The Potential of Chaetoceros muelleri in Bioremediation of Antibiotics: Performance and Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Analytical Methods
2.3. Optimization Process
2.4. Toxicity Effects of Antibiotics on Microalgae
3. Results and Discussion
3.1. Removal of Antibiotics
3.2. Toxicity of Antibiotics
4. Conclusions
- Based on the RSM at the initial concentration (0.5 mg L−1) and contact time (6.3 days), the optimum removal of SMX and OFX were 39.8% (0.19 mg L−1) and 42.5% (0.21 mg L−1).
- The RSM optimized the removal of antibiotics with diatoms in a logical way because of the high R2 value and rational distribution of experimental data compared to the predicted data.
- Based on the toxicological effects of antibiotics on microalgae, total carotenoid concentration, protein and cell viability decreased at high antibiotic concentrations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Talaiekhozani, A.; Joudaki, S.; Banisharif, F.; Eskandari, Z.; Cho, J.; Moghadam, G.; Rezania, S. Comparison of Azithromycin Removal from Water Using UV Radiation, Fe (VI) Oxidation Process and ZnO Nanoparticles. Int. J. Environ. Res. Public Health 2020, 17, 1758. [Google Scholar] [CrossRef] [Green Version]
- Mojiri, A.; Baharlooeian, M.; Farraji, H.; Ziyang, L. Removal of pharmaceutical micropollutants with integrated biochar and marine diatom. Microorganisms 2021, 9, 4. [Google Scholar] [CrossRef] [PubMed]
- Emmanouil, C.; Bekyrou, M.; Psomopoulos, C.; Kungolos, A. An Insight into Ingredients of Toxicological Interest in Personal Care Products and A Small–Scale Sampling Survey of the Greek Market: Delineating a Potential Contamination Source for Water Resources. Water 2019, 11, 2501. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Zhang, L.; Jiang, L.; Wagner, T.; Sutton, N.B.; Ji, R.; Langenhoff, A.A.M. Improving removal of antibiotics in constructed wetland treatment systems based on key design and operational parameters: A review. J Hazard. Mater. 2020, 124386. [Google Scholar] [CrossRef] [PubMed]
- Prasannamedha, G.; Kumar, P.S. A review on contamination and removal of sulfamethoxazole from aqueous solution using cleaner techniques: Present and future perspective. J. Clean. Product. 2020, 250, 119553. [Google Scholar] [CrossRef]
- Krasucka, P.; Pan, B.; Ok, Y.S.; Mohan, D.; Sarkar, B.; Oleszuzuk, P. Engineered biochar—A sustainable solution for the removal of antibiotics from water. Chem. Eng. J. 2021, 405, 126926. [Google Scholar] [CrossRef]
- Lu, Z.Y.; Ma, Y.L.; Zhang, J.T.; Fan, N.S.; Huang, B.C.; Jin, R.C. A critical review of antibiotic removal strategies: Performance and mechanisms. J. Water Process Eng. 2020, 38, 101681. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, Y.L.; Lu, J.; Zuo, X.J.; Yang, X.L.; Song, H.L. A review of bioelectrochemical systems for antibiotic removal: Efficient antibiotic removal and dissemination of antibiotic resistance genes. J. Water Process Eng. 2020, 37, 101421. [Google Scholar] [CrossRef]
- Du, B.; Yang, Q.; Wang, R.; Wang, R.; Wang, Q.; Xin, Y. Evolution of Antibiotic Resistance and the Relationship between the Antibiotic Resistance Genes and Microbial Compositions under Long-Term Exposure to Tetracycline and Sulfamethoxazole. Int. J. Environ. Res. Public Health 2019, 16, 4681. [Google Scholar] [CrossRef] [Green Version]
- Shanableh, A.; Bhattacharjee, S.; Alani, S.; Darwish, N.; Abdallah, M.; Semreen, M. Assessment of sulfamethoxazole removal by nanoscale zerovalent iron. Sci. Total Environ. 2021, 143307. [Google Scholar] [CrossRef]
- Guo, H.; Li, Z.; Lin, S.; Li, D.; Jiang, N.; Wang, H.; Han, J.; Li, J. Multi-catalysis induced by pulsed discharge plasma coupled with graphene-Fe3O4 nanocomposites for efficient removal of ofloxacin in water: Mechanism, degradation pathway and potential toxicity. Chemosphere 2021, 129089. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Sanroman, A.; Acevedo-García, V.; Pazos, M.; Sanromán, M.A.; Rosales, E. Removal of sulfamethoxazole and methylparaben using hydrocolloid and fiber industry wastes: Comparison with biochar and laccase-biocomposite. J. Clean. Prod. 2020, 271, 122436. [Google Scholar] [CrossRef]
- Vasquez, E.; Hapeshi, E.; Fatta-Kassinos, D.; Kümmerer, K. Biodegradation potential of ofloxacin and its resulting transformation products during photolytic and photocatalytic treatment. Environ. Sci. Pollut. Res. 2013, 20, 1302–1309. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci. Total Environ. 2015, 112–126. [Google Scholar] [CrossRef]
- Amenorfenyo, D.K.; Huang, X.; Zhang, Y.; Zeng, Q.; Zhang, N.; Huang, Q. Microalgae Brewery Wastewater Treatment: Potentials, Benefits and the Challenges. Int. J. Environ. Res. Public Health 2019, 16, 1910. [Google Scholar] [CrossRef] [Green Version]
- Santos, C.E.; Coimbra, R.N.; Bermejo, S.P.; García, A.I. Comparative Assessment of Pharmaceutical Removal from Wastewater by the Microalgae Chlorella sorokiniana, Chlorella vulgaris and Scenedesmus obliquus. In Biological Wastewater Treatment and Resource Recovery; Farooq, R., Ahmad, Z., Eds.; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.W.; Huang, L.; Ji, P.Y.; Chen, C.P.; Li, X.S.; Gao, Y.H.; Liang, J.R. Using a mixture of wastewater and seawater as the growth medium for wastewater treatment and lipid production by the marine diatom Phaeodactylum tricornutum. Bioresour. Technol. 2019, 289, 121681. [Google Scholar] [CrossRef]
- Mojiri, A.; Zhou, J.; Vakili, M.; Le, H.V. Removal performance and optimization of pharmaceutical micropollutants from synthetic domestic wastewater by hybrid treatment. J. Contam. Hydrol. 2020, 235, 103736. [Google Scholar] [CrossRef]
- Jesús-Campos, D.; López-Elías, J.A.; Medina-Juarez, L.A.; Carvallo-Ruiz, G.; Fimbres-Olivarria, D.; Hayano-Kanashiro, C. Chemical composition, fatty acid profile and molecular changes derived from nitrogen stress in the diatom Chaetoceros muelleri. Aquac. Rep. 2020, 16, 10281. [Google Scholar] [CrossRef]
- Batista, I.R.; Garcia, A.B.; Dalen, P.; Kamermans, P.; Verdegem, M.; Smaal, A.C. Culturing Chaetoceros muelleri using simplified media with different N sources: Effects on production and lipid content. Eur. J. Phycol. 2015, 50, 92–99. [Google Scholar] [CrossRef]
- Lin, C.Y.; Wu, S.H. Comparison of lipid and biodiesel properties of Chaetoceros muelleri cultured in deep-sea water and surface seawater. J. Renew. Sustain. Energy 2017, 9, 013104. [Google Scholar] [CrossRef]
- Heimann, K.; Huerlimann, R. Chapter 3—Microalgal Classification: Major Classes and Genera of Commercial Microalgal Species. In Handbook of Marine Microalgae: Biotechnology Advances; Kim, S.K., Ed.; Elsevier: London, UK, 2015. [Google Scholar] [CrossRef]
- Khawli, A.F.; Martí-Quijal, F.J.; Ferrer, E.; Ruiz, M.J.; Berrada, H.; Gavahian, M.; Barba, F.J.; Fuente, B. Aquaculture and its by-products as a source of nutrients and bioactive compounds. Adv. Food Nutr. Res. 2020, 92, 1–33. [Google Scholar] [CrossRef]
- Pacheco-Vega, J.M.; Sánchez-Saavedra, M.D.P. The Biochemical Composition of Chaetoceros muelleri (Lemmermann Grown) with an Agricultural Fertilizer. J. World Aquac. Soc. 2009, 40, 556–560. [Google Scholar] [CrossRef]
- Minggat, E.; Roseli, W.; Tanaka, Y. Nutrient Absorption and Biomass Production by the Marine Diatom Chaetoceros muelleri: Effects of Temperature, Salinity, Photoperiod, and Light Intensity. J. Ecol. Eng. 2021, 22, 231–240. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, Y.; Gao, B.; Chen, R.; Wu, F. Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse. Environ. Sci. Pollut. Res. 2018, 25, 25659–25667. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, C.; Hu, Q.; Hou, X. Ofloxacin degradation by Fe3O4-CeO2/AC Fenton-like system: Optimization, kinetics, and degradation pathways. Mol. Catal. 2019, 465, 61–67. [Google Scholar] [CrossRef]
- Lananan, F.; Jusoh, A.; Ali, N.; Lam, S.S.; Endut, A. Effect of Conway Medium and f/2 Medium on the growth of six genera of South China Sea marine microalgae. Bioresour. Technol. 2013, 141, 75–82. [Google Scholar] [CrossRef]
- Encarnação, T.; Palito, C.; Pais, A.A.C.C.; Valente, A.J.M.; Burrows, H.D. Removal of Pharmaceuticals from Water by Free and Imobilised Microalgae. Molecules 2020, 25, 3639. [Google Scholar] [CrossRef]
- González-González, L.M.; Eltanahy, E.; Schenk, P.M. Assessing the fertilizing potential of microalgal digestates using the marine diatom Chaetoceros muelleri. Algal Res. 2019, 41, 101534. [Google Scholar] [CrossRef]
- Jiménez-Bambague, E.M.; Madera-Parra, C.A.; Ortiz-Escobar, A.C.; Morales-Acosta, P.A.; Peña-Salamanca, E.J.; Machuca-Marténez, F. High-rate algal pond for removal of pharmaceutical compounds from urban domestic wastewater under tropical conditions. Case study: Santiago de Cali, Colombia. Water Sci. Technol. 2020, 82, 1031–1043. [Google Scholar] [CrossRef]
- Sun, J.; Li, N.; Yang, P.; Zhang, Y.; Yuan, Y.; Lu, X.; Zhang, H. Simultaneous antibiotic degradation, nitrogen removal and power generation in a microalgae-bacteria powered biofuel cell designed for aquaculture wastewater treatment and energy recovery. Int. J. Hydrogen Energy 2020, 45, 10871–10881. [Google Scholar] [CrossRef]
- Oh, W.D.; Dong, Z.; Ronn, G.; Lim, T.T. Surface—Active bismuth ferrite as superior peroxymonosulfate activator for aqueous sulfamethoxazole removal: Performance, mechanism and quantification of sulfate radical. J. Hazard. Mater. 2016, 325, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.A.S.; da Cunha, C.C.R.F.; Freitas, M.G.; de Barros, A.L.C.; e Castro, P.B.N.; Pereira, A.R.; Silva, S.Q.; Santiago, A.F.; Afonso, R.J.C.F. Biodegradation of sulfamethoxazole by microalgae-bacteria consortium in wastewater treatment plant effluents. Sci. Total Environ. 2020, 749, 141441. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, W.; Li, J.; Yuan, M.; Zhang, J.; Xu, F.; Xu, H.; Zheng, X.; Wang, L. Ecotoxicological effects of sulfonamides and fluoroquinolones and their removal by a green alga (Chlorella vulgaris) and a cyanobacterium (Chrysosporum ovalisporum). Environ. Pollut. 2020, 226, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Chia, S.R.; Chew, K.W.; Fatima, H.; Zaid, M.; Chu, D.T.; Tao, Y.; Show, P.L. Microalgal Protein Extraction from Chlorella vulgaris FSP-E Using Triphasic Partitioning Technique With Sonication. Front. Bioeng. Biotechnol. 2019, 7, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costache, M.A.; Campeanu, G.; Neata, G. Studies concerning the extraction of chlorophyll and total carotenoids from vegetables. Rom. Biotechnol. Lett. 2012, 17, 7702–7708. [Google Scholar]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Namasivayam, S.K.R.; Jayakumar, D.; Kumar, V.R.; Bharani, R.S.R. Anti Bacterial and Anti Cancerous Biocompatible Silver Nanoparticles Synthesised from the Cold Tolerant Strain of Spirulina platensis. Res. J. Pharm. Tech. 2014, 7, 1404–1412. [Google Scholar] [CrossRef]
- Bai, X.; Acharya, K. Algae-mediated removal of selected pharmaceutical and personal care products (PPCPs) from Lake Mead water. Sci. Total Environ. 2017, 581, 734–740. [Google Scholar] [CrossRef]
- Watkinson, A.J.; Murby, E.J.; Costanzo, S.D. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Res. 2007, 41, 4164–4176. [Google Scholar] [CrossRef]
- Maryjoseph, S.; Ketheesan, B. Microalgae based wastewater treatment for the removal of emerging contaminants: A review of challenges and opportunities. Case Stud. Chem. Environ. Eng. 2020, 2, 100046. [Google Scholar] [CrossRef]
- Gentili, F.G.; Fick, J. Algal cultivation in urban wastewater: An efficient way to reduce pharmaceutical pollutants. J. Appl. Phycol. 2017, 29, 255–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, J.Q.; Govindwar, S.; Kurade, M.B.; Paeng, K.J.; Roh, H.S.; Khan, A.M.; Jeon, B.H. Toxicity of sulfamethazine and sulfamethoxazole and their removal by a green microalga, Scenedesmus obliquus. Chemosphere 2019, 218, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Ren, L.; Tan, X.; Chu, H.; Chen, J.; Zhang, Y.; Zhou, X. Removal of ofloxacin with biofuel production by oleaginous microalgae Scenedesmus obliquus. Bioresour. Technol. 2020, 123738. [Google Scholar] [CrossRef] [PubMed]
- Hena, S.; Gutierrez, L.; Croué, J.P. Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review. J. Hazard. Mater. 2021, 403, 124041. [Google Scholar] [CrossRef] [PubMed]
- Morais, M.G.; Vaz, B.S.; Morais, E.G.; Costa, J.A.V. Biologically Active Metabolites Synthesized by Microalgae. Biomed Res. Inter. 2015, 835761. [Google Scholar] [CrossRef] [Green Version]
- Hussian, A.E.M. The Role of Microalgae in Renewable Energy Production: Challenges and Opportunities. In Marine Ecology Biotic and Abiotic Interactions; Türkoğlu, M., Onal, U., Ismen, A., Eds.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Dolatabadi, M.; Ahmadzadeh, S. A rapid and efficient removal approach for degradation of metformin in pharmaceutical wastewater using electro-Fenton process; optimization by response surface methodology. Water Sci. Technol. 2019, 80, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Sendra, M.; Moreno-Garrido, I.; Blasco, J.; Araújo, C.V.M. Effect of erythromycin and modulating effect of CeO2 NPs on the toxicity exerted by the antibiotic on the microalgae Chlamydomonas reinhardtii and Phaeodactylum tricornutum. Environ. Pollut. 2018, 242, 357–366. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, J.; Yao, T.; Zhang, Y.; Zhou, X.; Chu, H. The influence of four pharmaceuticals on Chlorellapyrenoidosa culture. Sci. Rep. 2019, 9, 1624. [Google Scholar] [CrossRef] [Green Version]
- Shao, W.; Ebaid, R.; El-Sheekh, M.; Abomohra, A.; Eladel, H. Pharmaceutical applications and consequent environmental impacts of Spirulina (Arthrospira): An overview. Grasas Y Aceites 2019, 70, 4. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Guan, Y.; Gao, Q.; Tam, N.F.Y.; Zhu, W. Cellular responses, biodegradation and bioaccumulation of endocrine disrupting chemicals in marine diatom Navicula incerta. Chemosphere 2010, 80, 592–599. [Google Scholar] [CrossRef]
- Chen, S.; Wang, L.; Feng, W.; Yuan, M.; Li, J.; Xu, H.; Zheng, X. Sulfonamides-induced oxidative stress in freshwater microalga Chlorella vulgaris: Evaluation of growth, photosynthesis, antioxidants, ultrastructure, and nucleic acids. Sci. Rep. 2020, 10, 8243. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xie, P.; Guo, N. Effects of nonylphenol on the growth and microcystin production of Microcystis strains. Environ. Res. 2007, 103, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Selby, K.; Boxall, A.B.A. Effects of Antibiotics on the Growth and Physiology of Chlorophytes, Cyanobacteria, and a Diatom. Arch. Environ. Contam. Toxicol. 2016, 71, 589–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, V.; Pandey, B.; Suthar, S. Phytotoxicity and degradation of antibiotic ofloxacin in duckweed (Spirodela polyrhiza) system. Ecotox. Environ. Safe. 2019, 179, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.; Wang, X.; Chen, J.; Zitko, V.; An, T. Response of the freshwater alga Chlorella vulgaris to trichloroisocyanuric acid and ciprofloxacin. Environ. Toxicol. Chem. 2008, 27, 168–173. [Google Scholar] [CrossRef]
- Xiong, J.Q.; Kurade, M.B.; Jeon, B.H. Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris. Chem. Eng. J. 2017, 313, 1251–1257. [Google Scholar] [CrossRef]
- Petit, A.N.; Eullaffroy, P.; Debenest, T.; Gagné, F. Toxicity of PAMAM dendrimers to Chlamydomonas reinhardtii. Aquatic Toxicol. 2010, 100, 187–193. [Google Scholar] [CrossRef]
Application | References | Application | References |
---|---|---|---|
Wastewater treatment | [2] | Providing high-value products (linoleic acid, and carbohydrates) | [19] |
Application in food industry | [19] | High lipid content | [20] |
High biomass for bioenergy | [21] | Aquaculture feed | [22] |
Degradation of diethyl phthalate | [23] | Agricultural fertilizer | [24] |
Compounds | CAS Number | Molecular Formula | Molecular Weight | References |
---|---|---|---|---|
SMX | 732-46-6 | C10H11N3O3S | 253.28 | [26] |
OFX | 82419-36-1 | C18H20FN3O4 | 361.40 | [27] |
Run | Independent Factors | Average Removal of Antibiotics | ||||
---|---|---|---|---|---|---|
Initial Concentration (mg/L) | Contact Time (day) | SMX (%) | SMX (mg L−1) | OFX (%) | OFX (mg L−1) | |
1 | 0.5 | 0.5 | 31.6 | 0.158 | 33.3 | 0.167 |
2 | 0.5 | 2.0 | 33.8 | 0.169 | 35.9 | 0.180 |
3 | 0.5 | 3.5 | 35.2 | 0.176 | 37.5 | 0.188 |
4 | 0.5 | 5.0 | 39.9 | 0.200 | 41.2 | 0.206 |
5 | 0.5 | 6.5 | 39.8 | 0.199 | 42.6 | 0.213 |
6 | 1.0 | 0.5 | 30.9 | 0.309 | 32.7 | 0.327 |
7 | 1.0 | 2.0 | 33.0 | 0.330 | 34.5 | 0.345 |
8 | 1.0 | 3.5 | 35.5 | 0.355 | 37.6 | 0.376 |
9 | 1.0 | 5.0 | 37.4 | 0.374 | 39.1 | 0.391 |
10 | 1.0 | 6.5 | 37.4 | 0.374 | 39.7 | 0.397 |
11 | 1.5 | 0.5 | 27.9 | 0.419 | 29.5 | 0.443 |
12 | 1.5 | 2.0 | 28.7 | 0.431 | 31.4 | 0.471 |
13 | 1.5 | 3.5 | 33.5 | 0.503 | 34.9 | 0.524 |
14 | 1.5 | 5.0 | 34.4 | 0.516 | 37.3 | 0.560 |
15 | 1.5 | 6.5 | 34.3 | 0.515 | 37.1 | 0.557 |
16 | 2.0 | 0.5 | 25.9 | 0.518 | 27.6 | 0.552 |
17 | 2.0 | 2.0 | 27.1 | 0.542 | 30.0 | 0.600 |
18 | 2.0 | 3.5 | 28.7 | 0.574 | 30.9 | 0.618 |
19 | 2.0 | 5.0 | 32.6 | 0.652 | 34.2 | 0.684 |
20 | 2.0 | 6.5 | 32.9 | 0.658 | 34.7 | 0.694 |
21 | 2.5 | 0.5 | 23.7 | 0.593 | 26.3 | 0.658 |
22 | 2.5 | 2.0 | 25.0 | 0.625 | 27.5 | 0.688 |
23 | 2.5 | 3.5 | 26.3 | 0.658 | 28.4 | 0.710 |
24 | 2.5 | 5.0 | 30.4 | 0.760 | 32.2 | 0.805 |
25 | 2.5 | 6.5 | 31.2 | 0.780 | 33.8 | 0.845 |
26 | 3.0 | 0.5 | 18.3 | 0.549 | 21.7 | 0.651 |
27 | 3.0 | 2.0 | 21.2 | 0.636 | 23.4 | 0.702 |
28 | 3.0 | 3.5 | 24.1 | 0.723 | 26.8 | 0.804 |
29 | 3.0 | 5.0 | 26.3 | 0.789 | 29.1 | 0.873 |
30 | 3.0 | 6.5 | 27.4 | 0.822 | 29.9 | 0.897 |
Resp. | Optimization with RSM | Final Equation (in Terms of Actual Mode) ** | ||||
---|---|---|---|---|---|---|
R2 * | Adj. R2 | Pred. R2 | Adec. P. | SD | ||
SMX | 0.982 | 0.975 | 0.960 | 42.52 | 0.85 | 32.50 − 1.06A + 0.08B − 0.90A2 − 0.08B3 *** |
OFX | 0.974 | 0.972 | 0.967 | 74.15 | 0.86 | 36.21 − 4.76A + 1.37B |
Runs | Antibiotics Concentrations (mg L−1) | Time (day) | Runs | Antibiotics Concentrations (mg L−1) | Time (day) |
---|---|---|---|---|---|
1 | 0 | 1 | 25 | 0 | 5 |
2 | 10 | 1 | 26 | 10 | 5 |
3 | 20 | 1 | 27 | 20 | 5 |
4 | 30 | 1 | 28 | 30 | 5 |
5 | 40 | 1 | 29 | 40 | 5 |
6 | 50 | 1 | 30 | 50 | 5 |
7 | 0 | 2 | 31 | 0 | 6 |
8 | 10 | 2 | 32 | 10 | 6 |
9 | 20 | 2 | 33 | 20 | 6 |
10 | 30 | 2 | 34 | 30 | 6 |
11 | 40 | 2 | 35 | 40 | 6 |
12 | 50 | 2 | 36 | 50 | 6 |
13 | 0 | 3 | 37 | 0 | 7 |
14 | 10 | 3 | 38 | 10 | 7 |
15 | 20 | 3 | 39 | 20 | 7 |
16 | 30 | 3 | 40 | 30 | 7 |
17 | 40 | 3 | 41 | 40 | 7 |
18 | 50 | 3 | 42 | 50 | 7 |
19 | 0 | 4 | 43 | 0 | 8 |
20 | 10 | 4 | 44 | 10 | 8 |
21 | 20 | 4 | 45 | 20 | 8 |
22 | 30 | 4 | 46 | 30 | 8 |
23 | 40 | 4 | 47 | 40 | 8 |
24 | 50 | 4 | 48 | 50 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mojiri, A.; Baharlooeian, M.; Zahed, M.A. The Potential of Chaetoceros muelleri in Bioremediation of Antibiotics: Performance and Optimization. Int. J. Environ. Res. Public Health 2021, 18, 977. https://doi.org/10.3390/ijerph18030977
Mojiri A, Baharlooeian M, Zahed MA. The Potential of Chaetoceros muelleri in Bioremediation of Antibiotics: Performance and Optimization. International Journal of Environmental Research and Public Health. 2021; 18(3):977. https://doi.org/10.3390/ijerph18030977
Chicago/Turabian StyleMojiri, Amin, Maedeh Baharlooeian, and Mohammad Ali Zahed. 2021. "The Potential of Chaetoceros muelleri in Bioremediation of Antibiotics: Performance and Optimization" International Journal of Environmental Research and Public Health 18, no. 3: 977. https://doi.org/10.3390/ijerph18030977
APA StyleMojiri, A., Baharlooeian, M., & Zahed, M. A. (2021). The Potential of Chaetoceros muelleri in Bioremediation of Antibiotics: Performance and Optimization. International Journal of Environmental Research and Public Health, 18(3), 977. https://doi.org/10.3390/ijerph18030977