A New Methodology for Defining Radon Priority Areas in Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Input Data
2.1.1. Concentration of 222Rn in Homes
2.1.2. Gamma Radiation Exposure Data
2.1.3. Lithostratigraphies
2.1.4. Radon Potential
2.2. General Procedure
2.2.1. Framework
2.2.2. Harmonization of Input Data
Concentration of 222Rn in Homes
Exposure Rate to Terrestrial Gamma Radiation, Lithostratigraphy and Radon Potential
2.2.3. Data Processing
2.3. Development of the Relationship Maps between Independent Variables and the 222Rn Concentration in Homes and the New Radon Potential Map
3. Results
3.1. Analysis of Variables
3.1.1. Concentration of 222Rn in Homes
3.1.2. Exposure Rate to Terrestrial Gamma Radiation
3.1.3. Lithostratigraphies
3.2. Comparison of Radon Potential Maps Generated
3.3. Assessment of the Degree of Identification of the Maps
3.3.1. Degree of Identification Regarding Radon Concentrations
3.3.2. Degree of Identification Regarding the Rates of Exposure to Terrestrial Gamma Radiation
3.3.3. Degree of Identification Regarding the Lithostratigraphies
4. Conclusions
- The Calculated Potential Map correctly identifies 12% of the cells in terms of the probability of finding a radon concentration in a given area, improving the percentage of the P90 Potential Map (which correctly identifies 10% of the cells).
- Regarding the probability of finding an exposure rate to terrestrial gamma radiation associated with a radon concentration, the P90 Potential Map properly identifies 57% of the cells, while the Calculated Potential Map identifies 32% of the cells. This is because when making the map, the CSN gave great weight to this variable, whereas when making the Calculated Potential Map, the weight of the study variables was homogenized.
- Regarding the probability of finding lithostratigraphies related to the greater or lesser presence of radon, both maps correctly identify 47% of the cells. In general, it is seen that the Calculated Radon Potential Map improves the identification of cells in terms of the probability of finding a radon concentration associated with a type of lithostratigraphy, since it homogenizes the ability to place a type correctly in all concentration ranges. Its identification capacity is markedly better in the ranges of higher concentrations (>300 Bq/m3) and lower concentrations (<100 Bq/m3).
- The Calculated Radon Potential Map in this study prepared from joining together the correlation maps shows that in 36% of the country there is a probability of finding radon concentrations higher than 300 Bq/m3 (17% above 400 Bq/m3 and 19% between 301 Bq/m3 and 400 Bq/m3). With this map, the areas of Spain with probable high radon concentrations (more than 300 Bq/m3) are precisely defined.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tirmarche, M.; Harrison, J.D.; Laurier, D.; Paquet, F.; Blanchardon, E.J.M.; International Commission on Radiological Protection (ICRP). Lung Cancer Risk from Radon and Progeny and Statement on Radon; ICRP Publication 115, Ann. ICRP; Elsevier: Exeter, UK, 2010; Volume 40, ISBN 978-0-7020-4977-4. [Google Scholar] [CrossRef]
- Lecomte, J.F.; Solomon, S.; Takala, J.; Jung, T.; Strand, P.; Murith, C.; Kiselev, S.; Zhuo, W.; Shannoun, F.; Janssens, A.; et al. Radiological Protection against Radon Exposure; ICRP Publication 126, Ann ICRP; SAGE Publications: London, UK, 2014; Volume 43, pp. 5–73. ISBN 978-14-7-3s91658-6. [Google Scholar]
- International Atomic Energy Agency (IAEA). Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards; General Safety Requirements Part 3, Interim Edition; International Atomic Energy Agency: Vienna, Austria, 2014; ISBN 978-92-0-120910-8. [Google Scholar]
- World Health Organization (WHO). WHO Handbook on Indoor Radon: A Public Health Perspective; Zeeb, H., Shannoun, F., Eds.; WHO Library Cataloguing in Publication Data; World Health Organization: Geneva, Switzerland, 2009; ISBN 978-92-4-154767-3. [Google Scholar]
- Council Directive (2013/59/Euratom) on Basic Safety Standards for Protection against the Dangers arising from Exposure to Ionising Radiation of 5 December; European Commission (EC): Luxembourg, 2013.
- Commission Recommendation (90/143/Euratom) on the Protection of the Public against Indoor Exposure to Radon of 21 February 1990; European Commission (EC): Luxembourg, 1990.
- Council Directive (96/29/Euratom). Laying Down Basic Safety Standards for the Protection of Health of Workers and the General Public against the Danger Arising from Ionizing Radiation; European Commission (EC): Luxembourg, 1996. [Google Scholar]
- International Commision on Radiological Protection (ICRP). Human Respiratory Tract Model for Radiological Protection; ICRP publication 66, Ann. ICRP; Pergamon: Ottawa, ON, Canada, 1994; Volume 24. [Google Scholar]
- Dubois, G. An Overview of Radon Surveys in Europe; Report EUR21892; EC, Office for Official Publications of the European Communities: Luxembourg, 2005; ISBN 92-79-01066-2. [Google Scholar]
- Pantelić, G.; Čeliković, I.; Živanović, M.; Vukanac, I.; Nikolić, J.K.; Cinelli, G.; Gruber, V. Qualitative overview of indoor radon surveys in Europe. J. Environ. Radioat. 2019, 204, 163–174. [Google Scholar] [CrossRef]
- Spanish Nuclear Safety Council (CSN). Natural Radiation Maps. Viewer: Spanish Radon Potential Map. 2017. Available online: https://www.csn.es/mapa-del-potencial-de-radon-en-espana (accessed on 30 June 2020).
- Federal Office for Radiation Protection (BfS) Viewer: Radon Potential Mapping. Available online: https://www.bfs.de/EN/topics/ion/environment/radon/maps/soil-air.html (accessed on 9 November 2020).
- Institute for Radiological Protection and Nuclear Safety (IRSN) Viewer: Radon Potential Mapping. Available online: https://www.irsn.fr/FR/connaissances/Environnement/expertises-radioactivite-naturelle/radon/Pages/5-cartographie-potentiel-radon-commune.aspx#.X6kGZ_NKiM8 (accessed on 9 November 2020).
- Public Health England (PHE) Viewer: Radon Map. Available online: https://www.ukradon.org/information/ukmaps (accessed on 9 November 2020).
- Austrian Agency for Health and Food Safety Ltd. (AGES) Viewer: Radon Potential Mapping. Available online: https://geogis.ages.at/GEOGIS_RADON.html (accessed on 9 November 2020).
- Federal Agency for Nuclear Control (FANC) Viewer: Radon Potential Mapping. Available online: https://fanc.maps.arcgis.com/apps/Viewer/index.html?appid=015b627fde334c15a28e5f71d0e4011e (accessed on 9 November 2020).
- Environmental Protection Agency of Ireland. (EPA) Viewer: Radon Map. Available online: https://www.epa.ie/radiation/radonmap/ (accessed on 9 November 2020).
- Talavera, G.M.; Pérez, G.A.; Rey, C.; Ramos, L. Mapping radon-prone areas using radiation dose rate and geological information. J. Radiol. Prot. 2013, 33, 605–620. [Google Scholar] [CrossRef] [Green Version]
- Bossew, P. Radon Priority Areas. Definition, estimation and uncertainty. Nucl. Techn. Radiat. Prot. 2018, 33, 286–292. [Google Scholar] [CrossRef] [Green Version]
- Bossew, P.; Cinelli, G.; Ciotoli, G.; Crowley, Q.G.; de Cort, M.; Medina, J.E.; Gruber, V.; Petermann, E.; Tollefsen, T. Development of a Geogenic Radon Hazard Index. Concept, History, Experiences. Int. J. Environ. Res. Public Health 2020, 17, 4134. [Google Scholar] [CrossRef] [PubMed]
- Ielsch, G.; Cushing, M.E.; Combes, P.; Cuney, M. Mapping of the geogenic radon potential in France to improve radon risk management: Methodology and first applications to region Bourgogne. J. Environ. Radioact. 2010, 101, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Ielsch, G.; Cuney, M.; Buscail, F.; Rossi, F.; Leon, A.; Cushing, M.E. Estimation and mapping of uranium content of geological units in France. J. Environ. Radioact. 2017, 166, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Miles, J.C.H.; Appleton, J.D.; Rees, D.M.; Green, B.M.R.; Adlam, K.A.M.; Myers, A.H. Indicative Atlas of Radon in England and Wales. In Health Protection Agency and British Geological Survey; Health Protection Agency: Chilton, UK, 2007; ISBN 978-0-85951-608-2. [Google Scholar]
- Bochicchio, F.; Campos-Venuti, G.; Piermattei, S.; Nuccetelli, C.; Risica, S.; Tommasino, L.; Torri, G.; Magnoni, M.; Agnesod, G.; Sgorbati, G.; et al. Annual average and seasonal variations of residential radon concentration for all the Italian Regions. Radiat. Meas. 2005, 40, 686–694. [Google Scholar] [CrossRef]
- Cafaro, C.; Bossew, P.; Giovani, C.; Garavaglia, M. Definition of radon prone areas in Friuli Venezia Giulia region, Italy, using geostatistical tools. J. Environ. Radioat. 2014, 138, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Dowdall, A.; Murphy, P.; Pollard, D.; Fenton, D. Update of Ireland’s national average indoor radon concentration. Application of a new survey protocol. J. Environ. Radioact. 2016, 169–170, 1–8. [Google Scholar] [CrossRef]
- Metro RADON—Metrology for Radon Monitoring. Available online: http://metroradon.eu/ (accessed on 20 April 2020).
- Ciotoli, G.; Procesi, M.; Finoia, M.; Bossew, P.; Cinelli, G.; Tollefsen, T.; Elìo, J.; Gruber, V. Spatial Multicriteria Decision Analysis (SMCDA) for the construction of the European Geogenic Radon Migration map. In Proceedings of the European Geosciences Union (EGU) General Assembly, Online. 4–8 May 2020. EGU2020-7350. [Google Scholar] [CrossRef]
- Pantelić, G.; Čeliković, I.; Živanović, M.; Vukanac, I.; Nikolić, J.K.; Cinelli, G.; Gruber, V. EC-JRC Technical Reports. Literature Review of Indoor Radon Surveys in Europe; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-97643-8. [Google Scholar]
- Tollefsen, T.; Cinelli, G.; Bossew, P.; Gruber, V.; De Cort, M. From the European indoor radon map towards an atlas of natural radiation. Radiat. Prot. Dosim. 2014, 162, 129–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission-Joint Research Centre (JRC-EC). Nuclear Saferty and Security, REM Project. Indoor Radon Concentration Map. 2018. Available online: https://remon.jrc.ec.europa.eu/About/Atlas-of-Natural-Radiation/Digital-Atlas/Indoor-radon-AM/Indoor-radon-concentration (accessed on 30 June 2020).
- European Commission-EUROSTAT. The GISCO Database Reference System: GISCO Database Manual. 2004. Available online: https://ec.europa.eu/eurostat/web/gisco (accessed on 30 June 2020).
- Dubois, G.; Bossew, P.; Tollefsen, T.; De Cort, M. First steps towards a European atlas of natural radiation: Status of the European indoor radon map. J. Environ. Radioat. 2010, 101, 786–798. [Google Scholar] [CrossRef] [PubMed]
- Bossew, P.; Tollefsen, T.; Cinelli, G.; Gruber, V.; De Cort, M. Status of the European Atlas of Natural Radiation. Radiat. Prot. Dosim. 2015, 167, 29–36. [Google Scholar] [CrossRef]
- Cinelli, G.; Tollefsen, T.; Bossew, P.; Gruber, V.; Bogucarsis, K.; De Felice, L.; De Cort, M. Digital version of the European Atlas of natural radiation. J. Environ. Radioat. 2019, 196, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Spanish Nuclear Safety Council (CSN). Natural Radiation Maps. Brochures, Posters and Triptych: FDE-02.17_Cartography of radon Potential in Spain. 2017. Available online: https://www.csn.es/documents/10182/914801/FDE-02.17+Cartograf%C3%ADa+del+potencial+de+rad%C3%B3n+de+Espa%C3%B1a/de116476-df51-49d9-8efb-665d7036d76c (accessed on 30 June 2020).
- García-Talavera, S.M.M.; Acevedo, F.J.L. CSN Technical Reports Collection 51.2019. INT-04.41 Cartography of Radon Potential in Spain; Legal deposit: M-24725-2019; Nuclear Safety Council (CSN): Madrid, Spain, 2019. [Google Scholar]
- Spanish Nuclear Safety Council (CSN). 2020. Available online: https://www.csn.es/radon (accessed on 30 June 2020).
- Spanish Nuclear Safety Council (CSN). CSN Security Guide Collection 11.01. Guidelines on the Competence of Laboratories and Radon Measurement Services in Air; Nuclear Safety Council (CSN): Madrid, Spain, 2010. [Google Scholar]
- Public Health England (PHE). PHE Validation Scheme for Laboratories. 2018. Available online: https://www.phe-protectionservices.org.uk/cms/assets/gfx/content/resource_3462cs9edda0fd4d.pdf (accessed on 30 June 2020).
- Spanish National Accreditation Entity (ENAC). Accredited Entities. 2019. Available online: https://www.enac.es/ (accessed on 30 June 2020).
- Spanish Nuclear Safety Council (CSN). Download: Map of Natural Gamma Radiation in Spain (MARNA) at a Scale of 1: 1,000,000. 2001. Available online: https://www.csn.es/mapa-de-radiacion-gamma-natural-marna-mapa (accessed on 30 June 2020).
- Mahou, E.S.; Amigot, J.A.F.; Espasa, J.B.; Benito, M.C.M.; Pomar, D.G.; Del Pozo, J.M.; Del Busto, J.L. CSN Technical Reports Collection 5.2000. INT-04-02. Marna Project. Map of Natural Gamma Radiation; Legal deposit: M-668-2001; Nuclear Safety Council (CSN): Madrid, Spain, 2000; ISBN 84-95341-12-3. [Google Scholar]
- Geological and Mining Institute of Spain (IGME). Download: Lithostratigraphic, Permeability and Hydrogeological Map of Spain at a Scale of 1: 200,000. 2009. Available online: http://info.igme.es/cartografiadigital/portada/default.aspx?Intranet=false&language=es (accessed on 30 June 2020).
- Kemski, J.; Siehl, A.; Stegemann, R.; Valdivia-Manchego, M. Mapping the geogenic radon potential in Germany. Sci. Total Environ. 2001, 272, 217–230. [Google Scholar] [CrossRef]
- Kemski, J.; Klinger, R.; Siehl, A.; Valdivia-Manchego, M. From radon hazard to risk prediction-based on geological maps, soil gas and indoor measurements in Germany. Environ. Geol. 2009, 56, 1269–1279. [Google Scholar] [CrossRef]
- ESRI 2011 ArcGIS Desktop: Release 10; Environmental Systems Research Institute: Redlands, CA, USA, 2011.
- Synergy Software; Kaleida Graph Version 4.1; Synergy Software: Reading, PA, USA, 2016.
- Spanish National Geographic Institute (IGN)-Spanish National Center of Geographic Information (CNIG). Download: National Atlas of Spain at a Scale of 1:3,000,000. 2019. Available online: http://centrodedescargas.cnig.es/ (accessed on 30 June 2020).
- Environmental Systems Research Institute (ESRI). ESRI Data & Maps: Point Density. 2019. Available online: http://desktop.arcgis.com/es/arcmap/10.3/tools/spatial-analyst-toolbox/point-density.htm (accessed on 30 June 2020).
- Miguel, M.G.T.S.; Matarranz, J.L.M.; De Miengo, R.G.; Cadierno, J.P.G.; Mahou, E.S. CSN Technical Reports Collection 38.2013. INT-04-31. Predictive Map of Radon Exposure in Spain; Legal deposit: M-1014-2013; Nuclear Safety Council (CSN): Madrid, Spain, 2013. [Google Scholar]
- Fernández, C.S.; Villar, A.F.; Merino, I.F.; Gutiérrez-Villanueva, J.L.; Matarranz, J.L.M.; Talavera, M.G.; Poncela, L.S.Q. The Spanish indoor radon mapping strategy. Radiat. Prot. Dosim. 2014, 162, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Fernández, C.S.; Poncela, L.S.Q.; Villar, A.F.; Merino, I.F.; Villanueva, J.L.G.; González, S.C.; Talavera, M.G. Spanish experience on the design of radon surveys based on the use of geogenic information. J. Environ. Radioat. 2017, 166, 390–397. [Google Scholar] [CrossRef] [Green Version]
- Poncela, L.S.Q.; Soto, J.; Fernández, L. Geology and radon levels in Spanish homes. Rev. Esp. Fis. 1992, 6, 35–37. [Google Scholar]
- Salminen, R.; Batista, M.J.; Bidovec, M.; Demetriades, A.; De Vivo, B.; De Vos, W.; Duris, M.; Gilucis, A.; Gregorauskiene, V.; Halamic, J.; et al. FOREGS-Geochemical Atlas of Europe, Part 1: Background Information, Methodology and Maps; Geological Survey of Finland: Espoo, Finland, 2005; ISBN 951-690-913-2. [Google Scholar]
- Geological and Mining Institute of Spain (IGME). Legend Lithostratigraphic, Permeability and Hydrogeological Map of Spain at a Scale of 1: 200,000. 2009. Available online: http://info.igme.es/cartografiadigital/datos/tematicos/Leyendas/Leyenda_litoestratigrafia_A0.pdf (accessed on 30 June 2020).
222Rn Concentration (Bq/m3) | Calculated Potential Radon Map (Value) | Pearson’s Correlation Coefficient (R) | Lithostratigraphies and Terrestrial Gamma Radiation Rates Intersections Value (Value) |
---|---|---|---|
>400 | 18 to 14 | >+0.75 | 9 |
301–400 | 13 to 10 | +0.74 to +0.26 | 7 to 8 |
201–300 | 9 to 7 | +0.25 to −0.25 | 6 to 4 |
101–200 | 6 to 4 | −0.26 to −0.74 | 3 to 2 |
<100 | 3 to 1 | <−0.75 | 1 |
Number of Measurements | Arithmetic Mean (Bq/m3) | Arithmetic Standard Deviation | Geometric Mean (Bq/m3) | Geometric Standard Deviation | 1-st Quartile (Bq/m3) | Median (Bq/m3) | 3-rd Quartile (Bq/m3) | Range (Bq/m3) | Skewness | Kurtosis | |
---|---|---|---|---|---|---|---|---|---|---|---|
Spain | 11,500 | 101 | 260.6 | 58 | 2.6 | 30 | 56 | 110 | 10–15,400 | 31.5 | 1497 |
222Rn Concentration Arithmetic Mean (A.M) (Bq/m3) | No of 10 km × 10 km Cells (%) | No of Measurements per Cell (Average) | 1 Measurements (%) | 2 to 6 Measurements (%) | >6 Measurements (%) |
---|---|---|---|---|---|
>400 | 1 | 3.9 | 32 | 52 | 16 |
301–400 | 1 | 4.2 | 34 | 45 | 21 |
201–300 | 4 | 5.2 | 37 | 40 | 23 |
101–200 | 18 | 4.9 | 37 | 42 | 21 |
<100 | 76 | 2.8 | 50 | 41 | 9 |
Radon Potential Calculated Map | ||||||||
222Rn Concentration A.M (Bq/m3) | Success (%) | Failure (%) | Gamma Radiation Rate (nGy/h) | Success (%) | Failure (%) | Lithostratigraphies 1:200,000 (Class) | Success (%) | Failure (%) |
>400 | 68 | 32 | >167 | 90 | 10 | 9 | 96 | 4 |
301–400 | 20 | 80 | 123–167 | 8 | 92 | 8, 7 | 36 | 64 |
201–300 | 15 | 85 | 89–122 | 3 | 97 | 6, 5, 4 | 27 | 73 |
101–200 | 15 | 85 | 45–88 | 41 | 59 | 3, 2 | 65 | 35 |
<100 | 11 | 89 | <48 | 0 | 100 | 1 | 80 | 20 |
12 | 86 | 32 | 68 | 47 | 53 | |||
Radon Potential Map P90 CSN | ||||||||
222Rn Concentration A.M (Bq/m3) | Success (%) | Failure (%) | Gamma Radiation Rate (nGy/h) | Success (%) | Failure (%) | Lithostratigraphies 1:200,000 (Class) | Success (%) | Failure (%) |
>400 | 64 | 36 | >167 | 53 | 47 | 9 | 89 | 11 |
301–400 | 3 | 97 | 123–167 | 2 | 98 | 8, 7 | 0 | 100 |
201–300 | 30 | 70 | 89–122 | 31 | 69 | 6, 5, 4 | 31 | 69 |
101–200 | 37 | 63 | 45–88 | 72 | 28 | 3, 2 | 91 | 9 |
<100 | 2 | 98 | <48 | 0 | 100 | 1 | 0 | 100 |
10 | 90 | 57 | 38 | 47 | 53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández, A.; Sainz, C.; Celaya, S.; Quindós, L.; Rábago, D.; Fuente, I. A New Methodology for Defining Radon Priority Areas in Spain. Int. J. Environ. Res. Public Health 2021, 18, 1352. https://doi.org/10.3390/ijerph18031352
Fernández A, Sainz C, Celaya S, Quindós L, Rábago D, Fuente I. A New Methodology for Defining Radon Priority Areas in Spain. International Journal of Environmental Research and Public Health. 2021; 18(3):1352. https://doi.org/10.3390/ijerph18031352
Chicago/Turabian StyleFernández, Alicia, Carlos Sainz, Santiago Celaya, Luis Quindós, Daniel Rábago, and Ismael Fuente. 2021. "A New Methodology for Defining Radon Priority Areas in Spain" International Journal of Environmental Research and Public Health 18, no. 3: 1352. https://doi.org/10.3390/ijerph18031352
APA StyleFernández, A., Sainz, C., Celaya, S., Quindós, L., Rábago, D., & Fuente, I. (2021). A New Methodology for Defining Radon Priority Areas in Spain. International Journal of Environmental Research and Public Health, 18(3), 1352. https://doi.org/10.3390/ijerph18031352