A Bibliometric Network Analysis of Coronavirus during the First Eight Months of COVID-19 in 2020
Abstract
:1. Introduction
2. Methodology and Dataset
- RQ1:What are the strategic themes of COVID-19 in 2020?
- RQ2:How is the thematic evolution structure of COVID-19 in 2020?
- RQ3:What are the trends and opportunities of COVID-19 for academics and practitioners?
2.1. Methodology
2.1.1. Detection of Research Themes
2.1.2. Depicting Research Themes and Thematic Network Structure
- (a)
- Motor themes (1º quadrant—Q1): High centrality and density.
- (b)
- Basic and transversal themes (2º quadrant—Q2): High centrality and low development.
- (c)
- Emerging or declining themes (3º quadrant—Q3): Low centrality and density.
- (d)
- Highly developed and isolated themes (4º quadrant—Q4): low centrality and high development.
2.1.3. Detection of Thematic Areas
2.1.4. Performance Analysis
2.2. Dataset
3. Bibliometric Network Analysis: Strategic Themes and Thematic Network Structure of COVID-19 in 2020
3.1. Chloroquine
3.2. Anxiety
3.3. Acute Respiratory Syndrome
3.4. Infectious Disease
3.5. Personal Protective Equipment
3.6. Hypertension
3.7. Pregnancy
3.8. Computed Tomography
3.9. Vaccine
3.10. Cancer
3.11. Pulmonary Embolism
3.12. Artificial Intelligence
4. Thematic Evolution Structure of COVID-19 in 2020
4.1. Comorbidities and Diseases Caused by COVID-19
4.2. Damage Prevention and Containment of COVID-19
5. Comparison of Results and Suggestions for Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Himmelfarb, C.R.D.; Baptiste, D. Coronavirus Disease (COVID-19): Implications for Cardiovascular and Socially At-risk Populations. J. Cardiovasc. Nurs. 2020, 35, 318–321. [Google Scholar]
- Roberton, T.; Carter, E.D.; Chou, V.B.; Stegmuller, A.R.; Jackson, B.D.; Tam, Y.; Sawadogo-Lewis, T.; Walker, N. Early estimates of the indirect effects of the COVID-19 pandemic on maternal and child mortality in low-income and middle-income countries: A modelling study. Lancet Glob. Health 2020, 8, e901–e908. [Google Scholar] [CrossRef]
- World Health Organization. Coronavirus Disease (COVID-19): Weekly Epidemiological Update; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Liu, Y.; Lee, J.M.; Lee, C. The challenges and opportunities of a global health crisis: The management and business implications of COVID-19 from an Asian perspective. Asian Bus. Manag. 2020, 19, 277–297. [Google Scholar] [CrossRef]
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int. J. Surg. Lond. Engl. 2020, 78, 185. [Google Scholar] [CrossRef] [PubMed]
- Belli, S.; Mugnaini, R.; Baltà, J.; Abadal, E. Coronavirus mapping in scientific publications: When science advances rapidly and collectively, is access to this knowledge open to society? Scientometrics 2020, 124, 2661–2685. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhao, W.; Sun, B.; Huang, Y.; Glänzel, W. How scientific research reacts to international public health emergencies: A global analysis of response patterns. Scientometrics 2020, 124, 747–773. [Google Scholar] [CrossRef]
- Tao, Z.; Zhou, S.; Yao, R.; Wen, K.; Da, W.; Meng, Y.; Yang, K.; Liu, H.; Tao, L. COVID-19 will stimulate a new coronavirus research breakthrough: A 20-year bibliometric analysis. Ann. Transl. Med. 2020, 8, 528. [Google Scholar] [CrossRef]
- Kipper, L.M.; Iepsen, S.; Dal Forno, A.J.; Frozza, R.; Furstenau, L.; Agnes, J.; Cossul, D. Scientific mapping to identify competencies required by industry 4.0. Technol. Soc. 2021, 64, 101454. [Google Scholar] [CrossRef]
- López-Robles, J.R.; Otegi-Olaso, J.R.; Cobo, M.J.; Bertolin-Furstenau, L.; Kremer-Sott, M.; López-Robles, L.D.; Gamboa-Rosales, N.K. The relationship between project management and industry 4.0: Bibliometric analysis of main research areas through Scopus. In Proceedings of the 3rd International Conference on Research and Education in Project Management—REPM 2020, Bilbao, Spain, 20–21 February 2020. [Google Scholar]
- Sott, M.K.; Bender, M.S.; Furstenau, L.B.; Machado, L.M.; Cobo, M.J.; Bragazzi, N.L. 100 years of scientific evolution of work and organizational psychology: A bibliometric network analysis from 1919 to 2019. Front. Psychol. 2020, 11, 598676. [Google Scholar] [CrossRef]
- Gautam, P.; Maheshwari, S.; Kaushal-Deep, S.M.; Bhat, A.R.; Jaggi, C.K. COVID-19: A Bibliometric Analysis and Insights. Int. J. Math. Eng. Manag. Sci. 2020, 5, 1156–1169. [Google Scholar] [CrossRef]
- Haghani, M.; Bliemer, M.C.J.; Goerlandt, F.; Li, J. The scientific literature on Coronaviruses, COVID-19 and its associated safety-related research dimensions: A scientometric analysis and scoping review. Saf. Sci. 2020, 129, 104806. [Google Scholar] [CrossRef] [PubMed]
- Shamsi, A.; Mansourzadeh, M.J.; Ghazbani, A.; Khalagi, K.; Fahimfar, N.; Ostovar, A. Contribution of Iran in COVID-19 studies: A bibliometrics analysis. J. Diabetes Metab. Disord. 2020, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Real, J.L.; Nievas-Soriano, B.J.; Uribe-Toril, J. Has Covid-19 Gone Viral? An Overview of Research by Subject Area. Health Educ. Behav. 2020, 47, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Nowakowska, J.; Sobocińska, J.; Lewicki, M.; Lemańska, Ż.; Rzymski, P. When science goes viral: The research response during three months of the COVID-19 outbreak. Biomed. Pharmacother. 2020, 129, 110451. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Gao, Y.; Zhao, N.; Dai, R.; Zhang, H.; Feng, X.; Shi, G.; Tian, J.; Chen, C.; Hambly, B.D. Bibliometric analysis on COVID-19: A comparison of research between English and Chinese studies. Front. Public Health 2020, 8, 477. [Google Scholar] [CrossRef]
- Oh, J.; Kim, A. A bibliometric analysis of COVID-19 research published in nursing journals. Sci. Ed. 2020, 7, 118–124. [Google Scholar] [CrossRef]
- Sa’ed, H.Z.; Al-Jabi, S.W. Mapping the situation of research on coronavirus disease-19 (COVID-19): A preliminary bibliometric analysis during the early stage of the outbreak. BMC Infect. Dis. 2020, 20, 561. [Google Scholar]
- Lee, J.J.; Haupt, J.P. Scientific globalism during a global crisis: Research collaboration and open access publications on COVID-19. High. Educ. 2020, 24, 1–18. [Google Scholar] [CrossRef]
- Liu, N.; Chee, M.L.; Niu, C.L.; Pek, P.P.; Siddiqui, F.J.; Ansah, J.P.; Matchar, D.B.; Lam, S.S.W.; Abdullah, H.R.; Chan, A.; et al. Coronavirus disease 2019 (COVID-19): An evidence map of medical literature. BMC Med. Res. Methodol. 2020, 20, 177. [Google Scholar] [CrossRef]
- Ram, S.; Nisha, F. Highly Cited Articles in “Coronavirus” Research: A Bibliometric Analysis. Desidoc. J. Libr. Inf. Technol. 2020, 40, 218–229. [Google Scholar] [CrossRef]
- Yu, Y.T.; Li, Y.J.; Zhang, Z.H.; Gu, Z.C.; Zhong, H.; Zha, Q.F.; Yang, L.Y.; Zhu, C.; Chen, E.Z. A bibliometric analysis using VOSviewer of publications on COVID-19. Ann. Transl. Med. 2020, 8, 816. [Google Scholar] [CrossRef]
- Helliwell, J.A.; Bolton, W.S.; Burke, J.R.; Tiernan, J.P.; Jayne, D.G.; Chapman, S.J. Global academic response toCOVID-19: Cross-sectional study. Learn. Publ. 2020, 33, 385–393. [Google Scholar] [CrossRef]
- Homolak, J.; Kodvanj, I.; Virag, D. Preliminary analysis of COVID-19 academic information patterns: A call for open science in the times of closed borders. Scientometrics 2020, 124, 2687–2701. [Google Scholar] [CrossRef]
- Zhai, F.; Zhai, Y.X.; Cong, C.; Song, T.Y.; Xiang, R.W.; Feng, T.Y.; Liang, Z.X.; Zeng, Y.; Yang, J.; Liang, J.K. Research Progress of Coronavirus Based on Bibliometric Analysis. Int. J. Environ. Res. Public Health 2020, 17, 3766. [Google Scholar] [CrossRef]
- Pathak, M. COVID-19 research in India: A quantitative analysis. Indian J. Biochem. Biophys. 2020, 57, 351–355. [Google Scholar]
- Jia, Q.L.; Shi, S.Q.; Yuan, G.Z.; Shi, J.J.; Shi, S.; Hu, Y.H. Analysis of knowledge bases and research hotspots of coronavirus from the perspective of mapping knowledge domain. Medicine 2020, 99, e20378. [Google Scholar] [CrossRef]
- Mao, X.J.; Guo, L.; Fu, P.F.; Xiang, C. The status and trends of coronavirus research A global bibliometric and visualized analysis. Medicine 2020, 99, e20137. [Google Scholar] [CrossRef]
- De Felice, F.; Polimeni, A. Coronavirus Disease (COVID-19): A Machine Learning Bibliometric Analysis. Vivo 2020, 34, 1613–1617. [Google Scholar] [CrossRef]
- Herrera-Viedma, E.; Lopez-Robles, J.R.; Guallar, J.; Cobo, M.J. Global trends in coronavirus research at the time of Covid-19: A general bibliometric approach and content analysis using SciMAT. Prof. Inf. 2020, 29, 191–235. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, L.Y. Twenty-Year Span of Global Coronavirus Research Trends: A Bibliometric Analysis. Int. J. Environ. Res. Public Health 2020, 17, 3082. [Google Scholar] [CrossRef]
- Torres-Salinas, D. Daily growth rate of scientific production on Covid-19. Analysis in databases and open access repositories. arXiv 2020, arXiv:2004.06721. [Google Scholar]
- Lou, J.; Tian, S.J.; Niu, S.M.; Kang, X.Q.; Lian, H.X.; Zhang, L.X.; Zhang, J.J. Coronavirus disease 2019: A bibliometric analysis and review. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 3411–3421. [Google Scholar] [PubMed]
- Nasir, A.; Shaukat, K.; Hameed, I.A.; Luo, S.H.; Mahboob, T.; Iqbal, F. A Bibliometric Analysis of Corona Pandemic in Social Sciences: A Review of Influential Aspects and Conceptual Structure. IEEE Access 2020, 8, 133377–133402. [Google Scholar] [CrossRef]
- Kipper, L.M.; Furstenau, L.B.; Hoppe, D.; Frozza, R.; Iepsen, S. Scopus scientific mapping production in industry 4.0 (2011–2018): A bibliometric analysis. Int. J. Prod. Res. 2019, 58, 1605–1627. [Google Scholar] [CrossRef]
- Sott, M.K.; Furstenau, L.B.; Kipper, L.M.; Giraldo, F.D.; Lopez-Robles, J.R.; Cobo, M.J.; Zahid, A.; Abbasi, Q.H.; Imran, M.A. Precision Techniques and Agriculture 4.0 Technologies to Promote Sustainability in the Coffee Sector: State of the Art, Challenges and Future Trends. IEEE Access 2020, 8, 149854–149867. [Google Scholar] [CrossRef]
- Silva, A.L.E.; Moraes, J.A.R.; Benitez, L.B.; Kaufmann, E.A.; Furstenau, L.B. Mapeamento da produção científica acerca do uso de biocompósitos nos processos de impressões 3D. Rev. Ibero Am. Ciências Ambient. 2020, 11, 236–250. [Google Scholar] [CrossRef] [Green Version]
- Furstenau, L.B.; Sott, M.K.; Kipper, L.M.; Machado, E.L.; Lopez-Robles, J.R.; Dohan, M.S.; Cobo, M.J.; Zahid, A.; Abbasi, Q.H.; Imran, M.A. Link between sustainability and industry 4.0: Trends, challenges and new perspectives. IEEE Access 2020, 8, 140079–140096. [Google Scholar] [CrossRef]
- Furstenau, L.B.; Sott, M.K.; Homrich, A.J.O.; Kipper, L.M.; Al Abri, A.A.; Cardoso, T.F.; López-Robles, J.R.; Cobo, M.J. 20 Years of Scientific Evolution of Cyber Security: A Science Mapping. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Dubai, UAE, 10–12 March 2020. [Google Scholar]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. SciMAT: A new science mapping analysis software tool. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 1609–1630. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. Science mapping software tools: Review, analysis, and cooperative study among tools. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 1382–1402. [Google Scholar] [CrossRef]
- Aristovnik, A.; Ravšelj, D.; Umek, L. A bibliometric analysis of COVID-19 across science and social science research landscape. Sustainability 2020, 12, 9132. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the fuzzy sets theory field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- López-Robles, J.R.; Otegi-Olaso, J.R.; Gómez, I.P.; Cobo, M.J. 30 years of intelligence models in management and business: A bibliometric review. Int. J. Inf. Manag. 2019, 48, 22–38. [Google Scholar] [CrossRef]
- Cobo, M.J.; Martínez, M.Á.; Gutiérrez-Salcedo, M.; Fujita, H.; Herrera-Viedma, E. 25 years at knowledge-based systems: A bibliometric analysis. Knowl. Based Syst. 2015, 80, 3–13. [Google Scholar] [CrossRef]
- Colson, P.; Rolain, J.-M.; Lagier, J.-C.; Brouqui, P.; Raoult, D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int. J. Antimicrob. Agents 2020, 55, 105932. [Google Scholar] [CrossRef]
- Geleris, J.; Sun, Y.; Platt, J.; Zucker, J.; Baldwin, M.; Hripcsak, G.; Labella, A.; Manson, D.K.; Kubin, C.; Barr, R.G. Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N. Engl. J. Med. 2020, 382, 2411–2418. [Google Scholar] [CrossRef]
- Gautret, P.; Lagier, J.-C.; Parola, P.; Meddeb, L.; Sevestre, J.; Mailhe, M.; Doudier, B.; Aubry, C.; Amrane, S.; Seng, P. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study. Travel Med. Infect. Dis. 2020, 34, 101663. [Google Scholar] [CrossRef]
- Ye, X.T.; Luo, Y.L.; Xia, S.C.; Sun, Q.F.; Ding, J.G.; Zhou, Y.; Chen, W.; Wang, X.F.; Zhang, W.W.; Du, W.J. Clinical efficacy of lopinavir/ritonavir in the treatment of Coronavirus disease 2019. Eur. Rev. Med. Pharm. Sci. 2020, 24, 3390–3396. [Google Scholar]
- Sheahan, T.P.; Sims, A.C.; Leist, S.R.; Schäfer, A.; Won, J.; Brown, A.J.; Montgomery, S.A.; Hogg, A.; Babusis, D.; Clarke, M.O. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun. 2020, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- De Wit, E.; Feldmann, F.; Cronin, J.; Jordan, R.; Okumura, A.; Thomas, T.; Scott, D.; Cihlar, T.; Feldmann, H. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc. Natl. Acad. Sci. USA 2020, 117, 6771–6776. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020, 395, 1569–1578. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, A.; Shaikh, A.; Singh, R.; Misra, A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 241–246. [Google Scholar] [CrossRef]
- Xu, X.; Han, M.; Li, T.; Sun, W.; Wang, D.; Fu, B.; Zhou, Y.; Zheng, X.; Yang, Y.; Li, X. Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl. Acad. Sci. USA 2020, 117, 10970–10975. [Google Scholar] [CrossRef] [PubMed]
- Mantlo, E.; Bukreyeva, N.; Maruyama, J.; Paessler, S.; Huang, C. Antiviral activities of type I interferons to SARS-CoV-2 infection. Antivir. Res. 2020, 179, 104811. [Google Scholar] [CrossRef] [PubMed]
- Sallard, E.; Lescure, F.-X.; Yazdanpanah, Y.; Mentre, F.; Peiffer-Smadja, N.; Florence, A. Type 1 interferons as a potential treatment against COVID-19. Antivir. Res. 2020, 178, 104791. [Google Scholar] [CrossRef]
- Horby, P.; Landrain, M. Low-Cost Dexamethasone Reduces Death by up to One Third in Hospitalised Patients with Severe Respiratory Complications of COVID-19. RECOVERY Trial Press Release. 16 June 2020. Available online: https://www.recoverytrial.net/news/low-cost-dexamethasone-reduces-death-by-up-to-one-third-in-hospitalised-patients-with-severe-respiratory-complications-of-covid-19 (accessed on 16 June 2020).
- Ying, Y.; Ruan, L.; Kong, F.; Zhu, B.; Ji, Y.; Lou, Z. Mental health status among family members of health care workers in Ningbo, China, during the coronavirus disease 2019 (COVID-19) outbreak: A cross-sectional study. BMC Psychiatry 2020, 20, 379. [Google Scholar] [CrossRef]
- Peng, M.; Mo, B.; Liu, Y.; Xu, M.; Song, X.; Liu, L.; Fang, Y.; Guo, T.; Ye, J.; Yu, Z. Prevalence, risk factors and clinical correlates of depression in quarantined population during the COVID-19 outbreak. J. Affect. Disord. 2020, 275, 119–124. [Google Scholar] [CrossRef]
- Duan, L.; Shao, X.; Wang, Y.; Huang, Y.; Miao, J.; Yang, X.; Zhu, G. An investigation of mental health status of children and adolescents in china during the outbreak of COVID-19. J. Affect. Disord. 2020, 275, 112–118. [Google Scholar] [CrossRef]
- Durankuş, F.; Aksu, E. Effects of the COVID-19 pandemic on anxiety and depressive symptoms in pregnant women: A preliminary study. J. Matern. Fetal Neonatal Med. 2020, 1–7. [Google Scholar] [CrossRef]
- Madani, A.; Boutebal, S.E.; Bryant, C.R. The psychological impact of confinement linked to the coronavirus epidemic COVID-19 in Algeria. Int. J. Environ. Res. Public Health 2020, 17, 3604. [Google Scholar] [CrossRef]
- Lechner, W.V.; Laurene, K.R.; Patel, S.; Anderson, M.; Grega, C.; Kenne, D.R. Changes in alcohol use as a function of psychological distress and social support following COVID-19 related University closings. Addict. Behav. 2020, 110, 106527. [Google Scholar] [CrossRef]
- Guo, Q.; Zheng, Y.; Shi, J.; Wang, J.; Li, G.; Li, C.; Fromson, J.A.; Xu, Y.; Liu, X.; Xu, H. Immediate psychological distress in quarantined patients with COVID-19 and its association with peripheral inflammation: A mixed-method study. Brain Behav. Immun. 2020, 88, 17–27. [Google Scholar] [CrossRef]
- Ma, Y.-F.; Li, W.; Deng, H.-B.; Wang, L.; Wang, Y.; Wang, P.-H.; Bo, H.-X.; Cao, J.; Wang, Y.; Zhu, L.-Y. Prevalence of depression and its association with quality of life in clinically stable patients with COVID-19. J. Affect. Disord. 2020, 275, 145–148. [Google Scholar] [CrossRef]
- Pappa, S.; Ntella, V.; Giannakas, T.; Giannakoulis, V.G.; Papoutsi, E.; Katsaounou, P. Prevalence of depression, anxiety, and insomnia among healthcare workers during the COVID-19 pandemic: A systematic review and meta-analysis. Brain Behav. Immun. 2020, 88, 901–907. [Google Scholar] [CrossRef]
- Tang, W.; Hu, T.; Yang, L.; Xu, J. The role of alexithymia in the mental health problems of home-quarantined university students during the COVID-19 pandemic in China. Personal. Individ. Differ. 2020, 165, 110131. [Google Scholar] [CrossRef]
- Joynt, G.M.; Yap, H.Y. SARS in the intensive care unit. Curr. Infect. Dis. Rep. 2004, 6, 228. [Google Scholar] [CrossRef]
- Schmidt, M.; Hajage, D.; Lebreton, G.; Monsel, A.; Voiriot, G.; Levy, D.; Baron, E.; Beurton, A.; Chommeloux, J.; Meng, P. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome associated with COVID-19: A retrospective cohort study. Lancet Respir. Med. 2020, 8, 1121–1131. [Google Scholar] [CrossRef]
- Song, P.; Li, W.; Xie, J.; Hou, Y.; You, C. Cytokine Storm Induced by SARS-CoV-2. Clin. Chim. Acta 2020, 509, 280–287. [Google Scholar] [CrossRef]
- Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.F.; Guo, Q.H.; Ji, R.; Wang, H.J.; Wang, Y.P.; Zhou, Y.N. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 94, 91–95. [Google Scholar] [CrossRef]
- Paguio, J.A.; Yao, J.S.; Dee, E.C. Silver lining of COVID-19: Heightened global interest in pneumococcal and influenza vaccines, an infodemiology study. Vaccine 2020, 38, 5430–5435. [Google Scholar] [CrossRef]
- Pung, R.; Chiew, C.J.; Young, B.E.; Chin, S.; Chen, M.I.C.; Clapham, H.E.; Cook, A.R.; Maurer-Stroh, S.; Toh, M.P.H.S.; Poh, C. Investigation of three clusters of COVID-19 in Singapore: Implications for surveillance and response measures. Lancet 2020, 395, 1039–1046. [Google Scholar] [CrossRef]
- Massie, A.B.; Boyarsky, B.J.; Werbel, W.A.; Bae, S.; Chow, E.K.H.; Avery, R.K.; Durand, C.M.; Desai, N.; Brennan, D.; Garonzik-Wang, J.M. Identifying scenarios of benefit or harm from kidney transplantation during the COVID-19 pandemic: A stochastic simulation and machine learning study. Am. J. Transplant. 2020, 20, 2997–3007. [Google Scholar] [CrossRef] [PubMed]
- Umberto, M.; Luciano, D.C.; Daniel, Y.; Michele, C.; Enrico, R.; Giorgio, R.; Marco, A.; Dario, C.; Gianluca, F.; Giuseppe, P. The impact of the COVID-19 outbreak on liver transplantation programs in Northern Italy. Am. J. Transplant. 2020, 20, 1840–1848. [Google Scholar]
- Germonpre, P.; Van Rompaey, D.; Balestra, C. Evaluation of protection level, respiratory safety, and practical aspects of commercially available snorkel masks as personal protection devices against aerosolized contaminants and SARS-CoV2. Int. J. Environ. Res. Public Health 2020, 17, 4347. [Google Scholar] [CrossRef] [PubMed]
- Solari, D.; Bove, I.; Esposito, F.; Cappabianca, P.; Cavallo, L.M. The nose lid for the endoscopic endonasal procedures during COVID-19 era. Acta Neurochir. 2020, 162, 2335–2339. [Google Scholar] [CrossRef]
- Goh, Y.; Tan, B.Y.Q.; Bhartendu, C.; Ong, J.J.Y.; Sharma, V.K. The Face Mask How a Real Protection becomes a Psychological Symbol during Covid-19? Brain Behav. Immun. 2020, 88, 1–5. [Google Scholar] [CrossRef]
- Sugrue, M.; O’Keeffe, D.; Sugrue, R.; MacLean, L.; Varzgalis, M. A cloth mask for under-resourced healthcare settings in the COVID19 pandemic. Ir. J. Med. Sci. 2020, 189, 1155–1157. [Google Scholar] [CrossRef]
- Kalyaev, V.; Salimon, A.I.; Korsunsky, A.M.; Denisov, A.A. Fast mass-production of medical safety shields under COVID-19 quarantine: Optimizing the use of University fabrication facilities and volunteer labor. Int. J. Environ. Res. Public Health 2020, 17, 3418. [Google Scholar] [CrossRef]
- Hu, K.; Fan, J.; Li, X.; Gou, X.; Li, X.; Zhou, X. The adverse skin reactions of health care workers using personal protective equipment for COVID-19. Medicine 2020, 99, e20603. [Google Scholar] [CrossRef]
- David, A.P.; Jiam, N.T.; Reither, J.M.; Gurrola, J.G.; Aghi, M.; El-Sayed, I.H. Endoscopic skull base and transoral surgery during the COVID-19 pandemic: Minimizing droplet spread with a negative-pressure otolaryngology viral isolation drape (NOVID). Head Neck 2020, 42, 1577–1582. [Google Scholar] [CrossRef]
- Guda, N.M.; Emura, F.; Reddy, D.N.; Rey, J.F.; Seo, D.W.; Gyokeres, T.; Tajiri, H.; Faigel, D. Recommendations for the Operation of Endoscopy Centers in the setting of the COVID-19 pandemic–World Endoscopy Organization guidance document. Dig. Endosc. 2020, 32, 844–850. [Google Scholar] [CrossRef]
- Boškoski, I.; Gallo, C.; Wallace, M.B.; Costamagna, G. COVID-19 pandemic and personal protective equipment shortage: Protective efficacy comparing masks and scientific methods for respirator reuse. Gastrointest. Endosc. 2020, 92, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chi, J.; Lv, W.; Wang, Y. Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (Covid-19). Diabetes Metab. Res. Rev. 2020, e3377. [Google Scholar] [CrossRef]
- Meng, J.; Xiao, G.; Zhang, J.; He, X.; Ou, M.; Bi, J.; Yang, R.; Di, W.; Wang, Z.; Li, Z. Renin-angiotensin system inhibitors improve the clinical outcomes of COVID-19 patients with hypertension. Emerg. Microbes Infect. 2020, 9, 757–760. [Google Scholar] [CrossRef] [PubMed]
- Connors, J.M.; Levy, J.H. COVID-19 and its implications for thrombosis and anticoagulation. Blood J. Am. Soc. Hematol. 2020, 135, 2033–2040. [Google Scholar] [CrossRef] [PubMed]
- Ijarotimi, O.A.; Ubom, A.E.; Olofinbiyi, B.A.; Kuye-Kuku, T.; Orji, E.O.; Ikimalo, J.I. COVID-19 and obstetric practice: A critical review of the Nigerian situation. Int. J. Gynecol. Obstet. 2020, 151, 17–22. [Google Scholar] [CrossRef]
- Kallem, V.R.; Sharma, D. COVID 19 in neonates. J. Matern. Fetal Neonatal Med. 2020, 1–9. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, C.; Dong, L.; Zhang, C.; Chen, Y.; Liu, J.; Zhang, C.; Duan, C.; Zhang, H.; Mol, B.W. Coronavirus disease 2019 among pregnant Chinese women: Case series data on the safety of vaginal birth and breastfeeding. BJOG Int. J. Obstet. Gynaecol. 2020, 127, 1109–1115. [Google Scholar] [CrossRef]
- Farias, L.d.P.G.d.; Strabelli, D.G.; Fonseca, E.K.U.N.; Loureiro, B.M.C.; Nomura, C.H.; Sawamura, M.V.Y. Thoracic tomographic manifestations in symptomatic respiratory patients with COVID-19. Radiol. Bras. 2020, 53, 255–261. [Google Scholar] [CrossRef]
- Salehi, A.W.; Baglat, P.; Gupta, G. Review on machine and deep learning models for the detection and prediction of Coronavirus. Mater. Today Proc. 2020, 33, 3896–3901. [Google Scholar] [CrossRef]
- Cavanagh, D. Coronavirus avian infectious bronchitis virus. Vet. Res. 2007, 38, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Winter, C.; Schwegmann-Wessels, C.; Neumann, U.; Herrler, G. The spike protein of infectious bronchitis virus is retained intracellularly by a tyrosine motif. J. Virol. 2008, 82, 2765–2771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Yang, C.; Xu, X.F.; Xu, W.; Liu, S.W. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol. Sin. 2020, 41, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- Kasturi, S.P.; Skountzou, I.; Albrecht, R.A.; Koutsonanos, D.; Hua, T.; Nakaya, H.I.; Ravindran, R.; Stewart, S.; Alam, M.; Kwissa, M. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 2011, 470, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Allegra, A.; Pioggia, G.; Tonacci, A.; Musolino, C.; Gangemi, S. Cancer and SARS-CoV-2 infection: Diagnostic and therapeutic challenges. Cancers 2020, 12, 1581. [Google Scholar] [CrossRef]
- Luo, J.; Rizvi, H.; Preeshagul, I.R.; Egger, J.V.; Hoyos, D.; Bandlamudi, C.; McCarthy, C.G.; Falcon, C.J.; Schoenfeld, A.J.; Arbour, K.C. COVID-19 in patients with lung cancer. Ann. Oncol. 2020, 31, 1386–1396. [Google Scholar] [CrossRef]
- Angelis, V.; Tippu, Z.; Joshi, K.; Reis, S.; Gronthoud, F.; Fribbens, C.; Okines, A.; Stanway, S.; Cottier, E.; McGrath, S. Defining the true impact of coronavirus disease 2019 in the at-risk population of patients with cancer. Eur. J. Cancer 2020, 136, 99–106. [Google Scholar] [CrossRef]
- Huang, B.; Zhu, J.; Wu, X.-Y.; Gao, X.-H. Should patients stop their radiotherapy or chemotherapy during the COVID-19 pandemic. Am. J. Cancer Res. 2020, 10, 1518. [Google Scholar]
- Rodin, G.; Zimmermann, C.; Rodin, D.; Al-Awamer, A.; Sullivan, R.; Chamberlain, C. COVID-19, palliative care and public health. Eur. J. Cancer 2020, 136, 95–98. [Google Scholar] [CrossRef]
- Lorenzo, C.; Francesca, B.; Francesco, P.; Elena, C.; Luca, S.; Paolo, S. Acute pulmonary embolism in COVID-19 related hypercoagulability. J. Thromb. Thrombolysis 2020, 50, 223–226. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Wynants, L.; Van Calster, B.; Collins, G.S.; Riley, R.D.; Heinze, G.; Schuit, E.; Bonten, M.M.J.; Dahly, D.L.; Damen, J.A.A.; Debray, T.P.A. Prediction models for diagnosis and prognosis of covid-19: Systematic review and critical appraisal. BMJ 2020, 369, m1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, F.; Wang, J.; Shi, J.; Wu, Z.; Wang, Q.; Tang, Z.; He, K.; Shi, Y.; Shen, D. Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for covid-19. IEEE Rev. Biomed. Eng. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.; Ge, Q.; Jin, L.; Xiong, M. Artificial intelligence forecasting of covid-19 in china. arXiv 2020, arXiv:2002.07112. [Google Scholar]
- Batista, A.F.d.M.; Miraglia, J.L.; Donato, T.H.R.; Chiavegatto Filho, A.D.P. COVID-19 diagnosis prediction in emergency care patients: A machine learning approach. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Rivera, S.C.; Liu, X.; Chan, A.-W.; Denniston, A.K.; Calvert, M.J. Guidelines for clinical trial protocols for interventions involving artificial intelligence: The SPIRIT-AI extension. BMJ 2020, 370, m3210. [Google Scholar] [CrossRef] [PubMed]
- Sounderajah, V.; Ashrafian, H.; Aggarwal, R.; De Fauw, J.; Denniston, A.K.; Greaves, F.; Karthikesalingam, A.; King, D.; Liu, X.; Markar, S.R. Developing specific reporting guidelines for diagnostic accuracy studies assessing AI interventions: The STARD-AI Steering Group. Nat. Med. 2020, 26, 807–808. [Google Scholar] [CrossRef]
- Tang, N.; Bai, H.; Chen, X.; Gong, J.; Li, D.; Sun, Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 2020, 18, 1094–1099. [Google Scholar] [CrossRef]
- McGonagle, D.; O’Donnell, J.S.; Sharif, K.; Emery, P.; Bridgewood, C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020, 2, e437–e445. [Google Scholar] [CrossRef]
- Wu, D.; Yang, X.O. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J. Microbiol. Immunol. Infect. 2020, 53, 368–370. [Google Scholar] [CrossRef]
- Greenhalgh, N.; Hull, R.; Hurst, E.W. The antiviral activity of acridines in eastern equine encephalomyelitis, rift valley fever and psittacosis in mice, and lymphogranuloma venereum in chick-embryos. Br. J. Pharmacol. Chemother. 1956, 11, 220. [Google Scholar] [CrossRef] [Green Version]
- Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 2020, 56, 105949. [Google Scholar] [CrossRef] [PubMed]
- Takhar, A.; Walker, A.; Tricklebank, S.; Wyncoll, D.; Hart, N.; Jacob, T.; Arora, A.; Skilbeck, C.; Simo, R.; Surda, P. Recommendation of a practical guideline for safe tracheostomy during the COVID-19 pandemic. Eur. Arch. Oto Rhino Laryngol. 2020, 277, 2173–2184. [Google Scholar] [CrossRef] [PubMed]
- Andersen, N.; Bramness, J.G.; Lund, I.O. The emerging COVID-19 research: Dynamic and regularly updated science maps and analyses. BMC Med. Inform. Decis. Mak. 2020, 20, 309. [Google Scholar] [CrossRef] [PubMed]
- Leiva, A.M.; Nazar, G.; Martínez-Sangüinetti, M.A.; Petermann-Rocha, F.; Ricchezza, J.; Celis-Morales, C. Dimensión psicosocial de la pandemia: La otra cara del covid-19. Cienc. Enfermería 2020, 26, 10. [Google Scholar] [CrossRef]
- Benjamens, S.; Dhunnoo, P.; Meskó, B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: An online database. NPJ Digit. Med. 2020, 3, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Aghaei Chadegani, A.; Salehi, H.; Yunus, M.; Farhadi, H.; Fooladi, M.; Farhadi, M.; Ale Ebrahim, N. A comparison between two main academic literature collections: Web of Science and Scopus databases. Asian Soc. Sci. 2013, 9, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Furstenau, L.B.; Sott, M.K.; Homrich, A.J.O.; Dohan, M.S.; López-Robles, J.R.; Cobo, M.J.; Tortorella, G.L. An overview of 42 years of lean production: Applying bibliometric analysis to investigate strategic themes and scientific evolution structure. Technol. Anal. Strateg. Manag. 2021. [Google Scholar] [CrossRef]
Study | Coverage | Focus |
---|---|---|
[12] | January–April 2020 | Analysis of works developed on COVID-19 by BNA to discuss epidemiological trends using VOSviewer software |
[13] | 1968–April 2020 | Identification of macro-level aspects from the scientometric analysis of COVID-19 in the literature using VOSviewer software. |
[14] | January–July 2020 | Review of publications and the general trend of COVID-19 by Iranian scientists using VOSviewer software. |
[15] | January–May 2020 | Keywords clustering of the COVID-19 research field using the VOSviewer Tool. |
[16] | January–March 2020 | Review of articles in English to assess the scientific response to the COVID-19 Pandemic by conducting a bibliometric survey using the arXiv, bioRxiv, medRxiv and MDPI Preprints databases. |
[17] | 2019–March 2020 | Bibliometric analysis to compare COVID-19 research between English and Chinese-language journals using VOSviewer and CiteSpace Software. |
[18] | January–July 2020 | Identification of the status of documents published in nursing journals on COVID-19. |
[19] | December 2019–June 2020 | Evaluation of the global scientific production of COVID-19 research by bibliometric analysis to determine the most cited publications and explore current topics using VOSviewer. |
[20] | 2015–2020 | Analysis of scientific globalism about COVID-19 and non-COVID-19 articles during the pandemic and 5 years before the pandemic period using scientometric analysis. |
[21] | January–March 2020 | Depiction of the growth of medical literature on COVID-19 using evidence maps and bibliometric analysis to identify gaps in research in the early stage of the pandemic using Python software. |
[22] | 1970–March 2020 | Bibliometric analysis of articles cited in the COVID-19 research published until 2019 and articles published in a pandemic situation using VOSviewer software. |
[23] | 2019–May 2020 | Presentation of a broad understanding of COVID-19 and directions for future research through bibliometric analysis using VOSviewer software. |
[24] | November 2019–March 2020 | Exploration of the responses to COVID-19 and definition of challenges during the initial phases of the pandemic through a bibliometric and transversal review of the literature. |
[6] | 1945–2020 | Bibliometric analysis of the most productive countries in coronavirus publications and international scientific collaboration and open accessibility typology for these publications using VOSviewer. |
[25] | January–April 2020 | Evaluation of the information flow quality and scientific collaboration using RISmed R package and a custom Python script available on GitHub. |
[7] | 2000–April 2020 | Depiction of the scientific response to international public health emergencies in a comparative bibliometric study of various outbreaks using VOSviewer software. |
[26] | 2003–2020 | Analysis of the coronavirus literature published since the SARS outbreak in 2003 by bibliometric analysis using Citespace and VOSviewer software. |
[27] | January–May 2020 | Investigating coverage of publications related to COVID-19 in India using VOSviewer to identify authors, institutes, international collaboration, keywords and journals preferred by Indian researchers. |
[28] | 2003–2020 | A quantitative and qualitative analysis of the knowledge base and topics of coronavirus research to provide an overview of the publications with the use of CiteSpace. |
[29] | January 2003–February 2020 | Assessing coronavirus status and research trends worldwide to find out what topics are popular for researchers interested in coronavirus using VOSviewer software. |
[30] | December 2019–April 2020 | Application of machine learning bibliometric analysis on COVID-19 publications to identify trends and guide future research using R-Studio software. |
[31] | 1970–2020 | Analysis of the development of research topics on coronavirus and the main related concepts available in the literature using techniques and bibliometric tools with the SciMAT software. |
[32] | January 2000–March 2020 | Bibliometric analysis to assess the impact of coronavirus research on global scientific production and the contribution to the prevention and control of COVID-19 using CiteSpace software. |
[8] | 2000–February 2020 | Analysis of previous coronavirus research to observe future research points and provided an in-depth bibliometric analysis of COVID-19 using VOSviewer software. |
[33] | January April 2020 | Global view on the daily growth of scientific production on COVID-19 in different sources of information. |
[34] | January–March 2020 | Analysis of publications on COVID-19 to summarize research hotspots and conduct a bibliometric review to serve as a basis |
[35] | 2003–2020 | Sought to find research, flows and themes using the coronavirus literature in the social sciences field using ‘biblioshiny’ the web-based interface of the R-package (Bibliometrix 3.0). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furstenau, L.B.; Rabaioli, B.; Sott, M.K.; Cossul, D.; Bender, M.S.; Farina, E.M.J.D.M.; Filho, F.N.B.; Severo, P.P.; Dohan, M.S.; Bragazzi, N.L. A Bibliometric Network Analysis of Coronavirus during the First Eight Months of COVID-19 in 2020. Int. J. Environ. Res. Public Health 2021, 18, 952. https://doi.org/10.3390/ijerph18030952
Furstenau LB, Rabaioli B, Sott MK, Cossul D, Bender MS, Farina EMJDM, Filho FNB, Severo PP, Dohan MS, Bragazzi NL. A Bibliometric Network Analysis of Coronavirus during the First Eight Months of COVID-19 in 2020. International Journal of Environmental Research and Public Health. 2021; 18(3):952. https://doi.org/10.3390/ijerph18030952
Chicago/Turabian StyleFurstenau, Leonardo B., Bruna Rabaioli, Michele Kremer Sott, Danielli Cossul, Mariluza Sott Bender, Eduardo Moreno Júdice De Mattos Farina, Fabiano Novaes Barcellos Filho, Priscilla Paola Severo, Michael S. Dohan, and Nicola Luigi Bragazzi. 2021. "A Bibliometric Network Analysis of Coronavirus during the First Eight Months of COVID-19 in 2020" International Journal of Environmental Research and Public Health 18, no. 3: 952. https://doi.org/10.3390/ijerph18030952
APA StyleFurstenau, L. B., Rabaioli, B., Sott, M. K., Cossul, D., Bender, M. S., Farina, E. M. J. D. M., Filho, F. N. B., Severo, P. P., Dohan, M. S., & Bragazzi, N. L. (2021). A Bibliometric Network Analysis of Coronavirus during the First Eight Months of COVID-19 in 2020. International Journal of Environmental Research and Public Health, 18(3), 952. https://doi.org/10.3390/ijerph18030952