Characterization of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolates from Jurong Lake, Singapore with Whole-Genome-Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Processing
2.2. ESBL-Producing Bacteria Isolation
2.3. Antimicrobial Susceptibility Test
2.4. DNA extraction and Next-Generation Sequencing
2.5. Whole-Genome Sequencing Analysis
2.6. Phylogenetic Analysis
2.7. Conjugation Experiment to Test the Transferability of the Mcr-1 Gene
3. Results
3.1. Genome Profile of ESBL-Producing E. coli Isolates
3.2. AMR Genes of the Isolates
3.3. Phenotype and Genotype Comparison
3.4. Phylogenetic Analysis
3.5. Location Determined of Selected AMR Genes and Genetic Environment Analysis of Blactx-Ms
3.6. Co-Conjugation of Mcr-1 Gene and Blatem-1 Gene
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rupp, M.E.; Fey, P.D. Extended spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. Drugs 2003, 63, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Van Hoek, A.H.A.M.; Mevius, D.; Guerra, B.; Mullany, P.; Roberts, A.P.; Aarts, H. Acquired Antibiotic Resistance Genes: An Overview. Front. Microbiol. 2011, 2, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merino, I.; Hernández-García, M.; Turrientes, M.-C.; Pérez-Viso, B.; López-Fresneña, N.; Diaz-Agero, C.; Maechler, F.; Fankhauser-Rodriguez, C.; Kola, A.; Schrenzel, J.; et al. Emergence of ESBL-producing Escherichia coli ST131-C1-M27 clade colonizing patients in Europe. J. Antimicrob. Chemother. 2018, 73, 2973–2980. [Google Scholar] [CrossRef]
- Petty, N.K.; Ben Zakour, N.L.; Stanton-Cook, M.; Skippington, E.; Totsika, M.; Forde, B.M.; Phan, M.-D.; Moriel, D.G.; Peters, K.M.; Davies, M.; et al. Global dissemination of a multidrug resistant Escherichia coli clone. Proc. Natl. Acad. Sci. USA 2014, 111, 5694–5699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, M.A.L.-V.; Dierikx, C.; Stuart, J.C.; Voets, G.; Munckhof, M.V.D.; Van Essen-Zandbergen, A.; Platteel, T.; Fluit, A.; Van De Sande-Bruinsma, N.; Scharinga, J.; et al. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin. Microbiol. Infect. 2011, 17, 873–880. [Google Scholar] [CrossRef] [Green Version]
- Jemima, S.; Verghese, S. Multiplex PCR for blaCTX-M & blaSHV in the extended spectrum beta lactamase (ESBL) producing gram-negative isolates. Indian J. Med. Res. 2008, 128, 313. [Google Scholar]
- Haque, A.; Yoshizumi, A.; Saga, T.; Ishii, Y.; Tateda, K. ESBL-producing Enterobacteriaceae in environmental water in Dhaka, Bangladesh. J. Infect. Chemother. 2014, 20, 735–737. [Google Scholar] [CrossRef]
- Said, L.B.; Jouini, A.; Alonso, C.A.; Klibi, N.; Dziri, R.; Boudabous, A.; Slama, K.B.; Torres, C. Characteristics of extended-spectrum β-lactamase (ESBL)-and pAmpC beta-lactamase-producing Enterobacteriaceae of water samples in Tunisia. Sci. Total Environ. 2016, 550, 1103–1109. [Google Scholar] [CrossRef]
- Wu, D.; Su, Y.; Xi, H.; Chen, X.; Xie, B. Urban and agriculturally influenced water contribute differently to the spread of antibiotic resistance genes in a mega-city river network. Water Res. 2019, 158, 11–21. [Google Scholar] [CrossRef]
- Manaia, C.M. Assessing the Risk of Antibiotic Resistance Transmission from the Environment to Humans: Non-Direct Proportionality between Abundance and Risk. Trends Microbiol. 2017, 25, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y. Optimised protocol of QIAamp® DNA mini Kit for bacteria genomic DNA extraction from both pure and mixture sample. Protoc. Exch. 2019. [Google Scholar] [CrossRef]
- Guo, S.; Tay, M.Y.; Aung, K.T.; Seow, K.L.; Ng, L.C.; Purbojati, R.W.; Drautz-Moses, D.I.; Schuster, S.C.; Schlundt, J. Phenotypic and genotypic characterization of antimicrobial resistant Escherichia coli isolated from ready-to-eat food in Singapore using disk diffusion, broth microdilution and whole genome sequencing methods. Food Control. 2019, 99, 89–97. [Google Scholar] [CrossRef]
- Larsen, M.V.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, R.L.; Jelsbak, L.; Sicheritz-Pontén, T.; Ussery, D.W.; Aarestrup, F.M.; et al. Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria. J. Clin. Microbiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef] [PubMed]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genom. 2008, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Siguier, P. ISfinder: The reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006, 34 (Suppl. 1), D32–D36. [Google Scholar] [CrossRef] [Green Version]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef] [Green Version]
- Chong, Y.; Shimoda, S.; Shimono, N. Current epidemiology, genetic evolution and clinical impact of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Infect. Genet. Evol. 2018, 61, 185–188. [Google Scholar] [CrossRef]
- Franco, A.; Leekitcharoenphon, P.; Feltrin, F.; Alba, P.; Cordaro, G.; Iurescia, M.; Tolli, R.; D’Incau, M.; Staffolani, M.; Di Giannatale, E.; et al. Emergence of a Clonal Lineage of Multidrug-Resistant ESBL-Producing Salmonella Infantis Transmitted from Broilers and Broiler Meat to Humans in Italy between 2011 and 2014. PLoS ONE 2015, 10, e0144802. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Aung, K.T.; Leekitcharoenphon, P.; Tay, M.Y.F.; Seow, K.L.G.; Zhong, Y.; Ng, L.C.; Aarestrup, F.M.; Schlundt, J. Prevalence and genomic analysis of ESBL-producing Escherichia coli in retail raw meats in Singapore. J. Antimicrob. Chemother. 2020. [Google Scholar] [CrossRef]
- Ng, C.; Chen, H.; Goh, S.G.; Haller, L.; Wu, Z.; Charles, F.R.; Trottet, A.; Gin, K.Y.-H. Microbial water quality and the detection of multidrug resistant E. coli and antibiotic resistance genes in aquaculture sites of Singapore. Mar. Pollut. Bull. 2018, 135, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Mazzariol, A.; Bazaj, A.; Cornaglia, G. Multi-drug-resistant Gram-negative bacteria causing urinary tract infections: A review. J. Chemother. 2017, 29, 2–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.R.; Johnston, B.; Clabots, C.; Kuskowski, M.A.; Castanheira, M. Escherichia coliSequence Type ST131 as the Major Cause of Serious Multidrug-ResistantE. coliInfections in the United States. Clin. Infect. Dis. 2010, 51, 286–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olesen, B.; Hansen, D.S.; Nilsson, F.; Frimodt-Møller, J.; Leihof, R.F.; Struve, C.; Scheutz, F.; Johnston, B.; Krogfelt, K.A.; Johnson, J.R. Prevalence and Characteristics of the Epidemic Multiresistant Escherichia coli ST131 Clonal Group among Extended-Spectrum Beta-Lactamase-Producing E. coli Isolates in Copenhagen, Denmark. J. Clin. Microbiol. 2013, 51, 1779–1785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, P.N.; Ben Zakour, N.L.; Roberts, L.W.; Wailan, A.M.; Zowawi, H.M.; Tambyah, P.A.; Lye, D.C.; Jureen, R.; Lee, T.H.; Yin, M.; et al. Whole genome analysis of cephalosporin-resistant Escherichia coli from bloodstream infections in Australia, New Zealand and Singapore: High prevalence of CMY-2 producers and ST131 carrying blaCTX-M-15 and blaCTX-M-27. J. Antimicrob. Chemother. 2017, 73, 634–642. [Google Scholar] [CrossRef]
- Blanc, V.; Leflon-Guibout, V.; Blanco, J.; Haenni, M.; Madec, J.-Y.; Rafignon, G.; Bruno, P.; Mora, A.; Lopez, C.; Dahbi, G.; et al. Prevalence of day-care centre children (France) with faecal CTX-M-producing Escherichia coli comprising O25b:H4 and O16:H5 ST131 strains. J. Antimicrob. Chemother. 2014, 69, 1231–1237. [Google Scholar] [CrossRef]
- Dhanji, H.; Patel, R.; Wall, R.; Doumith, M.; Hope, R.; Livermore, D.M.; Woodford, N. Variation in the genetic environments of blaCTX-M-15 in Escherichia coli from the faeces of travellers returning to the United Kingdom. J. Antimicrob. Chemother. 2011, 66, 1005–1012. [Google Scholar] [CrossRef]
- Jarvis, K.G.; Grim, C.J.; Franco, A.A.; Gopinath, G.; Sathyamoorthy, V.; Hu, L.; Sadowski, J.A.; Lee, C.S.; Tall, B.D. Molecular Characterization of Cronobacter Lipopolysaccharide O-Antigen Gene Clusters and Development of Serotype-Specific PCR Assays. Appl. Environ. Microbiol. 2011, 77, 4017–4026. [Google Scholar] [CrossRef] [Green Version]
- Khedher, M.B.; Baron, S.A.; Riziki, T.; Ruimy, R.; Diene, S.M.; Rolain, J.M. Massive analysis of 64′628 bacterial genomes to decipher a water reservoir and origin of mobile colistin resistance (mcr) gene variants: Is there another role for this family of enzymes? BioRxiv 2019, 763474. [Google Scholar] [CrossRef] [Green Version]
- La, M.-V.; Lee, B.; Hong, B.Z.; Yah, J.Y.; Koo, S.-H.; Jiang, B.; Ng, L.S.; Tan, T.-Y. Prevalence and antibiotic susceptibility of colistin-resistance gene (mcr-1) positive Enterobacteriaceae in stool specimens of patients attending a tertiary care hospital in Singapore. Int. J. Infect. Dis. 2019, 85, 124–126. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Tay, M.Y.F.; Aung, K.T.; Seow, K.L.G.; Zhong, Y.; Ng, L.C.; Schlundt, J. Conjugative IncX1 Plasmid Harboring Colistin Resistance Gene mcr-5.1 in Escherichia coli Isolated from Chicken Rice Retailed in Singapore. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuo, H.; Yang, Y.; Tao, X.; Liu, D.; Li, Y.; Xie, X.; Li, P.; Gu, J.; Kong, L.; Xiang, R.; et al. The Prevalence of Colistin Resistant Strains and Antibiotic Resistance Gene Profiles in Funan River, China. Front. Microbiol. 2018, 9, 3094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zurfuh, K.; Poirel, L.; Nordmann, P.; Nüesch-Inderbinen, M.; Hächler, H.; Stephan, R. Occurrence of the plasmid-borne mcr-1 colistin resistance gene in extended-spectrum-β-lactamase-producing Enterobacteriaceae in river water and imported vegetable samples in Switzerland. Antimicrob. Agents Chemother. 2016, 60, 2594–2595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, L.; Hurley, D.; Li, J.; Meng, Q.; Wang, J.; Fanning, S.; Xiong, Y. Characterisation of multidrug-resistant Shiga toxin-producing Escherichia coli cultured from pigs in China: Co-occurrence of extended-spectrum β-lactamase- and mcr-1-encoding genes on plasmids. Int. J. Antimicrob. Agents 2016, 48, 445–448. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Li, X.P.; Yang, R.S.; Fang, L.X.; Huo, W.; Li, S.M.; Jiang, P.; Liao, X.P.; Liu, Y.H. Complete nucleotide sequence of an IncI2 plasmid coharboring blaCTX-M-55 and mcr-1. Antimicrob. Agents Chemother. 2016, 60, 5014–5017. [Google Scholar] [CrossRef] [Green Version]
Strain ID | GC Content/% | Genome Size/bp | Kmer Result | MLST | Plasmid Ori Detected |
---|---|---|---|---|---|
J1E1 | 50.6 | 5,111,241 | E. coli | 68 | IncFII(pCoo) *, Col156 * |
J1E2 | 50.5 | 4,953,866 | E. coli | 457 | Incl1 *,ColpVC * |
J1E3 | 50.3 | 5,176,493 | E. coli | 127 | IncFII(pRSB107), IncFIB *,IncFIA,Col156 * |
J1E4 | 50.5 | 4,866,444 | E. coli | 10 | IncFIA(HI1),IncHl1A,IncHl1B(R27) |
J1G1 | 50.3 | 5,408,697 | E. coli | 648 | IncFII(pRSB107), IncFIB *,IncFIA *,Col156 *,Col(MG828) * |
J2E1 | 50.7 | 5,006,788 | E. coli | 131 | IncFII(pRSB107), IncFIB *,IncFIA,Col156 * |
J2E2 | 50.6 | 5,088,348 | E. coli | 38 | IncFII(pHN7A8) *,ColpVC * |
J2E3 | 50.5 | 5,248,876 | E. coli | 1730 | IncFIB *,IncFII,IncHl2,IncHl2A * |
J2E4 | 50.6 | 4,886,227 | E. coli | 215 | IncFIA(HI1) *,IncHl1 *,IncR *, IncX4, IncFIA * |
Isolates ID | Aminoglycoside | Beta-lactam | Colistin | Fluoroquinolone | Fosfomycin | MLS |
---|---|---|---|---|---|---|
J1E1 | blaCTX-M-15 | fosA4 | mdf(A) *,mph(A) | |||
J1E2 | blaCTX-M-8 | mdf(A) * | ||||
J1E3 | aph(3″)-lb, aadA5, aac(3)-lld*, aph(6)-ld | blaTEM-1B,blaCTX-M-15 | gyrA p.S83L | mdf(A) *,mph(A) | ||
J1E4 | aadA1* | blaTEM-1B,blaCTX-M-15 | mcr-1.1 | qnrS1, gyrA p.S83L | mdf(A) * | |
J1G1 | blaCTX-M-14 | gyrA p.S83L, p.D87N, parE p.S458A, parC p.S80I | mdf(A)* | |||
J2E1 | aph(3′’)-lb, aadA5, aph(6)-ld | blaCTX-M-27 | parC p.S80I,parE p.E460D, gyrA p.D87N, gyrA p.S83L | mdf(A) *,mph(A) | ||
J2E2 | blaCTX-M-15 | qnrS1 | mdf(A) * | |||
J2E3 | aph(3′)-la *, aadA2, aac(3)-lld *, aph(6)-ld,aph(3′’)-lb,aadA1* | blaCTX-M-55 | mcr-3.1 | qnrS1* | mdf(A) *,mph(A) | |
J2E4 | blaCTX-M-15 | qnrS1 | mdf(A)* | |||
Isolates ID | Phenicol | Sulphonamide | Tetracycline | Trimethoprim | Total resistant genes number | |
J1E1 | 4 | |||||
J1E2 | 2 | |||||
J1E3 | sul1,sul2 | tet(A) | dfrA17 | 12 | ||
J1E4 | floR * | sul3 | tet(A) | 9 | ||
J1G1 | dfrA17 | 3 | ||||
J2E1 | sul1,sul2 | tet(A) | dfrA17 | 10 | ||
J2E2 | 3 | |||||
J2E3 | floR *,catA2 * | sul1,sul3 | tet(A) * | dfrA12 | 17 | |
J2E4 | 3 |
Isolates ID | Aminoglycoside | Beta-lactam | Colistin | Fluoroquinolone | ||||
---|---|---|---|---|---|---|---|---|
Genotype | Phenotype (Gentamic, MIC) | Genotype | Phenotype (MIC) | Genotype | Phenotype (MIC) | Genotype | Phenotype (Ciprofloxacin, MIC) | |
J1E1 | - | S | + | R | - | S | - | S |
J1E2 | - | S | + | R | - | S | - | S |
J1E3 | + | R | + | R | - | S | + | S |
J1E4 | + | S | + | R | + | R | + | R |
J1G1 | - | S | + | R | - | S | + | R |
J2E1 | + | S | + | R | - | S | + | R |
J2E2 | - | S | + | R | - | S | + | S |
J2E3 | + | S | + | R | + | S | + | S |
J2E4 | - | S | + | R | - | S | + | R |
Isolates ID | Phenicol | Sulphonamide | Tetracycline | |||||
Genotype | Phenotype (Chloramphenicol, Disc diffusion) | Genotype | Phenotype (Trimethoprim-sulfamethoxazole, Disc Diffusion) | Genotype | Phenotype (Disc Diffusion) | |||
J1E1 | - | S | - | R | - | S | ||
J1E2 | - | S | - | S | - | S | ||
J1E3 | - | S | + | R | + | R | ||
J1E4 | + | R | + | S | + | R | ||
J1G1 | - | S | - | S | - | S | ||
J2E1 | - | S | + | R | + | R | ||
J2E2 | - | S | - | S | - | S | ||
J2E3 | + | R | + | R | + | R | ||
J2E4 | - | S | - | S | - | S |
Isolate ID | Contigs Information | Resistance Information | Insert Sequence Information | ||||||
---|---|---|---|---|---|---|---|---|---|
Contigs ID | Contigs Length/Bp | AMR Genes | Position on the Contigs | Insert Sequence ID | Insert Length/Bp | Insert Position | IS Family | Accession | |
J1E1 | 27 | 269,951 | blaCTX-M-15 | 197172..198047 | ISEcp1 | 1656 | 195468..197123 | IS1380 | AJ242809 |
J1E3 | 151 | 128,211 | blaCTX-M-15 | 86273..87148 | ISEcp1 | 1656 | 84569..86224 | IS1380 | AJ242809 |
J1E4 | 28 | 128,728 | blaCTX-M-15 | 43925..44800 | ISEcp1 | 1656 | 42221..43876 | IS1380 | AJ242809 |
J1G1 | 80 | 110,660 | blaCTX-M-14 | 83884..84759 | ISEcp1 | 1656 | 82186..83841 | IS1380 | AJ242809 |
J2E2 | 31 | 289,403 | qnrS1 | 242382..243038 | ISKpn19 * | 2851 | 238783..241633 | ISKra4 | NC_010886 |
blaCTX-M-15 | 247679..248554 | ISEcp1 * | 1656 | 248603..250258 | IS1380 | AJ242809 | |||
J2E4 | 220 | 716,717 | qnrS1 | 555846..556502 | ISEcp1 | 1656 | 562067..563722 | IS1380 | AJ242809 |
blaCTX-M-15 | 561143..562018 |
Antimicrobials | J1E4 (Donor) | J53Coli (Transconjugates) | J53 (Recept) |
---|---|---|---|
Ceftriaxone | >128 | >128 | <1 |
Meropenem | <1 | <1 | <1 |
Cephalothin | >16 | >16 | >16 |
Cefpodoxime | >32 | >32 | 2 |
Ciprofloxacin | 2 | >2 | <1 |
Cefotaxime | >64 | >64 | <0.25 |
Gentamicin | <4 | <4 | <4 |
Cefotaxime/clavulanic acid | <0.12\4 | <0.12\4 | <0.12\4 |
Ampicillin | >16 | >16 | <8 |
Ceftazidime | >128 | 32 | 1 |
Cefazolin | >16 | >16 | <8 |
Ceftazidime/clavulanic acid | 0.25\4 | 0.5\4 | 0.5\4 |
Imipenem | <0.5 | 1 | 1 |
Piperacillin/tazobactam constant 4 | >64\4 | <4\4 | <4\4 |
Cefepime | >16 | >16 | <1 |
Colistin | 4 | 8 | <0.25 |
Cefoxitin | <4 | 8 | <4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Y.; Guo, S.; Seow, K.L.G.; Ming, G.O.H.; Schlundt, J. Characterization of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolates from Jurong Lake, Singapore with Whole-Genome-Sequencing. Int. J. Environ. Res. Public Health 2021, 18, 937. https://doi.org/10.3390/ijerph18030937
Zhong Y, Guo S, Seow KLG, Ming GOH, Schlundt J. Characterization of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolates from Jurong Lake, Singapore with Whole-Genome-Sequencing. International Journal of Environmental Research and Public Health. 2021; 18(3):937. https://doi.org/10.3390/ijerph18030937
Chicago/Turabian StyleZhong, Yang, Siyao Guo, Kelyn Lee Ghee Seow, Glendon Ong Hong Ming, and Joergen Schlundt. 2021. "Characterization of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolates from Jurong Lake, Singapore with Whole-Genome-Sequencing" International Journal of Environmental Research and Public Health 18, no. 3: 937. https://doi.org/10.3390/ijerph18030937
APA StyleZhong, Y., Guo, S., Seow, K. L. G., Ming, G. O. H., & Schlundt, J. (2021). Characterization of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolates from Jurong Lake, Singapore with Whole-Genome-Sequencing. International Journal of Environmental Research and Public Health, 18(3), 937. https://doi.org/10.3390/ijerph18030937