Self-Management Mobile Virtual Reality Program for Women with Gestational Diabetes
Abstract
:1. Introduction
1.1. Physical and Psychological Characteristics of GDM Women after Childbirth
1.2. Self-Management Mobile VR Program
2. Methods
2.1. Research Design and Participants
2.2. Mobile VR Program Development
2.3. Experimental Intervention
2.4. Measurements
2.5. Ethical Considerations
2.6. Data Analysis
3. Results
3.1. General Characteristics of the Participants
3.2. Homogeneity Test between the Experimental Group and the Control Group
3.3. Intervention Outcomes in the Experimental Group and the Control Group
- (1)
- Following intervention with the mobile VR program, the body weight (−5.65 ± 12.90), body fat (−2.52 ± 7.09), fasting glucose (−3.26 ± 16.88), and hemoglobin A1c (−0.18 ± 0.38) were significantly lower in the experimental group than in the control group; thus, hypothesis 1 was supported.
- (2)
- Following intervention with the mobile VR program, the level of diabetes knowledge was increased in both the experimental group (0.11 ± 0.90) and the control group (0.10 ± 0.09); however, hypothesis 2 was rejected as there was no statistically significant difference between the two groups.
- (3)
- Following intervention with mobile VR program, the score for dietary habits was significantly higher in the experimental group (0.74 ± 0.63) than in the control group (0.34 ± 0.58); thus, hypothesis 3 was supported.
- (4)
- Following intervention with the mobile VR program, the total mean score of health-promoting lifestyle profile was significantly higher in the experimental group (0.34 ± 0.49) than in the control group (0.18 ± 0.39); thus, hypothesis 4 was supported.
- (5)
- Following intervention with the mobile VR program, parenting stress was increased in both the experimental group (0.02 ± 0.60) and the control group (0.10 ± 0.81), and there was no statistically significant difference between the two groups; thus, hypothesis 5 was rejected.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Sullivan, J.B. Diabetes mellitus after GDM. Diabetes 1991, 1, 131–135. [Google Scholar] [CrossRef]
- Rani, P.R.; Begum, J. Screening and diagnosis of gestational diabetes mellitus, where do we stand. J. Clin. 2016, 10, QE01–QE04. [Google Scholar] [CrossRef]
- Goyal, A.; Gupta, Y.; Singla, R.; Kalra, S.; Tandon, N. American diabetes association: Standards of medical care-2020 for gestational diabetes mellitus. Diabetes Ther. 2020, 11, 1639–1644. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.K.; Lee, J.H.; Kim, J.; Jang, E.J.; Lee, C.H. Prevalence of gestational diabetes mellitus in Korea: A national health insurance database study. PLoS ONE 2016, 11, e0153107. [Google Scholar] [CrossRef] [PubMed]
- Johns, E.C.; Denison, F.C.; Norman, J.E.; Reynolds, R.M. Gestational diabetes mellitus: Mechanisms, treatment, and complications. Trend Endocrinol. Met. 2018, 29, 743–754. [Google Scholar] [CrossRef]
- Buchanan, T.A.; Xiang, A.H.; Page, K.A. Gestational diabetes mellitus: Risks and management during and after pregnancy. Nat Rev. Endocrinol. 2012, 8, 639–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plows, J.F.; Stanley, J.L.; Baker, P.N.; Reynolds, C.M.; Vickers, M.H. The pathophysiology of gestational diabetes mellitus. Int. J. Mol. Sci. 2018, 19, 3342. [Google Scholar] [CrossRef] [Green Version]
- Koo, B.K. Glucose metabolism in pregnant women with normal glucose tolerance. J. Korean Diabetes 2020, 21, 64–68. [Google Scholar] [CrossRef]
- Cho, N.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 1, 271–281. [Google Scholar] [CrossRef]
- Tobias, D.K.; Hu, F.B.; Chavarro, J.; Rosner, B.; Mozaffarian, D.; Zhang, C. Healthful dietary patterns and type 2 diabetes mellitus risk among women with a history of gestational diabetes mellitus. Arch. Intern. Med. 2012, 172, 1566–1572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whiting, D.R.; Guariguata, L.; Weil, C.; Shaw, J. IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 2011, 94, 311–321. [Google Scholar] [CrossRef]
- Hod, M.; Kapur, A.; Sacks, D.A.; Hadar, E.; Agarwal, M.; Di Renzo, G.C.; Divakar, H. The International Federation of Gynecology and Obstetrics (FIGO) Initiative on gestational diabetes mellitus: A pragmatic guide for diagnosis, management, and care. Int. J. Gynecol. Obstet. 2015, 131, S173–S211. [Google Scholar] [CrossRef] [Green Version]
- Bjelica, A.; Cetkovic, N.; Trninic-Pjevic, A.; Mladenovic-Segedi, L. The phenomenon of pregnancy—A psychological view. Ginekol. Polska 2018, 89, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Jukic, A.M.; Baird, D.D.; Weinberg, C.R.; McConnaughey, D.R.; Wilcox, A.J. Length of human pregnancy and contributors to its natural variation. Hum. Reprod. 2013, 28, 2848–2855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinkle, S.N.; Louis, G.M.B.; Rawal, S.; Zhu, Y.; Albert, P.S.; Zhang, C. A Longitudinal study of depression and gestational diabetes in pregnancy and the postpartum period. Diabetologia 2016, 59, 2594–2602. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Chen, X.; Wang, Y.; Liu, Y.; Bai, J. The experiences of pregnant women with gestational diabetes mellitus: A systematic review of qualitative evidence. Rev. Endocr. Metab. Disord. 2020, 12, e1. [Google Scholar] [CrossRef]
- McIntyre, H.D.; Catalano, P.; Zhang, C.; Desoye, G.; Mathiesen, E.R.; Damm, P. Gestational diabetes mellitus. Nat. Rev. Dis. Primers 2019, 11, 1–9. [Google Scholar] [CrossRef]
- Jerald, J. The VR Book: Human-Centered Design for Virtual Reality; Morgan and Claypool: Williston, ND, USA, 2015; pp. 1–484. [Google Scholar]
- Sherman, W.R.; Craig, A.B. Understanding Virtual Reality: Interface, Application, and Design. Morgan Kaufmann; Elsevier: Cambridge, MA, USA, 2018; pp. 28–57. [Google Scholar]
- Remtulla, R. The present and future applications of technology in adapting medical education amidst the COVID-19 pandemic. JMIR Med. Educ. 2020, 6, e20190. [Google Scholar] [CrossRef]
- Chen, Y.; Fanchiang, H.D.; Howard, A. Effectiveness of virtual reality in children with cerebral palsy: A systematic review and meta-analysis of randomizec controlled trials. Phys. Ther. 2018, 98, 63–77. [Google Scholar] [CrossRef]
- Foronda, C.L.; Alfes, C.M.; Dev, P.; Kleinheksel, A.J.; Nelson, D.A., Jr.; O’Donnell, J.M.; Samosky, J.T. Virtually nursing: Emerging technologies in nursing education. Nurse Educ. 2017, 42, 4–17. [Google Scholar] [CrossRef]
- Petrella, E.; Malavolti, M.; Bertarini, V.; Pignatti, L.; Neri, I.; Facchinetti, F. Gestational weight gain in overweight and obese women enrolled in a healthy lifestyle and eating habits program. J. Mater. Fetal. Neonatal. Med. 2014, 27, 1348–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, A.A.; Villagomez, E.T.; Brown, S.A.; Kouzekanani, K.; Hanis, C.L. The starr county diabetes education study: Development of the Spanish-language diabetes knowledge questionnaire. Diabetes Care 2001, 1, 16–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yook, S.M.; Park, S.; Moon, H.K.; Kim, K.; Shim, J.E.; Hwang, J.Y. Development of Korean healthy eating index for adults using the Korea national health and nutrition examination survey data. J. Nutr. Health 2015, 48, 419–428. [Google Scholar] [CrossRef] [Green Version]
- Walker, S.N.; Sechrist, K.R.; Pender, N.J. The health-promoting lifestyle profile: Development and psychometric characteristics. Nurs Res. 1987, 36, 76–81. [Google Scholar] [CrossRef]
- Kim, K.H.; Kang, H.K. Development of the parenting stress scale. J. Korean Home Eco Associ. 1997, 35, 141–150. [Google Scholar]
- Kirwan, J.P.; Sacks, J.; Nieuwoudt, S. The essential role of exercise in the management of type 2 diabetes. Clevel Clin. J. Med. 2017, 84, S15. [Google Scholar] [CrossRef]
- Cremona, A.; O’Gorman, C.; Cotter, A.; Saunders, J.; Donnelly, A. Effect of exercise modality on markers of insulin sensitivity and blood glucose control in pregnancies complicated with gestational diabetes mellitus: A systematic review. Obes. Sci. Pract. 2018, 4, 455–467. [Google Scholar] [CrossRef]
- Wang, X.; Yang, T.; Miao, J.; Liu, H.; Wu, K.; Guo, J.; Chen, J.; Li, T. Correlation between maternal and fetal insulin resistance in pregnant women with gestational diabetes mellitus. Clin. Lab. 2018, 1, 945–953. [Google Scholar] [CrossRef]
- Im, S.C. An integrated strategy for behavioral therapy and motivational interviews to improve motivation in obese patients. J. Korean Diabetes 2020, 21, 166–171. [Google Scholar]
- Rippe, J.M. Lifestyle medicine: The health promoting power of daily habits and practices. Am. J. Lifestyle Med. 2018, 12, 499–512. [Google Scholar] [CrossRef]
- Christiansen, P.K.; Skjøth, M.M.; Rothmann, M.J.; Vinter, C.A.; Lamont, R.F.; Draborg, E. Lifestyle interventions to maternal weight loss after birth: A systematic review. Syst. Rev. 2019, 8, 327–338. [Google Scholar] [CrossRef]
- Chasan-Taber, L. Lifestyle interventions to reduce risk of diabetes among women with prior gestational diabetes mellitus. Best Pract. Res. Clin. Obstet. Gynaecol. 2015, 1, 110–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, E.; Roche, C.; Appel, S. A review of the health beliefs and lifestyle behaviors of women with previous gestational diabetes. J. Obstet. Gynecol. Neonatal Nurs. 2009, 38, 516–526. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Li, C.M.; Liang, J.C.; Tsai, C.C. Health information obtained from the internet and changes in medical decision making: Questionnaire development and cross-sectional survey. J. Med. Internet Res. 2018, 20, e47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, S.; Lee, K.; Lee, J.; Kim, E. A semantic nertwork analysis of parenting stress on social media. J. Korean Home Manag. Assoc. 2020, 38, 61–77. [Google Scholar] [CrossRef]
- Ju, Y.J.; Park, E.C.; Ju, H.J.; Lee, S.A.; Lee, J.E.; Kim, W.; Chun, S.Y.; Kim, T.H. The influence of family stress and conflict on depressive symptoms among working married women: A longitudinal study. Health Care Women Int. 2018, 4, 275–288. [Google Scholar] [CrossRef]
- Dau, A.L.; Callinan, L.S.; Smith, M.V. An examination of the impact of maternal fetal attachment, postpartum depressive symptoms and parenting stress on maternal sensitivity. Infant Behav. Dev. 2019, 1, 99–107. [Google Scholar] [CrossRef]
- Chang, E.; Kim, H.T.; Yoo, B. Virtual reality sickness: A review of causes and measurements. Int. J. Hum. Comput. Interact. 2020, 20, 1658–1682. [Google Scholar] [CrossRef]
Categories | Total (n = 119) | Experimental Group (n = 57) | Control Group (n = 62) | Χ2/t-test | p |
---|---|---|---|---|---|
n (%)/Mean ± SD | |||||
Age (years) | 1.59 | 0.158 | |||
Over 35 | 57 (47.90) | 26 (45.61) | 31 (50.0) | ||
Below 35 | 62 (52.10) | 31 (54.39) | 31 (50.0) | ||
Birth experience | 2.99 | 0.084 | |||
Primipara | 80 (67.23) | 38 (66.67) | 42 (67.74) | ||
Multipara | 39 (32.77) | 19 (33.33) | 20 (32.26) | ||
Type of birth | 0.57 | 0.449 | |||
Normal vaginal birth | 72 (60.50) | 34 (59.45) | 38 (61.28) | ||
Cesarean section birth | 47 (39.50) | 23 (40.35) | 24 (38.71) | ||
Family history of diabetes mellitus | 0.78 | 0.675 | |||
Yes | 35 (29.41) | 16 (28.07) | 19 (30.65) | ||
No | 84 (70.59) | 41 (71.93) | 43 (69.35) | ||
Breastfeeding after birth | 2.13 | 1.664 | |||
Yes | 111 (93.28) | 54 (94.73) | 57 (91.94) | ||
No ↑ | 8 (6.72) | 3 (5.26) | 5 (8.06) |
Categories | Experimental Group (n = 57) | Control Group (n = 62) | t-test | p | |
---|---|---|---|---|---|
Mean ± SD | |||||
Physiological variables | Body weight (kg) | 67.15 ± 12.95 | 69.91 ± 12.58 | 1.18 | 0.24 |
Body fat (%) | 34.52 ± 4.48 | 35.94 ± 6.26 | 1.42 | 0.157 | |
Fasting glucose (mg/L) | 96.00 ± 16.46 | 101.61 ± 16.32 | 1.87 | 0.064 | |
HbA1c (%) | 5.56 ± 0.36 | 5.55 ± 0.36 | 0.92 | 0.362 | |
Diabetes knowledge | 0.54 ± 0.93 | 0.52 ± 0.84 | −1.11 | 0.271 | |
Dietary habits | 3.32 ± 0.54 | 3.45 ± 0.57 | 1.26 | 0.211 | |
Health-promoting lifestyle profile | Health responsibility | 2.77 ± 0.80 | 2.60 ± 0.75 | −1.25 | 0.295 |
Physical activity | 2.61 ± 0.80 | 2.56 ± 0.68 | −0.38 | 0.707 | |
Nutrition | 2.26 ± 0.77 | 2.37 ± 0.77 | 0.78 | 0.436 | |
Spiritual growth | 2.24 ± 0.80 | 2.23 ± 0.73 | −0.99 | 0.922 | |
Interpersonal relationship | 2.37 ± 0.79 | 2.25 ± 0.81 | −0.85 | 0.395 | |
Stress management | 2.61 ± 0.73 | 2.74 ± 0.58 | 1.02 | 0.312 | |
Total | 2.48 ± 0.37 | 2.46 ± 0.37 | −0.33 | 0.743 | |
Parenting stress | 3.27 ± 0.50 | 3.42 ± 0.39 | 1.79 | 0.077 |
Categories | Experimental Group | Control Group | t-test (P) | |||
---|---|---|---|---|---|---|
(n = 57) | (n = 62) | |||||
Follow-Up | Mean Differences (Post-Baseline) | Follow-Up | Mean Differences (Post-Baseline) | |||
Mean ± SD | Mean ± SD | |||||
Physiological variables | Body weight (kg) | 61.50 ± 8.62 | −5.65 ± 12.90 | 68.17 ± 17.09 | −1.74 ± 17.10 | 2.27 (0.007) |
Body fat (%) | 32.01 ± 5.11 | −2.52 ± 7.09 | 37.35 ± 5.85 | 1.41 ± 8.18 | 5.31 (<0.001) | |
Fasting glucose (mg/L) | 92.74 ± 6.76 | −3.26 ± 16.88 | 103.32 ± 15.63 | 1.70 ± 22.93 | 1.351 (0.031) | |
HbA1c (%) | 5.35 ± 0.31 | −0.18 ± 0.38 | 5.59 ± 0.34 | 0.04 ± 0.49 | 2.37 (0.019) | |
Diabetes knowledge | 0.64 ± 0.93 | 0.11 ± 0.90 | 0.62 ± 0.89 | 0.10 ± 0.09 | −0.54 (0.558) | |
Dietary habits | 4.07 ± 0.30 | 0.74 ± 0.63 | 3.79 ± 0.43 | 0.34 ± 0.58 | −3.63 (<0.001) | |
Health-promoting lifestyle profile | Health responsibility | 3.51 ± 0.54 | 0.74 ± 0.97 | 2.75 ± 0.58 | 0.16 ± 0.82 | −3.52 (0.001) |
Physical activity | 3.50 ± 0.67 | 0.89 ± 0.91 | 2.81 ± 0.91 | 0.23 ± 0.91 | −3.84 (<0.001) | |
Nutrition | 3.77 ± 0.58 | 1.52 ± 0.95 | 2.51 ± 0.73 | 0.14 ± 1.23 | 6.85 (<0.001) | |
Spiritual growth | 3.47 ± 0.72 | 1.23 ± 1.22 | 2.91 ± 0.51 | 0.68 ± 0.93 | 6.77 (<0.001) | |
Interpersonal relationship | 3.56 ± 0.56 | 1.19 ± 0.87 | 2.27 ± 1.08 | 0.02 ± 0.94 | 7.19 (<0.001) | |
Stress management | 2.19 ± 0.67 | −0.42 ± 0.93 | 2.61 ± 0.90 | −0.12 ± 0.95 | −1.72 (0.088) | |
Total | 2.82 ± 0.32 | 0.34 ± 0.49 | 2.64 ± 0.38 | 0.18 ± 0.39 | −11.18 (<0.001) | |
Parenting stress | 3.30 ± 0.32 | 0.02 ± 0.60 | 3.52 ± 0.70 | 0.10 ± 0.81 | 0.71 (0.482) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-H.; Kim, H.J.; Shin, G. Self-Management Mobile Virtual Reality Program for Women with Gestational Diabetes. Int. J. Environ. Res. Public Health 2021, 18, 1539. https://doi.org/10.3390/ijerph18041539
Kim S-H, Kim HJ, Shin G. Self-Management Mobile Virtual Reality Program for Women with Gestational Diabetes. International Journal of Environmental Research and Public Health. 2021; 18(4):1539. https://doi.org/10.3390/ijerph18041539
Chicago/Turabian StyleKim, Sung-Hoon, Hye Jin Kim, and Gisoo Shin. 2021. "Self-Management Mobile Virtual Reality Program for Women with Gestational Diabetes" International Journal of Environmental Research and Public Health 18, no. 4: 1539. https://doi.org/10.3390/ijerph18041539
APA StyleKim, S. -H., Kim, H. J., & Shin, G. (2021). Self-Management Mobile Virtual Reality Program for Women with Gestational Diabetes. International Journal of Environmental Research and Public Health, 18(4), 1539. https://doi.org/10.3390/ijerph18041539