mob. Comput. Commun. 2018, 22, 32–37. [Google Scholar] [CrossRef]
- Howlett, J.R.; Stein, M.B. Prevention of trauma and stressor-related disorders: A review. Neuropsychopharmacology 2016, 41, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Brunello, N.; Davidson, J.R.; Deahl, M.; Kessler, R.C.; Mendlewicz, J.; Racagni, G.; Shalev, A.Y.; Zohar, J. Posttraumatic stress disorder: Diagnosis and epidemiology, comorbidity and social consequences, biology and treatment. Neuropsychobiology 2001, 43, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Rabbi, M.; Chittaranjan, G.T.; Frauendorfer, D.; Mast, M.S.; Campbell, A.T.; Gatica-Perez, D.; Choudhury, T. StressSense: Detecting Stress in Unconstrained Acoustic Environments using Smartphones. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing—Ubicomp’12, Pittsburgh, PA, USA, 5–8 September 2012. [Google Scholar] [CrossRef]
- Frost, M.; Marcu, G.; Hansen, R.; Szaántó, K.; Bardram, J. The MONARCA Self-assessment System: Persuasive Personal Monitoring for Bipolar Patients. In Proceedings of the 2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, Dublin, Ireland, 23–26 May 2012. [Google Scholar] [CrossRef]
- Abdullah, S.; Choudhury, T. Sensing Technologies for Monitoring Serious Mental Illnesses. IEEE Multimed. 2018, 25, 61–75. [Google Scholar] [CrossRef]
- Roshanaei-Moghaddam, B.; Katon, W.J.; Russo, J. The longitudinal effects of depression on physical activity. Gen. Hosp. Psychiatry 2009, 31, 306–315. [Google Scholar] [CrossRef]
- Nilsonne. Acoustic analysis of speech variables during depression and after improvement. Acta Psychiatr. Scand. 1987, 76, 235–245. [Google Scholar] [CrossRef]
- Matthews, M.; Murnane, E.; Snyder, J.; Guha, S.; Chang, P.; Doherty, G.; Gay, G. The double-edged sword: A mixed methods study of the interplay between bipolar disorder and technology use. Comput. Hum. Behav. 2017, 75, 288–300. [Google Scholar] [CrossRef]
- Walther, S.; Stegmayer, K.; Horn, H.; Razavi, N.; Müller, T.J.; Strik, W. Physical activity in schizophrenia is higher in the first episode than in subsequent ones. Front. Psychiatry 2015, 5, 191. [Google Scholar] [CrossRef]
- Su, Y.; Hu, B.; Xu, L.; Cai, H.; Moore, P.; Zhang, X.; Chen, J. EmotionO+: Physiological signals knowledge representation and emotion reasoning model for mental health monitoring. In Proceedings of the 2014 IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM 2014), Belfast, UK, 2–5 November 2014. [Google Scholar] [CrossRef]
- Wang, R.; Campbell, A.T.; Zhou, X. Using opportunistic face logging from smartphone to infer mental health. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 7–11 September 2015. [Google Scholar] [CrossRef]
- Alghowinem, S.; Goecke, R.; Wagner, M.; Parker, G.; Breakspear, M. Eye movement analysis for depression detection. In Proceedings of the 2013 IEEE International Conference on Image Processing (ICIP 2013), Melbourne, VIC, Australia, 15–18 September 2013. [Google Scholar] [CrossRef]
- Kemp, A.H.; Quintana, D.S.; Gray, M.A.; Felmingham, K.L.; Brown, K.; Gatt, J.M. Impact of Depression and Antidepressant Treatment on Heart Rate Variability: A Review and Meta-Analysis. Biol. Psychiatry 2010, 67, 1067–1074. [Google Scholar] [CrossRef]
- Schell, A.M.; Dawson, M.E.; Rissling, A.; Ventura, J.; Subotnik, K.L.; Gitlin, M.J.; Nuechterlein, K.H. Electrodermal predictors of functional outcome and negative symptoms in schizophrenia. Psychophysiology 2005, 42, 483–492. [Google Scholar] [CrossRef]
- Castro, L.A.; Beltran-Marquez, J.; Favela, J.; Chavez, E.; Perez, M.; Rodriguez, M.; Navarro, R.; Quintana, E. Collaborative Opportunistic Sensing of Human Behavior with Mobile Phones. In Wireless Computing in Medicine: From Nano to Cloud with Ethical and Legal Implications; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Ben-Zeev, D.; Wang, R.; Abdullah, S.; Brian, R.; Scherer, E.A.; Mistler, L.A.; Hauser, M.; Kane, J.M.; Campbell, A.; Choudhury, T. Mobile Behavioral Sensing for Outpatients and Inpatients With Schizophrenia. Psychiatr. Serv. 2016, 67, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Reece, A.G.; Danforth, C.M. Instagram photos reveal predictive markers of depression. EPJ Data Sci. 2017, 6, 1–12. [Google Scholar] [CrossRef]
- Abdullah, S.; Matthews, M.; Frank, E.; Doherty, G.; Gay, G.; Choudhury, T. Automatic detection of social rhythms in bipolar disorder. J. Am. Med. Inform. Assoc. 2016, 23, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Osmani, V.; Maxhuni, A.; Grünerbl, A.; Lukowicz, P.; Haring, C.; Mayora, O. Monitoring activity of patients with bipolar disorder using smart phones. In Proceedings of the International Conference on Advances in Mobile Computing & Multimedia, Kaohsiung, Taiwan, 8–10 December 2014. [Google Scholar] [CrossRef]
- Muaremi, A.; Gravenhorst, F.; Grünerbl, A.; Arnrich, B.; Tröster, G. Assessing bipolar episodes using speech cues derived from phone calls. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering (LNICST), Proceedings of the International Symposium on Pervasive Computing Paradigms for Mental Health, Tokyo, Japan, 8–9 May 2014; Springer: Cham, Switzerland, 2014. [Google Scholar] [CrossRef]
- Huckins, J.F.; DaSilva, A.W.; Wang, R.; Wang, W.; Hedlund, E.L.; Murphy, E.I.; Lopez, R.B.; Rogers, C.; Holtzheimer, P.E.; Kelley, W.M.; et al. Fusing Mobile Phone Sensing and Brain Imaging to Assess Depression in College Students: A Proof-of-Concept study. bioRxiv 2018. [Google Scholar] [CrossRef]
- Buck, B.; Scherer, E.; Brian, R.; Wang, R.; Wang, W.; Campbell, A.; Choudhury, T.; Hauser, M.; Kane, J.M.; Ben-Zeev, D. Relationships between smartphone social behavior and relapse in schizophrenia: A preliminary report. Schizophr. Res. 2019, 208, 167–172. [Google Scholar] [CrossRef]
- Cohen, S.; Kessler, R.C.; Gordon, L.U. Measuring Stress: A Guide for Health and Social Scientists; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Cipresso, P.; Gaggioli, A.; Serino, S.; Raspelli, S.; Vigna, C.; Pallavicini, F.; Riva, G. Inter-reality in the evaluation and treatment of psychological stress disorders: The INTERSTRESS project. Annu. Rev. CyberTher. Telemed. 2012, 181, 8–11. [Google Scholar]
- Zubair, M.; Yoon, C.; Kim, H.; Kim, J.; Kim, J. Smart wearable band for stress detection. In Proceedings of the 5th International Conference on IT Convergence and Security (ICITCS 2015), Kuala Lumpur, Malaysia, 24–27 August 2015. [Google Scholar] [CrossRef]
- Andreasen, N.C. What is post-traumatic stress disorder? Dialogues Clin. Neurosci. 2011, 13, 240. [Google Scholar]
- McWhorter, J.; Brown, L.; Khansa, L. A wearable health monitoring system for posttraumatic stress disorder. Biol. Inspired Cogn. Archit. 2017, 22, 44–50. [Google Scholar] [CrossRef]
- de Gennaro, M.; Krumhuber, E.G.; Lucas, G. Effectiveness of an Empathic Chatbot in Combating Adverse Effects of Social Exclusion on Mood. Front. Psychol. 2020, 10, 3061. [Google Scholar] [CrossRef]
- Saeb, S.; Lattie, E.G.; Schueller, S.M.; Kording, K.P.; Mohr, D.C. The relationship between mobile phone location sensor data and depressive symptom severity. PeerJ 2016, 4, e2537. [Google Scholar] [CrossRef]
- Liu, G.; Henson, P.; Keshavan, M.; Pekka-Onnela, J.; Torous, J. Assessing the potential of longitudinal smartphone based cognitive assessment in schizophrenia: A naturalistic pilot study. Schizophr. Res. Cogn. 2019, 17, 100144. [Google Scholar] [CrossRef] [PubMed]
- Adler, D.A.; Ben-Zeev, D.; Tseng, V.W.; Kane, J.M.; Brian, R.; Campbell, A.T.; Hauser, M.; Scherer, E.A.; Choudhury, T. Predicting Early Warning Signs of Psychotic Relapse From Passive Sensing Data: An Approach Using Encoder-Decoder Neural Networks. JMIR mHealth uHealth 2020, 8, e19962. [Google Scholar] [CrossRef]
- Babar, M.; Rahman, A.; Arif, F.; Jeon, G. Energy-harvesting based on internet of things and big data analytics for smart health monitoring. Sustain. Comput. Inform. Syst. 2018, 20, 155–164. [Google Scholar] [CrossRef]
- Mayora, O.; Arnrich, B.; Bardram, J.; Dräger, C.; Finke, A.; Frost, M.; Giordano, S.; Gravenhorst, F.; Grunerbl, A.; Haring, C.; et al. Personal Health Systems for Bipolar Disorder Anecdotes, Challenges and Lessons Learnt from MONARCA Project. In Proceedings of the 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops, Venice, Italy, 5–8 May 2013. [Google Scholar] [CrossRef]
- Wan, J.; Gu, X.; Chen, L.; Wang, J. Internet of Things for Ambient Assisted Living: Challenges and Future Opportunities. In Proceedings of the 2017 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC 2017), Nanjing, China, 12–14 October 2018. [Google Scholar] [CrossRef]
- Dimitrov, D.V. Medical internet of things and big data in healthcare. Healthc. Inform. Res. 2016, 22, 156. [Google Scholar] [CrossRef]
- Glenn, T.; Monteith, S. New Measures of Mental State and Behavior Based on Data Collected From Sensors, Smartphones, and the Internet. Curr. Psychiatry Rep. 2014, 16, 523. [Google Scholar] [CrossRef] [PubMed]
- Cha, H.; Lee, J.C.; Lee, W.; Jeon, J. Standardization requirements for self-quantification services over Internet of things. In Proceedings of the 2016 International Conference on Advances in Computing and Communication Engineering (ICACCE), Durban, South Africa, 28–29 November 2016; pp. 167–172. [Google Scholar] [CrossRef]
- Ajana, B. Digital health and the biopolitics of the Quantified Self. Digit. Health 2017, 3. [Google Scholar] [CrossRef]
- den Braber, M. The Emergence of Quantified Self as a Data-driven Movement to Promote Health and Wellness. In Proceedings of the First Workshop on Lifelogging Tools and Applications—LTA’16, Amsterdam, The Netherlands, 15–19 October 2016; Volume 1. [Google Scholar] [CrossRef]
- Su, J.B. Apple Watch 4 Is Now An FDA Class 2 Medical Device: Detects Falls, Irregular Heart Rhythm. 2018. Available online: https://www.forbes.com/sites/jeanbaptiste/2018/09/14/apple-watch-4-is-now-an-fda-class-2-medical-device-detects-falls-irregular-heart-rhythm/?sh=66f345f32071 (accessed on 8 August 2019).
- Meyer, J.; Simske, S.; Siek, K.a.; Gurrin, C.G.; Hermens, H. Beyond quantified self: Data for wellbeing. In Proceedings of the Extended Abstracts of the 32nd Annual ACM Conference on Human Factors in Computing Systems—CHI EA’14, Toronto, ON, Canada, 26 April–1 May 2014; pp. 95–98. [Google Scholar] [CrossRef]
- Kim, E.J.; Song, D.H.; Kim, S.J.; Park, J.Y.; Lee, E.; Seok, J.H.; Jon, D.I.; Cho, H.S. Proxy and patients ratings on quality of life in patients with schizophrenia and bipolar disorder in Korea. Qual. Life Res. 2010, 19, 521–529. [Google Scholar] [CrossRef]
- Chuang, Y.R.; Yang, W.J.; Lin, S.J.; Chiu, T.L. Study and Implementation of the Smallest Closed-Area ( SCA ) Mechanism for Self-Organization Network Architectures in Smart Home Control Systems. In Proceedings of the IEEE 17th International Symposium on Consumer Electronics (ISCE), Hsinchu, Taiwan, 3–6 June 2013; Volume 6, pp. 79–80. [Google Scholar]
- Stefan, B. Distributed Machine Learning with Self-organizing Mobile Agents for Earthquake Monitoring. In Proceedings of the IEEE 1st International Workshops on Foundations of Self-Systems, Augsburg, Germany, 12–16 September 2016; Volume 1, pp. 126–132. [Google Scholar] [CrossRef]
- Athreya, A.P.; Tague, P. Network Self-Organization in the Internet of Things. In Proceedings of the IEEE International Workshop of Internet-of-Things Networking and Control (IoT-NC), New Orleans, LA, USA, 24 June 2013; Volume 1, pp. 25–33. [Google Scholar]
- Pot, A.M.; Willemse, B.M.; Horjus, S. A pilot study on the use of tracking technology: Feasibility, acceptability, and benefits for people in early stages of dementia and their informal caregivers. Aging Ment. Health 2012, 16, 127–134. [Google Scholar] [CrossRef]
- Maló, P.; Almeida, B.; Melo, R. Self-Organised Middleware Architecture for the Internet-of-Things. In Proceedings of the IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, Beijing, China, 20–23 August 2013; Volume 9, pp. 445–451. [Google Scholar] [CrossRef]
- Mubeen, S.; Asadollah, S.A.; Papadopoulos, A.V.; Ashjaei, M.; Pei-Breivold, H.; Behnam, M. Management of Service Level Agreements for Cloud Services in IoT: A Systematic Mapping Study. IEEE Access 2018, 6, 30184–30207. [Google Scholar] [CrossRef]
- Wachter, S.; Mittelstadt, B.; Floridi, L. Why a right to explanation of automated decision-making does not exist in the general data protection regulation. Int. Data Priv. Law 2017, 7, 76–99. [Google Scholar] [CrossRef]
- King & Spalding. New GDPR-Inspired Data Laws in Brazil and India; King & Spalding-JDSupra: Sausalito, CA, USA, 2018. [Google Scholar]
- Markopoulou, D.; Papakonstantinou, V.; de Hert, P. The new EU cybersecurity framework: The NIS Directive, ENISA’s role and the General Data Protection Regulation. Comput. Law Secur. Rev. 2019, 35, 105336. [Google Scholar] [CrossRef]
- Zhu, N.; Diethe, T.; Camplani, M.; Tao, L.; Burrows, A.; Twomey, N.; Kaleshi, D.; Mirmehdi, M.; Flach, P.; Craddock, I. Bridging e-Health and the Internet of Things: The SPHERE Project. IEEE Intell. Syst. 2015, 30, 39–46. [Google Scholar] [CrossRef]
- Darshan, K.R.; Anandakumar, K.R. A comprehensive review on usage of Internet of Things (IoT) in healthcare system. In Proceedings of the 2015 International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT 2015), Mandya, India, 17–19 December 2016; pp. 132–136. [Google Scholar] [CrossRef]
- Saha, H.N.; Auddy, S.; Pal, S.; Kumar, S.; Pandey, S.; Singh, R. Health Monitoring using Internet of Things (IoT). In Proceedings of the 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON), Bangkok, Thailand, 16–18 August 2017; pp. 69–73. [Google Scholar] [CrossRef]
- Suhail, S.; Hong, C.S.; Ahmad, Z.U.; Zafar, F.; Khan, A. Introducing secure provenance in IoT: Requirements and challenges. In Proceedings of the 2016 International Workshop on Secure Internet of Things (SIoT 2016), Heraklion, Greece, 26–30 September 2016; pp. 39–46. [Google Scholar] [CrossRef]
- Azzawi, M.A.; Hassan, R.; Azmi, K.; Bakar, A. A Review on Internet of Things (IoT) in Healthcare. Int. J. Appl. Eng. Res. 2016, 11, 10216–10221. [Google Scholar] [CrossRef]
- Abouzakhar, N.S.; Jones, A.; Angelopoulou, O. Internet of Things Security: A Review of Risks and Threats to Healthcare Sector. In Proceedings of the IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Exeter, UK, 21–23 June 2017; pp. 373–378. [Google Scholar] [CrossRef]
- Chibelushi, C.; Eardley, A.; Arabo, A. Identity Management in the Internet of Things: The Role of MANETs for Healthcare Applications. Comput. Sci. Inf. Technol. 2013, 1, 73–81. [Google Scholar] [CrossRef]
- AL-mawee, W. Privacy and Security Issues in IoT Healthcare Applications for the Disabled Users a Survey. Master’s Thesis, Western Michigan University, Kalamazoo, MI, USA, 2012; p. 50. [Google Scholar]
- Zhu, X.; Badr, Y.; Pacheco, J.; Hariri, S. Autonomic Identity Framework for the Internet of Things. In Proceedings of the 2017 IEEE International Conference on Cloud and Autonomic Computing (ICCAC 2017), Tucson, AZ, USA, 18–22 September 2017; pp. 69–79. [Google Scholar] [CrossRef]
- Zhu, X.; Badr, Y. Identity Management Systems for the Internet of Things: A Survey Towards Blockchain Solutions. Sensors 2018, 18, 4215. [Google Scholar] [CrossRef] [PubMed]
- Bakre, A.; Patil, N.; Gupta, S. Implementing Decentralized Digital Identity using Blockchain. Int. J. Eng. Technol. Sci. Res. 2017, 4, 379–385. [Google Scholar]
- Mühle, A.; Grüner, A.; Gayvoronskaya, T.; Meinel, C. A Survey on Essential Components of a Self-Sovereign Identity. Available online: https://arxiv.org/abs/1807.06346 (accessed on 9 September 2019).
- Der, U.; Jähnichen, S.; Sürmeli, J. Self-Sovereign Identity—Opportunities and Challenges for the Digital Revolution. Available online: https://arxiv.org/abs/1712.01767 (accessed on 10 October 2018).
- Kim, S.; Kim, S. User preference for an IoT healthcare application for lifestyle disease management. Telecommun. Policy 2018, 42, 304–314. [Google Scholar] [CrossRef]
- Senthilkumar, R.; Ponmagal, R.S.; Sujatha, K. Efficient health care monitoring and emergency management system using IoT. Int. J. Control. Theory Appl. 2016, 9, 1–9. [Google Scholar]
- Natarajan, K.; Prasath, B.; Kokila, P. Smart Health Care System Using Internet of Things. J. Netw. Commun. Emerg. Technol. (JNCET) 2016, 6, 37–42. [Google Scholar]
- Chacko, A.; Hayajneh, T. Security and Privacy Issues with IoT in Healthcare. EAI Endorsed Trans. Pervasive Health Technol. 2018, 4, 1–7. [Google Scholar] [CrossRef]
- Urunov, K.; Shin, S.Y.; Park, S.H. The unique reliable identity system of enabling lightweight device management in NMS mechanism for the U-IoT. In Proceedings of the 19th Asia-Pacific Network Operations and Management Symposium: Managing a World of Things (APNOMS 2017), Seoul, Korea, 27–29 September 2017; pp. 411–414. [Google Scholar] [CrossRef]
- Becchi, A.; Rucci, P.; Placentino, A.; Neri, G.; de Girolamo, G. Quality of life in patients with schizophrenia—Comparison of self-report and proxy assessments. Soc. Psychiatry Psychiatr. Epidemiol. 2004, 39. [Google Scholar] [CrossRef] [PubMed]
- Pfefferbaum, B.; North, C.S. Mental Health and the Covid-19 Pandemic. N. Engl. J. Med. 2020, 383. [Google Scholar] [CrossRef] [PubMed]
- Cullen, W.; Gulati, G.; Kelly, B.D. Mental health in the COVID-19 pandemic. QJM Mon. J. Assoc. Physicians 2020, 113. [Google Scholar] [CrossRef] [PubMed]
- Spoorthy, M.S.; Pratapa, S.K.; Mahant, S. Mental health problems faced by healthcare workers due to the COVID-19 pandemic—A review. Asian J. Psychiatry 2020, 51, 102119. [Google Scholar] [CrossRef]
- Nasajpour, M.; Pouriyeh, S.; Parizi, R.M.; Dorodchi, M.; Valero, M.; Arabnia, H.R. Internet of Things for Current COVID-19 and Future Pandemics: An Exploratory Study. J. Healthc. Inform. Res. 2020, 4. [Google Scholar] [CrossRef]
DSM 5 Disorder | Reference | Reported Mental Disorder(s) | Measures | Technologies | Approach | Challenges | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Physiological Data | Behavioral Data | Social Data | Wearable | Smartphone | Embedded | Detection/ Diagnosis | Treatment | Data Acquisition | Self- Organization | Service Level Agreement | Identity Management | |||
Trauma and stressor- related disorder (5) | [72] | Psychological Stress | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
[51] | Mental stress | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||
[75] | Post-traumatic stress disorder | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
[73] | Mental Stress | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
[76] | Mental Stress | ✓ | ✓ | ✓ | ✓ | |||||||||
Depressive disorders (5) | [42] | Depression and stress- related disorders | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
[44] | Depression | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
[43] | Depression | ✓ | ✓ | ✓ | ✓ | |||||||||
[69] | Depression | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
[77] | Depression | ✓ | ✓ | ✓ | ✓ | |||||||||
Bipolar and related disorders (1) | [40] | Bipolar disorder | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
Bipolar I disorder (6) | [52] | Bipolar disorder (manic-depression psychosis) | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
[38] | Bipolar disorder (manic-depressive disorder) | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||
[37] | Bipolar disorder | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
[68] | Bipolar disorder (manic-depressive disorder) | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
[67] | Bipolar disorder (manic-depressive disorder) | ✓ | ✓ | ✓ | ✓ | |||||||||
[66] | Bipolar disorder | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||
Bipolar II disorder (1) | [39] | Bipolar disorders (Depression, hypomania, mixed state, and euthymia) | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
Schizophrenia spectrum disorder (6) | [46] | Schizophrenia | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
[70] | Schizophrenia | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||
[48] | Schizophrenia | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
[47] | Schizophrenia | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
[78] | Schizophrenia | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
[79] | Schizophrenia | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
Total | 24 | 14 | 22 | 12 | 7 | 22 | 3 | 16 | 11 | 23 | 3 | 1 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutierrez, L.J.; Rabbani, K.; Ajayi, O.J.; Gebresilassie, S.K.; Rafferty, J.; Castro, L.A.; Banos, O. Internet of Things for Mental Health: Open Issues in Data Acquisition, Self-Organization, Service Level Agreement, and Identity Management. Int. J. Environ. Res. Public Health 2021, 18, 1327. https://doi.org/10.3390/ijerph18031327
Gutierrez LJ, Rabbani K, Ajayi OJ, Gebresilassie SK, Rafferty J, Castro LA, Banos O. Internet of Things for Mental Health: Open Issues in Data Acquisition, Self-Organization, Service Level Agreement, and Identity Management. International Journal of Environmental Research and Public Health. 2021; 18(3):1327. https://doi.org/10.3390/ijerph18031327
Chicago/Turabian StyleGutierrez, Leonardo J., Kashif Rabbani, Oluwashina Joseph Ajayi, Samson Kahsay Gebresilassie, Joseph Rafferty, Luis A. Castro, and Oresti Banos. 2021. "Internet of Things for Mental Health: Open Issues in Data Acquisition, Self-Organization, Service Level Agreement, and Identity Management" International Journal of Environmental Research and Public Health 18, no. 3: 1327. https://doi.org/10.3390/ijerph18031327
APA StyleGutierrez, L. J., Rabbani, K., Ajayi, O. J., Gebresilassie, S. K., Rafferty, J., Castro, L. A., & Banos, O. (2021). Internet of Things for Mental Health: Open Issues in Data Acquisition, Self-Organization, Service Level Agreement, and Identity Management. International Journal of Environmental Research and Public Health, 18(3), 1327. https://doi.org/10.3390/ijerph18031327