Variation of DNA Methylation in Newborns Associated with Exhaled Carbon Monoxide during Pregnancy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Cord Blood Collection
2.3. Flow Cytometry Staining
2.4. DNA Methylation Analysis
2.5. Prior Data to Conduct Focused Analyses
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.; Hansen, A.R.; McGalliard, Z.; Gover, L.; Yan, F.; Zhang, J. Trends in Smoking and Smoking Cessation during Pregnancy from 1985 to 2014, Racial and Ethnic Disparity Observed from Multiple National Surveys. Matern. Child Health J. 2018, 22, 685–693. [Google Scholar] [CrossRef]
- McEvoy, C.T.; Spindel, E.R. Pulmonary Effects of Maternal Smoking on the Fetus and Child: Effects on Lung Development, Respiratory Morbidities, and Life Long Lung Health. Paediatr. Respir. Rev. 2017, 21, 27–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, S.; Probst, C.; Rehm, J.; Popova, S. National, regional, and global prevalence of smoking during pregnancy in the general population: A systematic review and meta-analysis. Lancet Glob. Health 2018, 6, e769–e776. [Google Scholar] [CrossRef] [Green Version]
- De Queiroz Andrade, E.; Da Silva Sena, C.R.; Collison, A.; Murphy, V.E.; Gould, G.S.; Bonevski, B.; Mattes, J. Association between active tobacco use during pregnancy and infant respiratory health: A systematic review and meta-analysis. BMJ Open 2020, 10, e037819. [Google Scholar] [CrossRef]
- Shah, N.R.; Bracken, M.B. A systematic review and meta-analysis of prospective studies on the association between maternal cigarette smoking and preterm delivery. Am. J. Obs. Gynecol. 2000, 182, 465–472. [Google Scholar] [CrossRef] [Green Version]
- Flenady, V.; Koopmans, L.; Middleton, P.; Frøen, J.F.; Smith, G.C.; Gibbons, K.; Coory, M.; Gordon, A.; Ellwood, D.; McIntyre, H.D.; et al. Major risk factors for stillbirth in high-income countries: A systematic review and meta-analysis. Lancet 2011, 377, 1331–1340. [Google Scholar] [CrossRef]
- Hackshaw, A.; Rodeck, C.; Boniface, S. Maternal smoking in pregnancy and birth defects: A systematic review based on 173,687 malformed cases and 11.7 million controls. Hum. Reprod. Update 2011, 17, 589–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Center for Chronic Disease Prevention; Health Promotion Office on Smoking and Health. Reports of the Surgeon General. In The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General; Centers for Disease Control and Prevention (US): Atlanta, GA, USA, 2014. [Google Scholar]
- Alexander, B.T.; Dasinger, J.H.; Intapad, S. Fetal programming and cardiovascular pathology. Compr. Physiol. 2015, 5, 997–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knopik, V.S.; Maccani, M.A.; Francazio, S.; McGeary, J.E. The epigenetics of maternal cigarette smoking during pregnancy and effects on child development. Dev. Psychopathol. 2012, 24, 1377–1390. [Google Scholar] [CrossRef] [Green Version]
- Rayfield, S.; Plugge, E. Systematic review and meta-analysis of the association between maternal smoking in pregnancy and childhood overweight and obesity. J. Epidemiol. Community Health 2017, 71, 162–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asmare, G.; Berhan, N.; Berhanu, M.; Alebel, A. Determinants of low birth weight among neonates born in Amhara Regional State Referral Hospitals of Ethiopia: Unmatched case control study. BMC Res. Notes 2018, 11, 447. [Google Scholar] [CrossRef]
- Xu, X.F.; Li, Y.J.; Sheng, Y.J.; Liu, J.L.; Tang, L.F.; Chen, Z.M. Effect of low birth weight on childhood asthma: A meta-analysis. BMC Pediatr. 2014, 14, 275. [Google Scholar] [CrossRef] [Green Version]
- Flaherman, V.; Rutherford, G.W. A meta-analysis of the effect of high weight on asthma. Arch. Dis. Child. 2006, 91, 334–339. [Google Scholar] [CrossRef] [Green Version]
- Palatianou, M.E.; Simos, Y.V.; Andronikou, S.K.; Kiortsis, D.N. Long-term metabolic effects of high birth weight: A critical review of the literature. Horm. Metab. Res. 2014, 46, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Hanson, M.A.; Gluckman, P.D. Early Developmental Conditioning of Later Health and Disease: Physiology or Pathophysiology? Physiol. Rev. 2014, 94, 1027–1076. [Google Scholar] [CrossRef]
- Barker, D.J.; Winter, P.D.; Osmond, C.; Margetts, B.; Simmonds, S.J. Weight in infancy and death from ischaemic heart disease. Lancet 1989, 2, 577–580. [Google Scholar] [CrossRef]
- Barker, D.J.; Osmond, C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1986, 1, 1077–1081. [Google Scholar] [CrossRef]
- Barker, D.J.; Gluckman, P.D.; Godfrey, K.M.; Harding, J.E.; Owens, J.A.; Robinson, J.S. Fetal nutrition and cardiovascular disease in adult life. Lancet 1993, 341, 938–941. [Google Scholar] [CrossRef]
- Barker, D.J. In utero programming of chronic disease. Clin. Sci. 1998, 95, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Kwon, E.J.; Kim, Y.J. What is fetal programming?: A lifetime health is under the control of in utero health. Obs. Gynecol. Sci. 2017, 60, 506–519. [Google Scholar] [CrossRef] [PubMed]
- Küpers, L.K.; Monnereau, C.; Sharp, G.C.; Yousefi, P.; Salas, L.A.; Ghantous, A.; Page, C.M.; Reese, S.E.; Wilcox, A.J.; Czamara, D.; et al. Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight. Nat. Commun. 2019, 10, 1893. [Google Scholar] [CrossRef] [Green Version]
- Lim, D.H.; Maher, E.R. DNA methylation: A form of epigenetic control of gene expression. Obs. Gynaecol. 2010, 12, 37–42. [Google Scholar] [CrossRef]
- Suter, M.; Ma, J.; Harris, A.S.; Patterson, L.; Brown, K.A.; Shope, C.; Showalter, L.; Abramovici, A.; Aagaard-Tillery, K.M. Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression. Epigenetics 2011, 6, 1284–1294. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.Y.; Zhu, Y.R.; Dai, D.J.; Wang, X.; Jin, H.C. Epigenetic regulation of alternative splicing. Am. J. Cancer Res. 2018, 8, 2346–2358. [Google Scholar]
- Küpers, L.K.; Xu, X.; Jankipersadsing, S.A.; Vaez, A.; la Bastide-van Gemert, S.; Scholtens, S.; Nolte, I.M.; Richmond, R.C.; Relton, C.L.; Felix, J.F.; et al. DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring. Int. J. Epidemiol. 2015, 44, 1224–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witt, S.H.; Frank, J.; Gilles, M.; Lang, M.; Treutlein, J.; Streit, F.; Wolf, I.A.C.; Peus, V.; Scharnholz, B.; Send, T.S.; et al. Impact on birth weight of maternal smoking throughout pregnancy mediated by DNA methylation. BMC Genom. 2018, 19, 290. [Google Scholar] [CrossRef] [Green Version]
- Gorber, S.C.; Schofield-Hurwitz, S.; Hardt, J.; Levasseur, G.; Tremblay, M. The accuracy of self-reported smoking: A systematic review of the relationship between self-reported and cotinine-assessed smoking status. Nicotine Tob. Res. 2009, 11, 12–24. [Google Scholar] [CrossRef]
- Joubert, B.R.; Felix, J.F.; Yousefi, P.; Bakulski, K.M.; Just, A.C.; Breton, C.; Reese, S.E.; Markunas, C.A.; Richmond, R.C.; Xu, C.J.; et al. DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis. Am. J. Hum. Genet. 2016, 98, 680–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arshad, S.H.; Holloway, J.W.; Karmaus, W.; Zhang, H.; Ewart, S.; Mansfield, L.; Matthews, S.; Hodgekiss, C.; Roberts, G.; Kurukulaaratchy, R. Cohort Profile: The Isle of Wight Whole Population Birth Cohort (IOWBC). Int. J. Epidemiol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Murphy, V.E.; Jensen, M.E.; Mattes, J.; Hensley, M.J.; Giles, W.B.; Peek, M.J.; Bisits, A.; Callaway, L.K.; McCaffery, K.; Barrett, H.L.; et al. The Breathing for Life Trial: A randomised controlled trial of fractional exhaled nitric oxide (FENO)-based management of asthma during pregnancy and its impact on perinatal outcomes and infant and childhood respiratory health. BMC Pregnancy Childbirth 2016, 16, 111. [Google Scholar] [CrossRef] [Green Version]
- Australian Bureau of Statistics. Table 3 Postal Area (POA) Index of Relative Socio-economic Advantage and Disadvantage, 2016. In 2033.0.55.001—Census of Population and Housing: Socio-Economic Indexes for Areas (SEIFA), Australia, 2016; Australian Bureau of Statistics: Canberra, Australia, 2018. [Google Scholar]
- Bibikova, M.; Fan, J.B. GoldenGate assay for DNA methylation profiling. Methods Mol. Biol. 2009, 507, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yan, L.; Hu, Q.; Sucheston, L.E.; Higgins, M.J.; Ambrosone, C.B.; Johnson, C.S.; Smiraglia, D.J.; Liu, S. IMA: An R package for high-throughput analysis of Illumina’s 450K Infinium methylation data. Bioinformatics 2012, 28, 729–730. [Google Scholar] [CrossRef]
- Johnson, W.E.; Li, C.; Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007, 8, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Ray, M.A.; Tong, X.; Lockett, G.A.; Zhang, H.; Karmaus, W.J. An Efficient Approach to Screening Epigenome-Wide Data. Biomed. Res. Int. 2016, 2016, 2615348. [Google Scholar] [CrossRef] [Green Version]
- Reinius, L.E.; Acevedo, N.; Joerink, M.; Pershagen, G.; Dahlén, S.-E.; Greco, D.; Söderhäll, C.; Scheynius, A.; Kere, J. Differential DNA Methylation in Purified Human Blood Cells: Implications for Cell Lineage and Studies on Disease Susceptibility. PLoS ONE 2012, 7, e41361. [Google Scholar] [CrossRef]
- O’Rourke, N.; Hatcher, L. A Step-by-Step Approach to Using SAS for Factor Analysis and Structural Equation Modeling, 2nd ed.; SAS Press: Cary, NC, USA, 2013. [Google Scholar]
- Loehlin, J.C. Latent Variable Models: An Introduction to Factor, Path, and Structural Equation Analysis; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2004. [Google Scholar]
- Gomez, C.; Berlin, I.; Marquis, P.; Delcroix, M. Expired air carbon monoxide concentration in mothers and their spouses above 5 ppm is associated with decreased fetal growth. Prev. Med. 2005, 40, 10–15. [Google Scholar] [CrossRef]
- Gruzieva, O.; Merid, S.K.; Chen, S.; Mukherjee, N.; Hedman, A.M.; Almqvist, C.; Andolf, E.; Jiang, Y.; Kere, J.; Scheynius, A.; et al. DNA Methylation Trajectories During Pregnancy. Epigenet. Insights 2019, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.-J.; Bonder, M.J.; Söderhäll, C.; Bustamante, M.; Baïz, N.; Gehring, U.; Jankipersadsing, S.A.; van der Vlies, P.; van Diemen, C.C.; van Rijkom, B.; et al. The emerging landscape of dynamic DNA methylation in early childhood. BMC Genom. 2017, 18, 25. [Google Scholar] [CrossRef] [Green Version]
- Cutfield, W.S.; Hofman, P.L.; Mitchell, M.; Morison, I.M. Could Epigenetics Play a Role in the Developmental Origins of Health and Disease? Pediatric Res. 2007, 61, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-C.; Hsu, T.-Y.; Chang, J.-C.; Ou, C.-Y.; Kuo, H.-C.; Liu, C.-A.; Wang, C.-L.; Chuang, H.; Chen, C.-P.; Yang, K.D. Paternal Tobacco Smoke Correlated to Offspring Asthma and Prenatal Epigenetic Programming. Front. Genet. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Markunas, C.A.; Xu, Z.; Harlid, S.; Wade, P.A.; Lie, R.T.; Taylor, J.A.; Wilcox, A.J. Identification of DNA methylation changes in newborns related to maternal smoking during pregnancy. Environ. Health Perspect. 2014, 122, 1147–1153. [Google Scholar] [CrossRef]
- Joubert, B.R.; Håberg, S.E.; Nilsen, R.M.; Wang, X.; Vollset, S.E.; Murphy, S.K.; Huang, Z.; Hoyo, C.; Midttun, Ø.; Cupul-Uicab, L.A.; et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ. Health Perspect. 2012, 120, 1425–1431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tehranifar, P.; Wu, H.-C.; McDonald, J.A.; Jasmine, F.; Santella, R.M.; Gurvich, I.; Flom, J.D.; Terry, M.B. Maternal cigarette smoking during pregnancy and offspring DNA methylation in midlife. Epigenetics 2018, 13, 129–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavrakas, P.J. Encyclopedia of Survey Research Methods; Sage Publications, Inc.: Thousand Oaks, CA, USA, 2008. [Google Scholar] [CrossRef]
- Althubaiti, A. Information bias in health research: Definition, pitfalls, and adjustment methods. J. Multidiscip. Healthc. 2016, 9, 211–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, K.-T.; Leonardi, G.S.; Croxford, B. Factors Contributing to CO Uptake and Elimination in the Body: A Critical Review. Int. J. Environ. Res. Public Health 2020, 17, 528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shorey-Kendrick, L.E.; McEvoy, C.T.; Ferguson, B.; Burchard, J.; Park, B.S.; Gao, L.; Vuylsteke, B.H.; Milner, K.F.; Morris, C.D.; Spindel, E.R. Vitamin C Prevents Offspring DNA Methylation Changes Associated with Maternal Smoking in Pregnancy. Am. J. Respir. Crit. Care 2017, 196, 745–755. [Google Scholar] [CrossRef]
- Stidley, C.A.; Picchi, M.A.; Leng, S.; Willink, R.; Crowell, R.E.; Flores, K.G.; Kang, H.; Byers, T.; Gilliland, F.D.; Belinsky, S.A. Multivitamins, Folate, and Green Vegetables Protect against Gene Promoter Methylation in the Aerodigestive Tract of Smokers. Cancer Res. 2010, 70, 568–574. [Google Scholar] [CrossRef] [Green Version]
- Hartwig, F.P.; Loret de Mola, C.; Davies, N.M.; Victora, C.G.; Relton, C.L. Breastfeeding effects on DNA methylation in the offspring: A systematic literature review. PLoS ONE 2017, 12, e0173070. [Google Scholar] [CrossRef] [Green Version]
- Sherwood, W.B.; Bion, V.; Lockett, G.A.; Ziyab, A.H.; Soto-Ramírez, N.; Mukherjee, N.; Kurukulaaratchy, R.J.; Ewart, S.; Zhang, H.; Arshad, S.H.; et al. Duration of breastfeeding is associated with leptin (LEP) DNA methylation profiles and BMI in 10-year-old children. Clin. Epigenet. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Sae-Lee, C.; Corsi, S.; Barrow, T.M.; Kuhnle, G.G.C.; Bollati, V.; Mathers, J.C.; Byun, H.M. Dietary Intervention Modifies DNA Methylation Age Assessed by the Epigenetic Clock. Mol. Nutr. Food Res. 2018, 62, e1800092. [Google Scholar] [CrossRef] [Green Version]
- Corley, J.; Cox, S.R.; Harris, S.E.; Hernandez, M.V.; Maniega, S.M.; Bastin, M.E.; Wardlaw, J.M.; Starr, J.M.; Marioni, R.E.; Deary, I.J. Epigenetic signatures of smoking associate with cognitive function, brain structure, and mental and physical health outcomes in the Lothian Birth Cohort 1936. Transl. Psychiatry 2019, 9, 248. [Google Scholar] [CrossRef]
- Joubert, B.R.; Håberg, S.E.; Bell, D.A.; Nilsen, R.M.; Vollset, S.E.; Midttun, O.; Ueland, P.M.; Wu, M.C.; Nystad, W.; Peddada, S.D.; et al. Maternal smoking and DNA methylation in newborns: In utero effect or epigenetic inheritance? Cancer Epidemiol. Biomark. Prev. 2014, 23, 1007–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, D.; Wang, X.; Campbell, M.R.; Porter, D.K.; Pittman, G.S.; Bennett, B.D.; Wan, M.; Englert, N.A.; Crowl, C.L.; Gimple, R.C.; et al. Correction: Distinct Epigenetic Effects of Tobacco Smoking in Whole Blood and among Leukocyte Subtypes. PLoS ONE 2017, 12, e0178308. [Google Scholar] [CrossRef] [Green Version]
- Ooshio, T.; Irie, K.; Morimoto, K.; Fukuhara, A.; Imai, T.; Takai, Y. Involvement of LMO7 in the association of two cell-cell adhesion molecules, nectin and E-cadherin, through afadin and alpha-actinin in epithelial cells. J. Biol. Chem. 2004, 279, 31365–31373. [Google Scholar] [CrossRef] [Green Version]
- Ott, E.B.; van den Akker, N.M.; Sakalis, P.A.; Gittenberger-de Groot, A.C.; Te Velthuis, A.J.; Bagowski, C.P. The lim domain only protein 7 is important in zebrafish heart development. Dev. Dyn. 2008, 237, 3940–3952. [Google Scholar] [CrossRef]
- Karlsson, T.; Kvarnbrink, S.; Holmlund, C.; Botling, J.; Micke, P.; Henriksson, R.; Johansson, M.; Hedman, H. LMO7 and LIMCH1 interact with LRIG proteins in lung cancer, with prognostic implications for early-stage disease. Lung Cancer 2018, 125, 174–184. [Google Scholar] [CrossRef]
- Jassal, B.; Matthews, L.; Viteri, G.; Gong, C.; Lorente, P.; Fabregat, A.; Sidiropoulos, K.; Cook, J.; Gillespie, M.; Haw, R.; et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020, 48, D498–D503. [Google Scholar] [CrossRef] [PubMed]
- Lao, D.H.; Esparza, M.C.; Bremner, S.N.; Banerjee, I.; Zhang, J.; Veevers, J.; Bradford, W.H.; Gu, Y.; Dalton, N.D.; Knowlton, K.U.; et al. Lmo7 is dispensable for skeletal muscle and cardiac function. Am. J. Physiol. Cell. Physiol. 2015, 309, C470–C479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semenova, E.; Wang, X.; Jablonski, M.M.; Levorse, J.; Tilghman, S.M. An engineered 800 kilobase deletion of Uchl3 and Lmo7 on mouse chromosome 14 causes defects in viability, postnatal growth and degeneration of muscle and retina. Hum. Mol. Genet. 2003, 12, 1301–1312. [Google Scholar] [CrossRef] [Green Version]
- Holaska, J.M.; Rais-Bahrami, S.; Wilson, K.L. LMO7 is an emerin-binding protein that regulates the transcription of emerin and many other muscle-relevant genes. Hum. Mol. Genet. 2006, 15, 3459–3472. [Google Scholar] [CrossRef]
Self-Reported Smoking | eCO > 6 ppm | |||||
---|---|---|---|---|---|---|
Yes (n = 11) | No (n = 83) | p-Value | Yes (n = 11) | No (n = 83) | p-Value | |
Maternal age at childbirth, years (mean, SD) | 29.2 (5.2) | 30.0 (4.8) | 0.659 | 29.9 (4.4) | 29.9 (5.4) | 0.999 |
Parity, nulliparous (%) | 27.3% | 54.9% | 0.085 | 27.3% | 54.9% | 0.085 |
Gestational age at birth, weeks (mean, SD) | 38.7 (0.4) | 39.3 (1.3) | 0.186 | 38.9 (1.3) | 39.3 (1.4) | 0.425 |
Infant sex, male (%) | 63.6% | 50.6% | 0.416 | 54.50% | 51.80% | 0.864 |
Birth weight, (g) (mean, SD) | 3328 (408.5) | 3537 (487) | 0.178 | 3134 (353) | 3563 (475) | 0.005 |
Birth weight females (g) (mean, SD) | 3030 (345) | 3452 (445) | 0.074 | 3006 (303.5) | 3465 (442) | 0.030 |
Birth weight males (g) (mean, SD) | 3499 (354) | 3618 (516) | 0.559 | 3240 (381) | 3651 (491) | 0.055 |
Socioeconomic Index for Areas (SEIFA), % (mean, SD) | 4.1 (1.6) | 4.9 (1.6) | 0.139 | 4.3 (1.5) | 4.9 (1.6) | 0.276 |
Unemployment (%) | 72.7% | 30.0% | 0.005 | 63.6% | 31.3% | 0.035 |
Caesarean birth (%) | 36.4% | 28.0% | 0.568 | 27.3% | 29.3% | 0.888 |
eCO > 6 ppm | eCO ≤ 6 ppm | Kappa | |||
---|---|---|---|---|---|
No. | % | No. | % | 0.79 | |
Self-reported smoking | 9 | 81.8 | 2 | 2.4 | |
No self-reported smoking | 2 | 18.2 | 81 | 97.6 |
CpG | Gene | Chromosome | Effect on Birth Weight in Gram per Percent Methylation i | Standard Error (SE) of the Birth Weight Effect | p-Value |
---|---|---|---|---|---|
cg27434149 | ANK3 * | 10 | −32.24 | 7.76 | <0.0001 |
cg02264407 | LMO7 | 13 | 49.13 | 13.37 | 0.0004 |
cg18444875 | OXR1 | 8 | −31.47 | 8.59 | 0.0004 |
cg22057874 | OSBPL6 | 2 | −55.21 | 18.35 | 0.0034 |
cg22902505 | PRDM8 | 4 | 15.41 | 5.18 | 0.0038 |
cg06012804 | HES1 * | 3 | 29.28 | 12.69 | 0.0235 |
cg00169122 | ANKRD11 | 16 | −35.11 | 15.47 | 0.0257 |
cg07810039 | TGFB2 | 1 | −18.56 | 8.45 | 0.0308 |
cg09726279 | MYBBP1A | 17 | 74.06 | 34.36 | 0.0339 |
cg00624799 | ZNF710 | 15 | 25.11 | 12.8 | 0.0529 |
cg07340025 | ANKH * | 5 | −19.52 | 9.99 | 0.0541 |
cg12374579 | ASPSCR1 | 17 | 28.74 | 14.81 | 0.0555 |
cg18183624 | IGF2BP1 | 17 | 17.43 | 9.52 | 0.0707 |
cg04872675 | TMEM119 * | 12 | 20.54 | 11.43 | 0.0759 |
cg12160087 | CCDC64 | 12 | 33.03 | 19.18 | 0.0886 |
cg25311470 | NRCAM | 7 | 45.57 | 28.11 | 0.1087 |
cg11043990 | RNF157 | 17 | −62.65 | 38.81 | 0.1102 |
cg00376553 | TSC22D4 | 7 | 20.25 | 13.38 | 0.1337 |
cg23928512 | ASPSCR1 | 17 | 19.44 | 12.94 | 0.1366 |
cg07638500 | MYLK | 3 | 16.40 | 12.55 | 0.1947 |
cg01668281 | CLDN14 | 21 | 24.92 | 19.94 | 0.2148 |
cg18561976 | ICOS | 2 | 13.04 | 12.16 | 0.2867 |
cg14001239 | SVIL | 10 | 11.2 | 11.19 | 0.3198 |
cg24513387 | LOC286083 * | 8 | 22.94 | 23.01 | 0.3214 |
cg02973307 | KCTD15 | 19 | 9.85 | 11.19 | 0.3813 |
cg13784312 | RAPGEF1 | 9 | −8.39 | 9.58 | 0.3835 |
cg02227813 | SAMD3 | 6 | −13.42 | 17.83 | 0.4538 |
cg07466788 | SLC16A3 | 17 | 18.07 | 25.79 | 0.4853 |
cg26208507 | CCND2 * | 12 | −6.93 | 12.86 | 0.5913 |
cg21611682 | LRP5 | 11 | 0.62 | 23.13 | 0.9979 |
Self-Reporting Smoking | eCO | ||||||||
---|---|---|---|---|---|---|---|---|---|
Gene | Gene Group | Chr | CpG | Coef | SE | p-Value | Coef | SE | p-Value |
ANK3 P + | 10 | cg27434149 | 0.023 | 0.020 | 0.246 | 0.036 | 0.020 | 0.081 | |
LMO7 | Body | 13 | cg02264407 | −0.020 | 0.011 | 0.077 | −0.023 | 0.011 | 0.041 |
OXR1 | Body | 8 | cg18444875 | 0.023 | 0.017 | 0.177 | 0.030 | 0.017 | 0.087 |
OSBPL6 | TSS200; Body | 2 | cg22057874 | 0.009 | 0.007 | 0.229 | 0.011 | 0.007 | 0.148 |
PRDM8 | 5′UTR; 5′UTR | 4 | cg22902505 | −0.003 | 0.034 | 0.933 | −0.033 | 0.035 | 0.347 |
HES1 P + | 3 | cg06012804 | 0.010 | 0.010 | 0.297 | 0.006 | 0.010 | 0.587 | |
ANKRD11 | 5′UTR | 16 | cg00169122 | −0.001 | 0.011 | 0.944 | 0.013 | 0.012 | 0.263 |
TGFB2 | Body; Body | 1 | cg07810039 | 0.020 | 0.015 | 0.202 | 0.018 | 0.016 | 0.276 |
MYBBP1A | Body; Body | 17 | cg09726279 | −0.007 | 0.005 | 0.141 | −0.007 | 0.005 | 0.187 |
cg02264407 | Exhaled Carbon Monoxide (eCO) > 6 ppm | Gender | B Cells | CD4+ T Cells | Eosinophils | |
---|---|---|---|---|---|---|
Birth weight | ||||||
Direct | 4476 (<0.001) | −368.07 (0.02) | −134.48 (0.16) | - | −388.66 (0.67) | - |
Indirect | - | −103.25 (0.04) | - | 678.4 (0.32) | −1791 (0.0003) | −586.33 (0.33) |
Total | 4476 (<0.001) | −471.32 (0.003) | −134.48 (0.16) | 678.4 (0.32) | −2180 (0.08) | −586.33 (0.33) |
cg02264407 | ||||||
Direct | - | −0.023 (0.035) | - | 0.15 (0.32) | −0.40 (<0.0001) | −0.13 (0.32) |
Indirect | - | - | - | - | - | - |
Total | - | −0.023 (0.035) | - | 0.15 (0.32) | −0.40 (<0.0001) | −0.13 (0.32) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Queiroz Andrade, E.; Gomes, G.M.C.; Collison, A.; Grehan, J.; Murphy, V.E.; Gibson, P.; Mattes, J.; Karmaus, W. Variation of DNA Methylation in Newborns Associated with Exhaled Carbon Monoxide during Pregnancy. Int. J. Environ. Res. Public Health 2021, 18, 1597. https://doi.org/10.3390/ijerph18041597
De Queiroz Andrade E, Gomes GMC, Collison A, Grehan J, Murphy VE, Gibson P, Mattes J, Karmaus W. Variation of DNA Methylation in Newborns Associated with Exhaled Carbon Monoxide during Pregnancy. International Journal of Environmental Research and Public Health. 2021; 18(4):1597. https://doi.org/10.3390/ijerph18041597
Chicago/Turabian StyleDe Queiroz Andrade, Ediane, Gabriela Martins Costa Gomes, Adam Collison, Jane Grehan, Vanessa E. Murphy, Peter Gibson, Joerg Mattes, and Wilfried Karmaus. 2021. "Variation of DNA Methylation in Newborns Associated with Exhaled Carbon Monoxide during Pregnancy" International Journal of Environmental Research and Public Health 18, no. 4: 1597. https://doi.org/10.3390/ijerph18041597
APA StyleDe Queiroz Andrade, E., Gomes, G. M. C., Collison, A., Grehan, J., Murphy, V. E., Gibson, P., Mattes, J., & Karmaus, W. (2021). Variation of DNA Methylation in Newborns Associated with Exhaled Carbon Monoxide during Pregnancy. International Journal of Environmental Research and Public Health, 18(4), 1597. https://doi.org/10.3390/ijerph18041597