The Relationship between Environmental Regulations and Green Economic Efficiency: A Study Based on the Provinces in China
Abstract
:1. Introduction
2. Literature Review and Hypothesis
3. Data and Models
3.1. Data
3.2. Green Economic Efficiency Measurement Model
3.2.1. Variable Selection
Investment Indicators
Desirable Output Indicators
Undesirable Output Indicators
3.2.2. Super-SBM Model with Undesirable Outputs
3.3. Regression Model
3.3.1. Variable Selection
Explained Variable
Explanatory Variable
Control Variables
3.3.2. Tobit Model
3.3.3. Calculation of the Critical Value
The First Derivative Test
- (1)
- If f ‘(x) changes from positive to negative, then f(x) has a relative maximum at x0.
- (2)
- If f ‘(x) changes from negative to positive, then f(x) has a relative minimum at x0.
- (3)
- If f ‘(x) does not change sign at x0, then f(x) has neither a maximum nor a minimum at x0.
4. Empirical Test and Results
4.1. Evaluation of Green Economic Efficiency
4.2. Regression Analysis
4.2.1. The Impact of Environmental Regulations on Green Economic Efficiency
4.2.2. Determination of Critical Value of Environmental Regulations
5. Conclusions and Suggestions
5.1. Conclusions
5.2. Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, E.M. Green TFP Intensity Impact on Sustainable East Asian Productivity Growth. Econ. Anal. Pol. 2012, 42, 67–78. [Google Scholar] [CrossRef]
- Tao, X.; Wang, P.; Zhu, B. Provincial green economic efficiency of China: A non-separable input–output SBM approach. Appl. Energy 2016, 171, 58–66. [Google Scholar] [CrossRef]
- Zhao, P.J.; Zeng, L.E.; Lu, H.Y.; Zhou, Y.; Hu, H.Y.; Wei, X.Y. Green economic efficiency and its influencing factors in China from 2008 to 2017: Based on the super-SBM model with undesirable outputs and spatial Dubin model. Sci. Total Environ. 2020, 741, 140026. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Hong, J.K.; Liu, G.W.; Xu, P.P.; Tang, M.H.; Li, Z.F. Regional efficiency disparities in China’s construction sector: A combination of multiregional input–output and data envelopment analyses. Appl. Energy 2020, 257, 113964. [Google Scholar] [CrossRef]
- Qian, Z.M.; Liu, X.C. Environmental Regulation and Green Economic Efficiency. Stat. Res. 2015, 32, 12–18. [Google Scholar]
- Christainsen, G.B.; Haveman, R.H. The contribution of environmental regulations to the slowdown in productivity growth. J. Environ. Econ. Manag. 1981, 8, 381–390. [Google Scholar] [CrossRef]
- Ge, T.; Qiu, W.; Li, J.Y.; Hao, X.L. The impact of environmental regulation efficiency loss on inclusive growth: Evidence from China. J. Environ. Manag. 2020, 268, 110700. [Google Scholar] [CrossRef]
- Porter, M.E. America’s Green Strategy. Sci. Am. 1991, 264, 168. [Google Scholar] [CrossRef]
- Lanoie, P.; Laurent-Lucchetti, J.; Johnstone, N.; Ambec, S. Environmental Policy, Innovation and Performance: New Insights on the Porter Hypothesis. J. Econ. Manag. Strategy 2011, 20, 803–842. [Google Scholar] [CrossRef] [Green Version]
- Costa-Campi, M.T.; García-Quevedo, J.; Martínez-Ros, E. What are the determinants of investment in environmental R&D? Energy Policy 2017, 104, 455–465. [Google Scholar]
- Rennings, K.; Rammer, C. The Impact of Regulation-Driven Environmental Innovation on Innovation Success and Firm Performance. Ind. Innov. 2011, 18, 255–283. [Google Scholar] [CrossRef]
- Aresta, M. Carbon dioxide utilization: The way to the circular economy. Greenh. Gases Sci. Technol. 2019, 9, 610–612. [Google Scholar] [CrossRef]
- Deng, Z.H.; Lv, L.S.; Huang, W.L.; Shi, Y.D. A High Efficiency and Low Carbon Oriented Machining Process Route Optimization Model and Its Application. Int. J. Pr. Eng. Man. Gt. 2019, 6, 23–41. [Google Scholar] [CrossRef]
- Gollop, F.M.; Roberts, M.J. Environmental Regulations and Productivity Growth: The Case of Fossil-fueled Electric Power Generation. J. Polit. Econ. 1983, 91, 654–674. [Google Scholar] [CrossRef]
- Zefeng, M.; Gang, Z.; Xiaorui, X.; Yongmin, S.; Junjiao, H. The extension of the Porter hypothesis: Can the role of environmental regulation on economic development be affected by other dimensional regulations? J. Clean. Prod. 2018, 203, 933–942. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, J. Innovation Support, Environmental Regulation and Technology Emission Reduction. Financ. Econ. 2019, 2, 91–105. [Google Scholar]
- Li, G.; Zakari, A.; Tawiah, V. Energy resource melioration and CO2 emissions in China and Nigeria: Efficiency and trade perspectives. Resour. Pol. 2020, 68, 101769. [Google Scholar] [CrossRef]
- Li, G.; Zakar, A.; Tawiah, V. Does environmental diplomacy reduce CO2 emissions? A panel group means analysis. Sci. Total Environ. 2020, 722, 137790. [Google Scholar] [CrossRef]
- Wu, W.Q.; Liu, Y.Q.; Wu, C.-H.; Tsai, S.-B. An empirical study on government direct environmental regulation and heterogeneous innovation investment. J. Clean. Prod. 2020, 254, 120079. [Google Scholar] [CrossRef]
- Hafezi, M.; Zolfagharinia, H. Green product development and environmental performance: Investigating the role of government regulations. Int. J. Product. Econ. 2018, 204, 395–410. [Google Scholar] [CrossRef]
- Huang, Q.H.; Hu, J.F.; Chen, X.D. Environmental regulation and green total factor productivity: Dilemma or win-win? China Popul. Resour. Environ. 2018, 28, 140–149. [Google Scholar]
- Kesidou, E.; Wu, L.C. Stringency of environmental regulation and eco-innovation: Evidence from the eleventh Five-Year Plan and green patents. Econ. Lett. 2020, 190, 109090. [Google Scholar] [CrossRef]
- Kim, Y.J.; Brown, M. Impact of domestic energy-efficiency policies on foreign innovation: The case of lighting technologies. Energy Policy 2019, 128, 539–552. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.Y.; Song, D.Y. How does environmental regulation break the resource curse: Theoretical and empirical study on China. Resour. Pol. 2019, 64, 101480. [Google Scholar] [CrossRef]
- Greenstone, M.; Hanna, R. Environmental Regulations, Air and Water Pollution, and Infant Mortality in India. Am. Econ. Rev. 2014, 104, 3038–3072. [Google Scholar] [CrossRef] [Green Version]
- Hashmi, R.; Alam, K. Dynamic relationship among environmental regulation, innovation, CO2 emissions, population, and economic growth in OECD countries: A panel investigation. J. Clean. Prod. 2019, 231, 1100–1109. [Google Scholar] [CrossRef]
- Chen, X.; Chang, C.P. Fiscal decentralization, environmental regulation, and pollution: A spatial investigation. Environ.Sci. Pollut. Res. 2020, 27, 31946–31968. [Google Scholar] [CrossRef]
- Hamamoto, M. Environmental regulation and the productivity of Japanese manufacturing industries. Resour. Energy Econ. 2006, 28, 299–312. [Google Scholar] [CrossRef]
- Hille, E.; Möbius, P. Environmental Policy, Innovation, and Productivity Growth: Controlling the Effects of Regulation and Endogeneity. Environ. Resour. Econ. 2018, 73, 1315–1355. [Google Scholar] [CrossRef]
- Ciocci, R.; Pecht, M. Impact of environmental regulations on green electronics manufacture. Microelectron. Int. 2006, 23, 45–50. [Google Scholar] [CrossRef]
- He, A.P.; An, M.T. Competition among local governments, environmental regulation and green development efficiency. China Popul. Resour. Environ. 2019, 29, 21–30. [Google Scholar]
- Zhang, Z.D.; Qin, S.Y. Spatial Effects of Environmental Regulation and Industrial Structure Adjustment on Green Development—Empirical Study Based on Yangtze River Economic Belt Cities. Modern. Econ. Res. 2018, 11, 79–86. [Google Scholar]
- Kuosmanen, T.; Bijsterbosch, N.; Dellink, R. Environmental cost–benefit analysis of alternative timing strategies in greenhouse gas abatement: A data envelopment analysis approach. Ecolog. Econ. 2009, 68, 1633–1642. [Google Scholar] [CrossRef]
- Li, H.L.; Zhu, X.H.; Chen, J.Y.; Jiang, F.T. Environmental regulations, environmental governance efficiency and the green transformation of China’s iron and steel enterprises. Ecol. Econ. 2019, 165, 106397. [Google Scholar] [CrossRef]
- Yuan, Y.J.; Xie, R.H. Environmental Regulation and the ‘Green’ Productivity Growth of China’s Industry. China Soft Sci. 2016, 7, 144–154. [Google Scholar]
- Wang, Y.; Sun, X.; Guo, X. Environmental regulation and green productivity growth: Empirical evidence on the Porter Hypothesis from OECD industrial sectors. Energy Policy 2019, 132, 611–619. [Google Scholar] [CrossRef]
- Hu, S.; Liu, S. Do the coupling effects of environmental regulation and R&D subsidies work in the development of green innovation? Empirical evidence from China. Clean Technol. Environ. Policy 2019, 21, 1739–1749. [Google Scholar]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Tone, K. A Slacks-Based Measure of Super-Efficiency in Data Envelopment Analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Tone, K. Dealing with undesirable outputs in DEA: A Slacks-Based Measure (SBM) approach. N. Am. Product. Workshop 2004, 2004, 44–45. [Google Scholar]
- Li, H.; Fang, K.N.; Yang, W.; Wang, D.; Hong, X.X. Regional environmental efficiency evaluation in China: Analysis based on the Super-SBM model with undesirable outputs. Math. Comput. Model. 2013, 58, 1018–1031. [Google Scholar] [CrossRef]
- Su, S.; Zhang, F. Modeling the role of environmental regulations in regional green economy efficiency of China: Empirical evidence from super efficiency DEA-Tobit model. J. Environ. Manag. 2020, 261, 110227. [Google Scholar]
- Porter, M.; Van der Linde, C. Green and Competitive: Ending the Stalemate. Harv. Bus. Rev. 1995, 73, 120–134. [Google Scholar]
- Zhang, Y.H.; Chen, J.L.; Cheng, Y. Study on the Influence Mechanism of Environmental Regulation on Green Economy Efficiency in China-Empirical Analysis Based on Super Efficiency Model and Spatial Panel Metering Model. Resour. Environ. Yangtze Basin 2018, 27, 2407–2418. [Google Scholar]
- Chen, Y.Q.; Zhao, L.M. Exploring the relation between the industrial structure and the eco-environment based on an integrated approach: A case study of Beijing, China. Ecol. Indic. 2019, 103, 83–93. [Google Scholar] [CrossRef]
- Zhou, Y.; Kong, Y.; Sha, J.; Wang, H.K. The role of industrial structure upgrades in eco-efficiency evolution: Spatial correlation and spillover effects. Sci. Total Environ. 2019, 687, 1327–1336. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, M.; Zhou, Y.; Wang, P.; Sheng, J.; He, K.; Wei, Y.M.; Xie, R. Exploring the effect of industrial structure adjustment on interprovincial green development efficiency in China: A novel integrated approach. Energy Policy 2019, 134, 110946. [Google Scholar] [CrossRef]
First-Level Indicators | Second-Level Indicators | Third-Level Indicators |
---|---|---|
Input indicators | Capital investment | Whole society fixed-asset investment |
Labor input | Employees in urban units | |
Energy input | Energy industry investment | |
Output indicators | Desirable output | Gross regional domestic product |
Undesirable outputs | Industrial wastewater discharge | |
Sulfur dioxide emissions | ||
Industrial solid-waste discharge |
Regions/Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Mean | Rank |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 1.169 | 1.165 | 1.167 | 1.150 | 1.157 | 1.375 | 1.167 | 1.195 | 1.188 | 1.208 | 1.193 | 2 |
Tianjin | 1.083 | 1.114 | 1.107 | 1.115 | 1.085 | 1.116 | 1.095 | 1.092 | 1.092 | 1.087 | 1.099 | 4 |
Hebei | 0.487 | 0.510 | 0.451 | 0.428 | 0.413 | 0.552 | 0.726 | 0.462 | 0.406 | 0.536 | 0.490 | 14 |
Liaoning | 0.368 | 0.415 | 0.435 | 0.431 | 0.461 | 0.497 | 1.127 | 0.582 | 0.440 | 0.478 | 0.496 | 13 |
Shanghai | 1.033 | 1.028 | 1.078 | 1.089 | 1.116 | 1.156 | 1.074 | 1.145 | 1.229 | 1.136 | 1.107 | 3 |
Jiangsu | 1.066 | 1.087 | 1.085 | 1.081 | 1.087 | 1.258 | 1.041 | 1.057 | 1.044 | 1.052 | 1.084 | 6 |
Zhejiang | 0.791 | 0.805 | 0.839 | 0.718 | 0.716 | 1.003 | 1.127 | 0.705 | 0.727 | 0.68 | 0.801 | 11 |
Fujian | 0.432 | 0.467 | 0.394 | 0.366 | 0.372 | 1.124 | 0.714 | 0.391 | 0.370 | 0.359 | 0.463 | 16 |
Shandong | 1.065 | 1.054 | 1.036 | 1.039 | 1.026 | 1.020 | 1.095 | 1.025 | 1.017 | 1.009 | 1.038 | 7 |
Guangdong | 1.096 | 1.099 | 1.088 | 1.087 | 1.094 | 1.093 | 1.097 | 1.095 | 1.096 | 1.090 | 1.093 | 5 |
Hainan | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 8 |
Eastern | 0.811 | 0.833 | 0.818 | 0.797 | 0.800 | 0.976 | 1.011 | 0.832 | 0.803 | 0.817 | 0.847 | |
Shanxi | 0.363 | 0.328 | 0.317 | 0.320 | 0.289 | 0.445 | 1.038 | 0.252 | 0.238 | 0.380 | 0.360 | 28 |
Heilongjiang | 0.413 | 0.401 | 0.381 | 0.325 | 0.327 | 0.627 | 0.48 | 0.370 | 0.347 | 0.339 | 0.393 | 25 |
Anhui | 0.353 | 0.400 | 0.353 | 0.368 | 0.397 | 0.535 | 1.010 | 0.422 | 0.370 | 0.358 | 0.431 | 20 |
Jiangxi | 0.433 | 0.411 | 0.379 | 0.375 | 0.403 | 0.323 | 0.302 | 1.168 | 1.262 | 0.365 | 0.471 | 15 |
Henan | 0.396 | 0.398 | 0.391 | 0.383 | 0.413 | 0.394 | 0.455 | 0.416 | 0.362 | 0.337 | 0.393 | 24 |
Jilin | 0.358 | 0.418 | 0.393 | 0.434 | 0.492 | 0.787 | 0.529 | 0.456 | 0.473 | 0.376 | 0.460 | 17 |
Hubei | 0.435 | 0.452 | 0.393 | 0.378 | 0.445 | 0.565 | 0.538 | 0.503 | 0.432 | 0.438 | 0.454 | 18 |
Hunan | 0.448 | 0.487 | 0.403 | 0.387 | 0.441 | 0.705 | 0.604 | 0.715 | 1.003 | 0.665 | 0.560 | 12 |
Middle | 0.398 | 0.410 | 0.375 | 0.370 | 0.396 | 0.527 | 0.575 | 0.486 | 0.481 | 0.397 | 0.437 | |
Sichuan | 0.352 | 0.342 | 0.308 | 0.335 | 0.373 | 0.463 | 0.474 | 0.354 | 0.326 | 0.333 | 0.362 | 27 |
Chongqing | 0.393 | 0.422 | 0.375 | 0.381 | 0.398 | 1.100 | 0.642 | 0.387 | 0.361 | 0.387 | 0.453 | 19 |
Guizhou | 0.385 | 0.417 | 0.380 | 0.309 | 0.333 | 0.465 | 0.531 | 0.353 | 0.330 | 0.321 | 0.377 | 26 |
Yunnan | 0.353 | 0.366 | 0.341 | 0.285 | 0.290 | 0.437 | 0.494 | 0.298 | 0.264 | 0.266 | 0.332 | 29 |
Shaanxi | 0.364 | 0.391 | 0.388 | 0.364 | 0.394 | 0.662 | 1.117 | 0.300 | 0.280 | 0.278 | 0.411 | 21 |
Gansu | 0.416 | 0.427 | 0.387 | 0.349 | 0.345 | 0.361 | 1.506 | 0.325 | 0.291 | 0.290 | 0.407 | 22 |
Qinghai | 1.591 | 1.516 | 1.506 | 1.399 | 1.409 | 1.548 | 1.467 | 1.359 | 1.309 | 1.284 | 1.435 | 1 |
Ningxia | 0.584 | 0.622 | 0.576 | 1.099 | 1.082 | 1.209 | 1.082 | 1.122 | 1.157 | 1.183 | 0.933 | 9 |
Xinjiang | 0.334 | 0.317 | 0.312 | 0.298 | 0.298 | 0.534 | 0.465 | 0.273 | 0.265 | 0.258 | 0.326 | 30 |
Inner Mongolia | 1.031 | 1.030 | 1.012 | 1.041 | 1.048 | 1.037 | 1.026 | 1.016 | 0.477 | 0.382 | 0.864 | 10 |
Guangxi | 0.376 | 0.384 | 0.338 | 0.372 | 0.390 | 0.504 | 0.649 | 0.418 | 0.370 | 0.314 | 0.403 | 23 |
Western | 0.484 | 0.495 | 0.463 | 0.471 | 0.487 | 0.673 | 0.781 | 0.470 | 0.413 | 0.400 | 0.503 | |
China | 0.555 | 0.569 | 0.539 | 0.536 | 0.553 | 0.723 | 0.791 | 0.585 | 0.549 | 0.519 | 0.586 |
Variable | China | East | Middle | West |
---|---|---|---|---|
GEE | GEE | GEE | GEE | |
ER2 | −0.003 ** | 0.046 *** | −0.069 * | −0.005 ** |
(−2.037) | (5.085) | (−1.842) | (−2.089) | |
ER | 0.104 *** | −0.989 *** | 1.634 * | 0.096 ** |
(5.220) | (−4.746) | (1.804) | (2.591) | |
GDP | 0.540 *** | 0.180 | 0.046 | 0.536 *** |
(5.633) | (1.615) | (0.235) | (2.820) | |
IND | −0.178 *** | −0.320 *** | 0.073 | −0.059 |
(−4.484) | (−5.722) | (0.557) | (−0.829) | |
FA | −0.272 *** | 0.035 | 0.154 | −0.307 ** |
(−3.983) | (0.402) | (1.478) | (−2.158) | |
OPEN | −0.013 | 0.254 *** | −0.023 | −0.217 *** |
(−0.472) | (5.329) | (−0.297) | (−5.165) | |
URB | −0.177 | −0.193 | 0.095 | 0.059 |
(−0.784) | (−0.690) | (0.193) | (0.142) | |
Constant | −4.388 *** | 4.619 ** | −9.992 * | −3.416 |
(−3.737) | (2.515) | (−1.738) | (−1.491) |
Variable | X3 | X4 | X5 | X6 | X7 |
---|---|---|---|---|---|
k | −0.1 | 0.026 | −0.053 | −0.107 | 0.094 |
b | 10.692 | 8.442 | 0.271 | 6.522 | −1.743 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, G.; Wang, X.; Wang, L.; Guo, Y. The Relationship between Environmental Regulations and Green Economic Efficiency: A Study Based on the Provinces in China. Int. J. Environ. Res. Public Health 2021, 18, 889. https://doi.org/10.3390/ijerph18030889
Luo G, Wang X, Wang L, Guo Y. The Relationship between Environmental Regulations and Green Economic Efficiency: A Study Based on the Provinces in China. International Journal of Environmental Research and Public Health. 2021; 18(3):889. https://doi.org/10.3390/ijerph18030889
Chicago/Turabian StyleLuo, Gongli, Xiaotong Wang, Lu Wang, and Yanlu Guo. 2021. "The Relationship between Environmental Regulations and Green Economic Efficiency: A Study Based on the Provinces in China" International Journal of Environmental Research and Public Health 18, no. 3: 889. https://doi.org/10.3390/ijerph18030889
APA StyleLuo, G., Wang, X., Wang, L., & Guo, Y. (2021). The Relationship between Environmental Regulations and Green Economic Efficiency: A Study Based on the Provinces in China. International Journal of Environmental Research and Public Health, 18(3), 889. https://doi.org/10.3390/ijerph18030889