Associations between Socioeconomic Status, Social Participation, and Physical Activity in Older People during the COVID-19 Pandemic: A Cross-Sectional Study in a Northern Japanese City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Assessment of Physical Activity
2.3. Assessment of Socioeconomic Status
2.4. Assessment of Social Participation
2.5. Covariates
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Change in Physical Activity
3.3. Association between Socioeconomic Status, Social Participation, and Physical Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Coronavirus Disease (COVID-19) Pandemic. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 11 November 2019).
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T.; Lancet Physical Activity Series Working Group. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Tison, G.H.; Avram, R.; Kuhar, P.; Abreau, S.; Marcus, G.M.; Pletcher, M.J.; Olgin, J.E. Worldwide Effect of COVID-19 on Physical Activity: A Descriptive Study. Ann. Intern. Med. 2020, 173, 767–770. [Google Scholar] [CrossRef] [PubMed]
- Ammar, A.; Brach, M.; Trabelsi, K.; Chtourou, H.; Boukhris, O.; Masmoudi, L.; Bouaziz, B.; Bentlage, E.; How, D.; Ahmed, M.; et al. Effects of COVID-19 Home Confinement on Eating Behaviour and Physical Activity: Results of the ECLB-COVID19 International Online Survey. Nutrients 2020, 12, 1583. [Google Scholar] [CrossRef] [PubMed]
- Callow, D.D.; Arnold-Nedimala, N.A.; Jordan, L.S.; Pena, G.S.; Won, J.; Woodard, J.L.; Smith, J.C. The Mental Health Benefits of Physical Activity in Older Adults Survive the COVID-19 Pandemic. Am. J. Geriatr. Psychiatry 2020, 28, 1046–1057. [Google Scholar] [CrossRef] [PubMed]
- Goethals, L.; Barth, N.; Guyot, J.; Hupin, D.; Celarier, T.; Bongue, B. Impact of Home Quarantine on Physical Activity Among Older Adults Living at Home During the COVID-19 Pandemic: Qualitative Interview Study. JMIR Aging 2020, 3, e19007. [Google Scholar] [CrossRef]
- Meyer, J.; McDowell, C.; Lansing, J.; Brower, C.; Smith, L.; Tully, M.; Herring, M. Changes in Physical Activity and Sedentary Behavior in Response to COVID-19 and Their Associations with Mental Health in 3052 US Adults. Int. J. Environ. Res. Public Health 2020, 17, 6469. [Google Scholar] [CrossRef]
- Allen, L.; Williams, J.; Townsend, N.; Mikkelsen, B.; Roberts, N.; Foster, C.; Wickramasinghe, K. Socioeconomic status and non-communicable disease behavioural risk factors in low-income and lower-middle-income countries: A systematic review. Lancet Glob. Health 2017, 5, e277–e289. [Google Scholar] [CrossRef] [Green Version]
- Stringhini, S.; Carmeli, C.; Jokela, M.; Avendaño, M.; McCrory, C.; d’Errico, A.; Bochud, M.; Barros, H.; Costa, G.; Chadeau-Hyam, M.; et al. Socioeconomic status, non-communicable disease risk factors, and walking speed in older adults: Multi-cohort population based study. BMJ 2018, 360, k1046. [Google Scholar] [CrossRef] [Green Version]
- Active Ageing: A Policy Framework. Available online: http://apps.who.int/iris/bitstream/10665/67215/1/WHO_NMH_NPH_02.8.pdf (accessed on 11 November 2002).
- Annual Report on the Aging Society: 2017, Public Participation Activities ofthe Elderly, Chapter 1 Situation on Aging. Available online: https://www8.cao.go.jp/kourei/english/annualreport/2017/pdf/c1-2-2.pdf (accessed on 24 November 2017).
- Kikuchi, H.; Inoue, S.; Fukushima, N.; Takamiya, T.; Odagiri, Y.; Ohya, Y.; Amagasa, S.; Oka, K.; Owen, N. Social participation among older adults not engaged in full- or part-time work is associated with more physical activity and less sedentary time. Geriatr. Gerontol. Int. 2017, 17, 1921–1927. [Google Scholar] [CrossRef]
- Lindstrom, M.; Moghaddassi, M.; Merlo, J. Social capital and leisure time physical activity: A population based multilevel analysis in Malmo, Sweden. J. Epidemiol. Community Health 2003, 57, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Ichida, Y.; Hirai, H.; Kondo, K.; Kawachi, I.; Takeda, T.; Endo, H. Does social participation improve self-rated health in the older population? A quasi-experimental intervention study. Soc. Sci. Med. 2013, 94, 83–90. [Google Scholar] [CrossRef]
- Murase, N.; Katsumura, T.; Ueda, C.; Inoue, S.; Shimomitsu, T. Validity and reliability of Japanese version of International Physical Activity Questionaire. J. Health Welf. Stat. 2002, 49, 1–9. [Google Scholar]
- Tomioka, K.; Iwamoto, J.; Saeki, K.; Okamoto, N. Reliability and validity of the International Physical Activity Questionnaire (IPAQ) in elderly adults: The Fujiwara-kyo Study. J. Epidemiol. Jpn. Epidemiol. Assoc. 2011, 21, 459–465. [Google Scholar] [CrossRef] [Green Version]
- Zurayk, H.; Halabi, S.; Deeb, M. Measures of social class based on education for use in health studies in developing countries. J Epidemiol Community Health 1987, 41, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Honjo, K.; Iso, H.; Inoue, M.; Tsugane, S.; Japan Public Health Center-based Prospective Study Group. Education, social roles, and the risk of cardiovascular disease among middle-aged Japanese women: The JPHC Study Cohort I. Stroke 2008, 39, 2886–2890. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Zhang, Y.; Saito, E.; Rahman, M.S.; Gupta, P.C.; Sawada, N.; Tamakoshi, A.; Gao, Y.T.; Koh, W.P.; Shu, X.O.; et al. Association between educational level and total and cause-specific mortality: A pooled analysis of over 694 000 individuals in the Asia Cohort Consortium. BMJ Open 2019, 9, e026225. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, N.; Paolucci, B. Objective and subjective income adequacy: Their relationship to perceived life quality measures. Soc. Indic. Res. 1983, 12, 25–48. [Google Scholar] [CrossRef]
- Tomata, Y.; Tanno, K.; Zhang, S.; Sakai, M.; Kobayashi, K.; Kurasawa, N.; Tanaka, M.; Kamada, Y.; Tsuji, I.; Hiramoto, F. Subjective Household Economic Status and Obesity in Toddlers: A Cross-Sectional Study of Daycare Centers in Japan. J. Epidemiol. Jpn. Epidemiol. Assoc. 2019, 29, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Präg, P. Subjective socio-economic status predicts self-rated health irrespective of objective family socio-economic background. Scand. J. Public Health 2020, 48, 707–714. [Google Scholar] [CrossRef]
- Statistics and Information Department Minister’s Secretariat, Ministry of Health, Labour and Welfare. Comprehensive Survey of Living Conditions 2012; Health and Welfare Statistics: Tokyo, Japen, 2015; pp. 16–17.
- Takagi, S.; Tokoyama, Y.; Kaneko, Y. Assessing the Living Standards of the Older People Using Equivalent Income. Gov. Audt. Rev. 2004, 30, 109–128. [Google Scholar]
- Mizuta, A.; Fujiwara, T.; Ojima, T. Association between economic status and body mass index among adolescents: A community-based cross-sectional study in Japan. BMC Obes. 2016, 3, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazawa, A.; Inoue, Y.; Fujiwara, T.; Stickley, A.; Shirai, K.; Amemiya, A.; Kondo, N.; Watanabe, C.; Kondo, K. Association between social participation and hypertension among older people in Japan: The JAGES Study. Hypertens. Res. 2016, 39, 818–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiao, C.; Weng, L.J.; Botticello, A.L. Social participation reduces depressive symptoms among older adults: An 18-year longitudinal analysis in Taiwan. BMC Public Health 2011, 11, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McPhee, J.S.; French, D.P.; Jackson, D.; Nazroo, J.; Pendleton, N.; Degens, H. Physical activity in older age: Perspectives for healthy ageing and frailty. Biogerontology 2016, 17, 567–580. [Google Scholar] [CrossRef] [PubMed]
- Bauman, A.E.; Reis, R.S.; Sallis, J.F.; Wells, J.C.; Loos, R.J.; Martin, B.W. Correlates of physical activity: Why are some people physically active and others not? Lancet 2012, 380, 258–271. [Google Scholar] [CrossRef]
- Sallis, J.F.; Bowles, H.R.; Bauman, A.; Ainsworth, B.E.; Bull, F.C.; Craig, C.L.; Sjostrom, M.; De Bourdeaudhuij, I.; Lefevre, J.; Matsudo, V.; et al. Neighborhood environments and physical activity among adults in 11 countries. Am. J. Prev. Med. 2009, 36, 484–490. [Google Scholar] [CrossRef] [Green Version]
- Kumari, M.; Head, J.; Marmot, M. Prospective study of social and other risk factors for incidence of type 2 diabetes in the Whitehall II study. Arch. Intern. Med. 2004, 164, 1873–1880. [Google Scholar] [CrossRef] [Green Version]
- Schultz, W.M.; Kelli, H.M.; Lisko, J.C.; Varghese, T.; Shen, J.; Sandesara, P.; Quyyumi, A.A.; Taylor, H.A.; Gulati, M.; Harold, J.G.; et al. Socioeconomic Status and Cardiovascular Outcomes: Challenges and Interventions. Circulation 2018, 137, 2166–2178. [Google Scholar] [CrossRef]
- Lee, H.Y.; Jang, S.N.; Lee, S.; Cho, S.I.; Park, E.O. The relationship between social participation and self-rated health by sex and age: A cross-sectional survey. Int. J. Nurs. Stud. 2008, 45, 1042–1054. [Google Scholar] [CrossRef]
- Cheng, Y.; Kawachi, I.; Coakley, E.H.; Schwartz, J.; Colditz, G. Association between psychosocial work characteristics and health functioning in American women: Prospective study. BMJ 2000, 320, 1432–1436. [Google Scholar] [CrossRef] [Green Version]
- Litwin, H.; Sapir, E.V. Perceived income adequacy among older adults in 12 countries: Findings from the survey of health, ageing, and retirement in Europe. Gerontologist 2009, 49, 397–406. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Men | Women |
---|---|---|
(n = 462) | (n = 537) | |
Age | 74.2 ± 6.5 | 74.7 ± 6.2 |
Body mass index (kg/m2) | 23.6 ± 2.8 | 23.1 ± 3.5 |
Self-reported health | ||
Good | 392 (84.9) | 444 (82.7) |
Poor | 70 (15.1) | 93 (17.3) |
Smoking status | ||
Non-smoker | 400 (86.6) | 505 (94.0) |
Current smoker | 62 (13.4) | 32 (6.0) |
Drinking status | ||
Non-drinker | 178 (38.5) | 415 (77.3) |
Current drinker | 284 (61.5) | 122 (22.7) |
Living alone | ||
No | 409 (88.5) | 417 (77.7) |
Yes | 53 (11.5) | 120 (22.4) |
Educational background | ||
<High school | 328 (71.0) | 435 (81.0) |
≥High school | 134 (29.0) | 102 (19.0) |
Economic status | ||
Normal to good | 381 (82.5) | 461 (85.9) |
Poor | 81 (17.5) | 76 (14.1) |
Social participation | ||
No | 420 (90.9) | 349 (65.0) |
Yes | 42 (9.1) | 188 (35.0) |
Variables | Before Restrictions | After Restrictions | Δ a (Δ%) | p-Value |
---|---|---|---|---|
Men | ||||
METs of physical activity (METs·minutes/week) | ||||
Vigorous intensity | 1690.6 ± 2668.8 | 1604.8 ± 2598.2 | 85.7 (5.1) | 0.035 |
Moderate intensity | 1064.7 ± 1332.8 | 1002.6 ± 1306.4 | 62.2 (5.8) | 0.0024 |
Walking | 922.9 ± 1035.5 | 877.4 ± 1028.9 | 45.5 (4.9) | 0.0054 |
Total physical activity | 3678.2 ± 4163.1 | 3484.8 ± 4112.3 | 193.4 (5.3) | 0.0024 |
Sitting time (minutes/day) | 273.4 ± 203.4 | 287.7 ± 204.1 | 14.4 (5.3) | <0.001 |
Physical activity level | ||||
Maintained LPA (%) | 159 (34.4) | |||
Decreased (%) | 21 (4.6) | |||
Maintained MVPA (%) | 273 (59.1) | |||
Increased (%) | 9 (1.9) | |||
Women | ||||
METs of physical activity (METs·minutes/week) | ||||
Vigorous intensity | 742.5 ± 1701.3 | 717.5 ± 1738.0 | 25.0 (3.4) | 0.40 |
Moderate intensity | 712.5 ± 1062.7 | 644.4 ± 1005.1 | 68.1 (9.6) | 0.0022 |
Walking | 717.2 ± 899.6 | 647.2 ± 870.5 | 69.9 (9.7) | <0.001 |
Total physical activity | 2172.1 ± 2873.2 | 2009.2 ± 2876.6 | 163.0 (7.5) | <0.001 |
Sitting time (minutes/day) | 243.7 ± 181.5 | 267.8 ± 191.6 | 24.1 (9.9) | <0.001 |
Physical activity level | ||||
Maintained LPA (%) | 255 (47.5) | |||
Decreased (%) | 32 (6.0) | |||
Maintained MVPA (%) | 243 (45.2) | |||
Increased (%) | 7 (1.3) |
Variables | Cases | % | Crude | Model 1 | Model 2 | |||
---|---|---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |||
Men | ||||||||
Educational background | 0.64 | 0.74 | 0.85 | |||||
<High school | 328 | 71.0 | 1.00 | 1.00 | 1.00 | |||
≥High school | 134 | 29.0 | 1.11 (0.73–1.67) | 1.07 (0.71–1.63) | 0.96 (0.62–1.48) | |||
Economic status | <0.001 | <0.001 | 0.0069 | |||||
Normal to good | 381 | 82.5 | 1.00 | 1.00 | 1.00 | |||
Poor | 81 | 17.5 | 0.44 (0.27–0.71) | 0.42 (0.26–0.69) | 0.49 (0.30–0.82) | |||
Social participation | 0.65 | 0.41 | 0.27 | |||||
No | 420 | 90.9 | 1.00 | 1.00 | 1.00 | |||
Yes | 42 | 9.1 | 1.16 (0.60–2.26) | 1.33 (0.67–2.63) | 1.48 (0.74–3.00) | |||
Women | ||||||||
Educational background | 0.91 | 0.50 | 0.51 | |||||
<High school | 435 | 81.0 | 1.00 | 1.00 | 1.00 | |||
≥High school | 102 | 19.0 | 1.03 (0.67–1.58) | 0.86 (0.55–1.34) | 0.86 (0.54–1.36) | |||
Economic status | 0.73 | 0.72 | 0.90 | |||||
Normal to good | 461 | 85.9 | 1.00 | 1.00 | 1.00 | |||
Poor | 76 | 14.1 | 0.92 (0.56–1.50) | 0.92 (0.56–1.50) | 1.03 (0.62–1.60) | |||
Social participation | 0.09 | 0.0068 | 0.0094 | |||||
No | 349 | 65.0 | 1.00 | 1.00 | 1.00 | |||
Yes | 188 | 35.0 | 1.37 (0.96–1.95) | 1.69 (1.16–2.47) | 1.67 (1.13–2.45) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasaki, S.; Sato, A.; Tanabe, Y.; Matsuoka, S.; Adachi, A.; Kayano, T.; Yamazaki, H.; Matsuno, Y.; Miyake, A.; Watanabe, T. Associations between Socioeconomic Status, Social Participation, and Physical Activity in Older People during the COVID-19 Pandemic: A Cross-Sectional Study in a Northern Japanese City. Int. J. Environ. Res. Public Health 2021, 18, 1477. https://doi.org/10.3390/ijerph18041477
Sasaki S, Sato A, Tanabe Y, Matsuoka S, Adachi A, Kayano T, Yamazaki H, Matsuno Y, Miyake A, Watanabe T. Associations between Socioeconomic Status, Social Participation, and Physical Activity in Older People during the COVID-19 Pandemic: A Cross-Sectional Study in a Northern Japanese City. International Journal of Environmental Research and Public Health. 2021; 18(4):1477. https://doi.org/10.3390/ijerph18041477
Chicago/Turabian StyleSasaki, Sachiko, Akinori Sato, Yoshie Tanabe, Shinji Matsuoka, Atsuhiro Adachi, Toshiya Kayano, Hiroshi Yamazaki, Yuichi Matsuno, Ann Miyake, and Toshihiro Watanabe. 2021. "Associations between Socioeconomic Status, Social Participation, and Physical Activity in Older People during the COVID-19 Pandemic: A Cross-Sectional Study in a Northern Japanese City" International Journal of Environmental Research and Public Health 18, no. 4: 1477. https://doi.org/10.3390/ijerph18041477
APA StyleSasaki, S., Sato, A., Tanabe, Y., Matsuoka, S., Adachi, A., Kayano, T., Yamazaki, H., Matsuno, Y., Miyake, A., & Watanabe, T. (2021). Associations between Socioeconomic Status, Social Participation, and Physical Activity in Older People during the COVID-19 Pandemic: A Cross-Sectional Study in a Northern Japanese City. International Journal of Environmental Research and Public Health, 18(4), 1477. https://doi.org/10.3390/ijerph18041477