Peloids as Thermotherapeutic Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Peloids Used in Medical Spas (MSs)
2.1.2. Raw Materials (RMs)
2.2. Methods
2.2.1. Centesimal Composition
2.2.2. Instrumental Texture
2.2.3. Thermal Parameters
- Specific heat (Cp)
- 1.
- Calculation of the (Cp) of the MSsThe equation proposed by Armijo et al. [80] with which the specific heat of a peloid can be calculated as a function of its ash (A) and water (W) contents is:Cp = 1.26023 + 0.02926 (W) − 0.00628 (A) + 0.000063 (W) (A)
- 2.
- Determination of the (Cp) of the RMsThe (Cp)’s of the RMs were determined using an air-cooled differential scanning ca-lorimeter DSC1 (Mettler, Toledo). The characteristics of this system include a temperature accuracy of ±0.02 K and a heating rate of 10 K/min. The (Cp) capacities of the nine RMs were determined to be between 45 and 36 °C, temperatures that are commonly used for peloid application in spas; the same methods were used to obtain the cooling curves. This takes into account that although the (Cp) varies across the temperature range, these variations are so small that the mean values may easily be considered with no appreciable error.
- 3.
- Calculation of the (Cp) of the pastes of the raw material–distilled water mixtures (RM/DW)For pastes, the (Cp) of the system is given by the sum of their components. According to the general equation:Pastes (RM/DW) were prepared by adding distilled purified water to the RMs and leaving them for 24 h for the water to penetrate, followed by manual mixing. The distilled purified water used to prepare the pastes was obtained using a system consisting of a Fistreen Cyclon distiller fitted to a Water Pro purification system from Labconco and a Sy-nergy UV system from Millipore.The (Cp) is used to calculate the amount of heat (Q) that a peloid or paste can give off over a range of temperatures.
- Cooling curve testCooling curves were prepared by plotting temperature against time. The thermometer used has a Pt 100 probe to measure the product temperature at 15 s intervals from 45 to 36 °C. The equation best fitting the experimental curve was determined using the program Origin 8 [94].These curves were then used to obtain the relaxation time (tr) defined as the time needed for the temperature to drop exponentially by 37% of its starting value (1/e = 0.37). Accordingly, for a peloid applied at 45 °C and attaining a final temperature of 36 °C, in the first tr, the temperature reached would be (36 + 9/e) 39.3 °C. Furthermore, this same time would be required for the temperature to drop to (36 + 9/e2) 37.2 °C, and in the same time intervals to 36.4 °C and 36.1 °C. Over three times its tr, the temperature reached would be 36.4 °C. This is the normal user body temperature, so the peloid would no longer have a thermotherapeutic effect [80].From (Q) and (tr), the heat flow (Φ) is obtained; that is, the speed of the passage of heat from the peloid to the patient.
3. Results and Discussion
3.1. Peloids Used in Medical Spas (MSs)
3.2. Raw Materials (RMs) and the Pastes (RM/DW)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maraver, F. Antecedentes históricos de la peloterapia. An. Hidrol. Med. 2006, 1, 17–42. [Google Scholar] [CrossRef]
- Gomes, C.; Carretero, M.I.; Pozo, M.; Maraver, F.; Cantista, P.; Armijo, F.; Legido, J.L.; Teixeira, F.; Rautureau, M.; Delgado, R. Peloids and pelotherapy: Historical evolution, classification and glossary. Appl. Clay Sci. 2013, 75, 28–38. [Google Scholar] [CrossRef]
- Armijo, F. Propiedades térmicas de los peloides. Bol. Soc. Esp. Hidrol. Med. 1991, 6, 151–157. [Google Scholar] [CrossRef]
- Glasstone, S. Textbook of Physical Chemistry; Macmillan: London, UK, 1974. [Google Scholar]
- Gomes, C.D.S.F. Healing and edible clays: A review of basic concepts, benefits and risks. Environ. Geochem. Health 2018, 40, 1739–1765. [Google Scholar] [CrossRef] [PubMed]
- Carretero, M.I. Clays in pelotherapy. A review. Part II: Organic compounds, microbiology and medical applications. Appl. Clay Sci. 2020, 189, 105531. [Google Scholar] [CrossRef]
- Pastor Vega, J.M. Termoterapia. In Manual de Medicina Física; Martínez, M., Pastor Vega, J.M., Sendra, F., Eds.; Harcourt Brace: Madrid, Spain, 1998; pp. 73–90. ISBN 978-84-8174-183-3. [Google Scholar]
- Maraver, F.; Fernández-Torán, M.A.; Corvillo, I.; Morer, C.; Vázquez, I.; Aguilera, L.; Armijo, F. Pelotherapy, a review. Med. Nat. 2015, 9, 38–46. [Google Scholar]
- Giacomino, M.I.; De Michele, D. ¿Es el fango un antiinflamatorio? An. Med. Interna 2007, 24, 352–353. [Google Scholar] [CrossRef] [PubMed]
- Fioravanti, A.; Cantarini, L.; Guidelli, G.M.; Galeazzi, M. Mechanisms of action of spa therapies in rheumatic diseases: What scientific evidence is there? Rheumatol. Int. 2011, 31, 1–8. [Google Scholar] [CrossRef]
- Ortega, E.; Gálvez, I.; Hinchado, M.D.; Guerrero, J.; Martín-Cordero, L.; Torres-Piles, S. Anti-inflammatory effect as a mechanism of effectiveness underlying the clinical benefits of pelotherapy in osteoarthritis patients: Regulation of the altered inflammatory and stress feedback response. Int. J. Biometeorol. 2017, 61, 1777–1785. [Google Scholar] [CrossRef] [PubMed]
- Cozzi, F.; Ciprian, L.; Carrara, M.; Galozzi, P.; Zanatta, E.; Scanu, A.; Sfriso, P.; Punzi, L. Balneotherapy in chronic inflammatory rheumatic diseases—A narrative review. Int. J. Biometeorol. 2018, 62, 2065–2071. [Google Scholar] [CrossRef] [PubMed]
- Gálvez, I.; Torres-Piles, S.; Ortega, E. Innate/inflammatory bioregulation and clinical effectiveness of whole-body hyperthermia (balneotherapy) in elderly patients with osteoarthritis. Int. J. Hyperth. 2019, 35, 340–347. [Google Scholar] [CrossRef]
- Gálvez, I.; Torres-Piles, S.; Ortega, E. Effect of mud-bath therapy on the innate/inflammatory responses in elderly patients with osteoarthritis: A discussion of recent results and a pilot study on the role of the innate function of monocytes. Int. J. Biometeorol. 2020, 64, 927–935. [Google Scholar] [CrossRef]
- de la Fuente, M.; Hernández-Torres, A. Modulación inmunológica y envejecimiento en peloterapia. In Peloterapia: Aplicaciones Médicas y Cosméticas de Fangos Termales; Fundación Bílbilis: Madrid, Spain, 2014; pp. 81–109. ISBN 978-84-616-8551-6. [Google Scholar]
- Gálvez, I.; Torres-Piles, S.; Ortega-Rincón, E. Balneotherapy, Immune System, and Stress Response: A Hormetic Strategy? Int. J. Mol. Sci. 2018, 19, 1687. [Google Scholar] [CrossRef] [Green Version]
- Carretero, M.I.; Pozo, M.; Martín-Rubí, J.A.; Pozo, E.; Maraver, F. Mobility of elements in interaction between artificial sweat and peloids used in Spanish spas. Appl. Clay Sci. 2010, 48, 506–515. [Google Scholar] [CrossRef]
- Morer, C.; Roques, C.-F.; Françon, A.; Forestier, R.; Maraver, F. The role of mineral elements and other chemical compounds used in balneology: Data from double-blind randomized clinical trials. Int. J. Biometeorol. 2017, 61, 2159–2173. [Google Scholar] [CrossRef] [PubMed]
- Calin, M.R.; Radulescu, I.; Ion, A.C.; Capra, L.; Almasan, E.R. Investigations on chemical composition and natural radioactivity levels from salt water and peloid used in pelotherapy from the Techirghiol Lake, Romania. Environ. Geochem. Health 2020, 42, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Gomes, C.F.; Gomes, J.H.; Da Silva, E.F. Bacteriostatic and bactericidal clays: An overview. Environ. Geochem. Health 2020, 42, 3507–3527. [Google Scholar] [CrossRef] [PubMed]
- Nissenbaum, A.; Rullkötter, J.; Yechieli, Y. Are the Curative Properties of ‘Black Mud’ from the Dead Sea Due to the Presence of Bitumen (Asphalt) or Other Types of Organic Matter? Environ. Geochem. Health 2002, 24, 327–335. [Google Scholar] [CrossRef]
- Hanzel, A.; Berényi, K.; Horváth, K.; Szendi, K.; Németh, B.; Varga, C. Evidence for the therapeutic effect of the organic content in Szigetvár thermal water on osteoarthritis: A double-blind, randomized, controlled clinical trial. Int. J. Biometeorol. 2019, 63, 449–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calderan, A.; Carraro, A.; Honisch, C.; Lalli, A.; Ruzza, P.; Tateo, F. Euganean therapeutic mud (NE Italy): Chlorophyll a variations over two years and relationships with mineralogy and geochemistry. Appl. Clay Sci. 2020, 185, 105361. [Google Scholar] [CrossRef]
- Martínez-Villegas, N.; Muñoz, M.S.; González-Hernández, P.; Rodríguez, C.M.; Cossio, J.B.; Díaz, R.H.; Castillo, J.R.F.; Rudnikas, A.G.; López, C.D.; Pérez-Gramatges, A.; et al. Inorganic and organic characterization of Santa Lucía salt mine peloid for quality evaluations. Environ. Sci. Pollut. Res. Int. 2020, 27, 15944–15958. [Google Scholar] [CrossRef] [PubMed]
- Szabó, I.; Varga, C. Finding possible pharmacological effects of identified organic compounds in medicinal waters (BTEX and phenolic compounds). Int. J. Biometeorol. 2020, 64, 989–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zampieri, R.M.; Adessi, A.; Caldara, F.; Codato, A.; Furlan, M.; Rampazzo, C.; De Philippis, R.; La Rocca, N.; Valle, L.D. Anti-Inflammatory Activity of Exopolysaccharides from Phormidium sp. ETS05, the Most Abundant Cyanobacterium of the Therapeutic Euganean Thermal Muds, Using the Zebrafish Model. Biomolecules 2020, 10, 582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bird, R.; Stewart, W.; Lightfoot, E. Transport Phenomena; Wiley and Sons: Hoboken, NJ, USA, 2007; ISBN 978-0-470-11539-8. [Google Scholar]
- Wei, J. Irreversible thermodynamics in engineering. Ind. Eng. Chem. 1966, 58, 55–60. [Google Scholar] [CrossRef]
- Groot, S. Thermodynamics of Irreversible Processes; North-Holland Pub. Co.: Amsterdam, The Netherlands, 1966. [Google Scholar]
- Ferrand, T.; Yvon, J. Thermal properties of clay pastes for pelotherapy. Appl. Clay Sci. 1991, 6, 21–38. [Google Scholar] [CrossRef]
- Flusser, D.; Abu-Shakra, M.; Friger, M.; Codish, S.; Sukenik, S. Therapy With Mud Compresses for Knee Osteoarthritis: Comparison of natural mud preparations with mineral-depleted mud. J. Clin. Rheumatol. 2002, 8, 197–203. [Google Scholar] [CrossRef]
- Forestier, R.; Desfour, H.; Tessier, J.-M.; Francon, A.; Foote, A.M.; Genty, C.; Rolland, C.; Roques, C.-F.; Bosson, J.-L. Spa therapy in the treatment of knee osteoarthritis: A large randomised multicentre trial. Ann. Rheum. Dis. 2010, 69, 660–665. [Google Scholar] [CrossRef] [Green Version]
- Espejo-Antunez, L.; Caro-Puértolas, B.; Ibáñez Burgos, B.; Porto-Payán, J.M.; Torres-Piles, S. Effects of mud therapy on perceived pain and quality of life related to health in patients with knee osteoarthritis. Reumatol Clin. 2013, 9, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Espejo-Antúnez, L.; Cardero-Durán, M.A.; Garrido-Ardila, E.M.; Torres-Piles, S.; Caro-Puértolas, B. Clinical effectiveness of mud pack therapy in knee osteoarthritis. Rheumatology 2013, 52, 659–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Zeng, C.; Gao, S.-G.; Yang, T.; Luo, W.; Li, Y.-S.; Xiong, Y.-L.; Sun, J.-P.; Lei, G.-H. The effect of mud therapy on pain relief in patients with knee osteoarthritis: A meta-analysis of randomized controlled trials. J. Int. Med. Res. 2013, 41, 1418–1425. [Google Scholar] [CrossRef]
- Tefner, I.K.; Gaál, R.; Koroknai, A.; Ráthonyi, A.; Gáti, T.; Monduk, P.; Kiss, E.; Kovács, C.; Bálint, G.; Bender, T. The effect of Neydharting mud-pack therapy on knee osteoarthritis: A randomized, controlled, double-blind follow-up pilot study. Rheumatol. Int. 2013, 33, 2569–2576. [Google Scholar] [CrossRef]
- Xiang, J.; Wu, D.; Li, J. Clinical Efficacy of Mudpack Therapy in Treating Knee Osteoarthritis: A meta-analysis of randomized controlled studies. Am. J. Phys. Med. Rehabil. 2016, 95, 121–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciani, O.; Pascarelli, N.A.; Giannitti, C.; Galeazzi, M.; Meregaglia, M.; Fattore, G.; Fioravanti, A. Mud-Bath Therapy in Addition to Usual Care in Bilateral Knee Osteoarthritis: An Economic Evaluation Alongside a Randomized Controlled Trial. Arthritis Rheum. 2017, 69, 966–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gay, C.; Guiguet-Auclair, C.; Coste, N.; Boisseau, N.; Gerbaud, L.; Pereira, B.; Coudeyre, E. Limited effect of a self-management exercise program added to spa therapy for increasing physical activity in patients with knee osteoarthritis: A quasi-randomized controlled trial. Ann. Phys. Rehabil. Med. 2020, 63, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Liang, L.; Chu, X.; Qin, W.; Li, Y.; Zhao, Y. The short-term efficacy of mud therapy for knee osteoarthritis: A meta-analysis. Medicine 2020, 99, e19761. [Google Scholar] [CrossRef] [PubMed]
- Király, M.; Kővári, E.; Hodosi, K.; Bálint, P.V.; Bender, T. The effects of Tiszasüly and Kolop mud pack therapy on knee osteoarthritis: A double-blind, randomised, non-inferiority controlled study. Int. J. Biometeorol. 2020, 64, 943–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rat, A.-C.; Loeuille, D.; Vallata, A.; Bernard, L.; Spitz, E.; Desvignes, A.; Boulange, M.; Paysant, J.; Guillemin, F.; Chary-Valckenaere, I. Spa therapy with physical rehabilitation is an alternative to usual spa therapy protocol in symptomatic knee osteoarthritis. Sci. Rep. 2020, 10, 11004. [Google Scholar] [CrossRef] [PubMed]
- Varzaityte, L.; Kubilius, R.; Rapoliene, L.; Bartuseviciute, R.; Balcius, A.; Ramanauskas, K.; Nedzelskiene, I. The effect of balneotherapy and peloid therapy on changes in the functional state of patients with knee joint osteoarthritis: A randomized, controlled, single-blind pilot study. Int. J. Biometeorol. 2020, 64, 955–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cozzi, F.; Podswiadek, M.; Cardinale, G.; Oliviero, F.; Dani, L.; Sfriso, P.; Punzi, L. Mud-bath treatment in spondylitis associated with inflammatory bowel disease—A pilot randomised clinical trial. Jt. Bone Spine 2007, 74, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Ciprian, L.; Nigro, A.L.; Rizzo, M.; Gava, A.; Ramonda, R.; Punzi, L.; Cozzi, F. The effects of combined spa therapy and rehabilitation on patients with ankylosing spondylitis being treated with TNF inhibitors. Rheumatol. Int. 2011, 33, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.; Boutron, I.; Rein, C.; Baron, G.; Sanchez, K.; Palazzo, C.; Dupeyron, A.; Tessier, J.M.; Coudeyre, E.; Eschalier, B.; et al. Intensive spa and exercise therapy program for returning to work for low back pain patients: A randomized controlled trial. Sci. Rep. 2017, 7, 17956. [Google Scholar] [CrossRef] [Green Version]
- Costantino, M.; Conti, V.; Corbi, G.; Marongiu, F.; Marongiu, M.B.; Filippelli, A. Sulphurous mud-bath therapy for treatment of chronic low back pain caused by lumbar spine osteoarthritis. Intern. Emerg. Med. 2019, 14, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Yücesoy, H.; Geçmen, I.; Adıgüzel, T.; Karagülle, M.; Karagülle, M.Z. Efficacy of balneological outpatient treatment (hydrotherapy and peloidotherapy) for the management of chronic low back pain: A retrospective study. Int. J. Biometeorol. 2019, 63, 351–357. [Google Scholar] [CrossRef]
- Forestier, R.; Suehs, C.; Françon, A.; Marty, M.; Genevay, S.; Sellam, J.; Chauveton, C.; Forestier, F.B.E.; Molinari, N. Usual care including home exercise with versus without spa therapy for chronic low back pain: Protocol for the LOMBATHERM’ study, a multicentric randomised controlled trial. Trials 2020, 21, 392. [Google Scholar] [CrossRef]
- Cozzi, F.; Galozzi, P.; Ciprian, L.; Zanatta, E.; Polito, P.; Oliviero, F.; Carrara, M.; Punzi, L. Mud-bath treatment of seronegative spondyloarthritis: Experience at the Euganean Thermal Area. Int. J. Biometeorol. 2020, 64, 937–941. [Google Scholar] [CrossRef] [PubMed]
- Fortunati, N.A.; Fioravanti, A.; Seri, G.; Cinelli, S.; Tenti, S. May spa therapy be a valid opportunity to treat hand osteoarthritis? A review of clinical trials and mechanisms of action. Int. J. Biometeorol. 2016, 60, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gyarmati, N.; Kulisch, Á.; Németh, A.; Bergmann, A.; Horváth, J.; Mándó, Z.; Matán, Á.; Szakál, E.; Péter, T.S.; Szántó, D.; et al. Evaluation of the Effect of Hévíz Mud in Patients with Hand Osteoarthritis: A Randomized, Controlled, Single-Blind Follow-Up Study. Isr. Med. Assoc. J. 2017, 19, 177–182. [Google Scholar] [PubMed]
- Aksoy, M.K.; Altan, L.; Eröksüz, R.; Ökmen, B.M. The efficacy of peloid therapy in management of hand osteoarthritis: A pilot study. Int. J. Biometeorol. 2017, 61, 2145–2152. [Google Scholar] [CrossRef] [PubMed]
- Tenti, S.; Manica, P.; Cheleschi, S.; Fioravanti, A. Sulfurous-arsenical-ferruginous balneotherapy for osteoarthritis of the hand: Results from a retrospective observational study. Int. J. Biometeorol. 2020, 64, 1561–1569. [Google Scholar] [CrossRef]
- Fioravanti, A.; Perpignano, G.; Tirri, G.; Cardinale, G.; Gianniti, C.; Lanza, C.E.; Loi, A.; Tirri, E.; Sfriso, P.; Cozzi, F. Effects of mud-bath treatment on fibromyalgia patients: A randomized clinical trial. Rheumatol. Int. 2007, 27, 1157–1161. [Google Scholar] [CrossRef]
- Bazzichi, L.; Da Valle, Y.; Rossi, A.; Giacomelli, C.; Sernissi, F.; Giannaccini, G.; Betti, L.; Ciregia, F.; Giusti, L.; Scarpellini, P.; et al. A multidisciplinary approach to study the effects of balneotherapy and mud-bath therapy treatments on fibromyalgia. Clin. Exp. Rheumatol. 2013, 31, S111–S120. [Google Scholar] [PubMed]
- Bağdatlı, A.O.; Donmez, A.; Eröksüz, R.; Bahadır, G.; Turan, M.; Erdoğan, N. Does addition of ‘mud-pack and hot pool treatment’ to patient education make a difference in fibromyalgia patients? A randomized controlled single blind study. Int. J. Biometeorol. 2015, 59, 1905–1911. [Google Scholar] [CrossRef] [PubMed]
- Eröksüz, R.; Forestier, F.B.E.; Karaaslan, F.; Forestier, R.; Işsever, H.; Erdoğan, N.; Karagülle, M.Z.; Dönmez, A. Comparison of intermittent and consecutive balneological outpatient treatment (hydrotherapy and peloidotherapy) in fibromyalgia syndrome: A randomized, single-blind, pilot study. Int. J. Biometeorol. 2020, 64, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Ökmen, B.M.; Aksoy, M.K.; Güneş, A.; Eröksüz, R.; Altan, L. Effectiveness of PELOID therapy in carpal tunnel syndrome: A randomized controlled single blind study. Int. J. Biometeorol. 2017, 61, 1403–1410. [Google Scholar] [CrossRef]
- Ökmen, B.M.; Aksoy, M.K.; Eröksüz, R.; Altan, L. Efficacy of peloid therapy in patients with chronic lateral epicondylitis: A randomized, controlled, single blind study. Int. J. Biometeorol. 2017, 61, 1965–1972. [Google Scholar] [CrossRef] [PubMed]
- Cara, S.; Carcangiu, G.; Padalino, G.; Palomba, M.; Tamaninia, M. The bentonites in pelotherapy: Chemical, mineralogical and technological properties of materials from Sardinia deposits (Italy). Appl. Clay Sci. 2000, 16, 117–124. [Google Scholar] [CrossRef]
- Beer, A.-M.; Grozeva, A.; Sagorchev, P.; Lukanov, J. Comparative Study of the Thermal Properties of Mud and Peat Solutions Applied in Clinical Practice. Biomed. Tech. 2003, 48, 301–305. [Google Scholar] [CrossRef]
- Veniale, F.; Barberis, E.; Carcangiu, G.; Morandi, N.; Setti, M.; Tamanini, M.; Tessier, D. Formulation of muds for pelotherapy: Effects of “maturation” by different mineral waters. Int. J. Biometeorol. 2004, 25, 135–148. [Google Scholar] [CrossRef]
- Mourelle, M.L. Caracterización Termofísica de Peloides para Aplicaciones Termoterapéuticas en Centros Termales. Ph.D. Thesis, Universidade de Vigo, Galicia, Spain, 2006. [Google Scholar]
- Mourelle, M.; Medina, C.; Meijide-Failde, R.; Soto, J.L. Comportamiento termofisico de los peloides. Bol. Soc. Esp. Hidrol. Med. 2007, 22, 14–21. [Google Scholar] [CrossRef]
- Legido, J.; Medina, C.; Lourdesmourelle, M.; Carretero, M.; Pozo, M. Comparative study of the cooling rates of bentonite, sepiolite and common clays for their use in pelotherapy. Appl. Clay Sci. 2007, 36, 148–160. [Google Scholar] [CrossRef]
- Gámiz, E.; Martín-García, J.M.; Fernández-González, M.V.; Delgado, G.; Delgado, R. Influence of water type and maturation time on the properties of kaolinite–saponite peloids. Appl. Clay Sci. 2009, 46, 117–123. [Google Scholar] [CrossRef]
- Baschini, M.; Pettinari, G.; Vallés, J.; Aguzzi, C.; Cerezo, P.; López-Galindo, A.; Setti, M.; Viseras, C. Suitability of natural sulphur-rich muds from Copahue (Argentina) for use as semisolid health care products. Appl. Clay Sci. 2010, 49, 205–212. [Google Scholar] [CrossRef]
- De Zárate, J.M.O.; Hita, J.L.; Khayet, M.; Legido, J.L. Measurement of the thermal conductivity of clays used in pelotherapy by the multi-current hot-wire technique. Appl. Clay Sci. 2010, 50, 423–426. [Google Scholar] [CrossRef]
- Rebelo, M.; Viseras, C.; Lopez-Galindo, A.L.; Rocha, F.; Da Silva, E.F. Rheological and thermal characterization of peloids made of selected Portuguese geological materials. Appl. Clay Sci. 2011, 52, 219–227. [Google Scholar] [CrossRef]
- Casás, L.; Legido, J.; Pozo, M.; Mourelle, L.; Plantier, F.; Bessières, D. Specific heat of mixtures of bentonitic clay with sea water or distilled water for their use in thermotherapy. Thermochim. Acta 2011, 524, 68–73. [Google Scholar] [CrossRef]
- Knorst-Fouran, A.; Casás, L.; Legido, J.; Coussine, C.; Bessières, D.; Plantier, F.; Lagière, J.; Dubourg, K. Influence of dilution on the thermophysical properties of Dax peloid (TERDAX®). Thermochim. Acta 2012, 539, 34–38. [Google Scholar] [CrossRef]
- Casás, L.; Pozo, M.; Gomez, C.; Pozo, E.; Bessières, L.; Plantier, F.; Legido, J. Thermal behavior of mixtures of bentonitic clay and saline solutions. Appl. Clay Sci. 2013, 72, 18–25. [Google Scholar] [CrossRef]
- Pozo, M.; Carretero, M.I.; Maraver, F.; Pozo, E.; Gómez, I.; Armijo, F.; Rubí, J.A.M. Composition and physico-chemical properties of peloids used in Spanish spas: A comparative study. Appl. Clay Sci. 2013, 83, 270–279. [Google Scholar] [CrossRef]
- Fernández-González, M.V.; Martín-García, J.M.; Delgado, G.; Párraga, J.; Delgado, R. A study of the chemical, mineralogical and physicochemical properties of peloids prepared with two medicinal mineral waters from Lanjarón Spa (Granada, Spain). Appl. Clay Sci. 2013, 80, 107–116. [Google Scholar] [CrossRef]
- Caridad, V.; De Zárate, J.M.O.; Khayet, M.; Legido, J.L. Thermal conductivity and density of clay pastes at various water contents for pelotherapy use. Appl. Clay Sci. 2014, 93, 22–27. [Google Scholar] [CrossRef]
- Carretero, M.; Pozo, M.; Legido, J.; Fernández-González, M.; Delgado, R.; Gómez, I.; Armijo, F.; Maraver, F. Assessment of three Spanish clays for their use in pelotherapy. Appl. Clay Sci. 2014, 99, 131–143. [Google Scholar] [CrossRef]
- Khiari, I.; Mefteh, S.; Sánchez-Espejo, R.; Aguzzi, C.; López-Galindo, A.; Jamoussi, F.; Iborra, C. Study of traditional Tunisian medina clays used in therapeutic and cosmetic mud-packs. Appl. Clay Sci. 2014, 101, 141–148. [Google Scholar] [CrossRef]
- Sánchez-Espejo, R.; Cerezo, P.; Aguzzi, C.; López-Galindo, A.; Machado, J.; Viseras, C. Physicochemical and in vitro cation release relevance of therapeutic muds “maturation”. Appl. Clay Sci. 2015, 116, 1–7. [Google Scholar] [CrossRef]
- Armijo, F.; Maraver, F.; Pozo, M.; Carretero, M.I.; Armijo, O.; Fernández-Gonzales, M.; Corvillo, I. Thermal behaviour of clays and clay-water mixtures for pelotherapy. Appl. Clay Sci. 2016, 126, 50–56. [Google Scholar] [CrossRef]
- Mato, M.M.; Casás, L.M.; Legido, J.L.; Gómez, C.; Mourelle, L.; Bessières, D.; Plantier, F. Specific heat of mixtures of kaolin with sea water or distilled water for their use in thermotherapy. J. Therm. Anal. Calorim. 2017, 130, 479–484. [Google Scholar] [CrossRef]
- Glavaš, N.; Mourelle, M.L.; Gómez, C.P.; Legido, J.L.; Šmuc, N.R.; Dolenec, M.; Kovač, N. The mineralogical, geochemical, and thermophysical characterization of healing saline mud for use in pelotherapy. Appl. Clay Sci. 2017, 135, 119–128. [Google Scholar] [CrossRef]
- Fernández-González, M.V.; Martín-García, J.M.; Delgado, G.; Párraga, J.; Carretero, M.I.; Delgado, R. Physical properties of peloids prepared with medicinal mineral waters from Lanjarón Spa (Granada, Spain). Appl. Clay Sci. 2017, 135, 465–474. [Google Scholar] [CrossRef]
- Awad, M.E.; López-Galindo, A.; Sánchez-Espejo, R.; El-Rahmany, M.M.; Viseras, C. Thermal properties of some Egyptian kaolin pastes for pelotherapeutic applications: Influence of particle geometry on thermal dosage release. Appl. Clay Sci. 2018, 160, 193–200. [Google Scholar] [CrossRef]
- García-Villén, F.; Sánchez-Espejo, R.; Carazo, E.; Borrego-Sánchez, A.; Aguzzi, C.; Cerezo, P.; Viseras, C. Characterisation of Andalusian peats for skin health care formulations. Appl. Clay Sci. 2018, 160, 201–205. [Google Scholar] [CrossRef]
- Pozo, M.; Armijo, F.; Maraver, F.; Zuluaga, P.; Ejeda, J.M.; Corvillo, I. Variations in the Texture Profile Analysis (TPA) Properties of Clay/Mineral-Medicinal Water Mixtures for Pelotherapy: Effect of Anion Type. Minerals 2019, 9, 144. [Google Scholar] [CrossRef] [Green Version]
- Carretero, M.I. Clays in pelotherapy. A review. Part I: Mineralogy, chemistry, physical and physicochemical properties. Appl. Clay Sci. 2020, 189, 105526. [Google Scholar] [CrossRef]
- Özay, P.; Karagülle, M.; Kardeş, S.; Karagülle, M.Z. Chemical and mineralogical characteristics of peloids in Turkey. Environ. Monit. Assess. 2020, 192, 805. [Google Scholar] [CrossRef] [PubMed]
- Fernández-González, M.V.; Carretero, M.I.; Martín-García, J.M.; Molinero-García, A.; Delgado, R. Peloids prepared with three mineral-medicinal waters from spas in Granada. Their suitability for use in pelotherapy. Appl. Clay Sci. 2021, 202, 105969. [Google Scholar] [CrossRef]
- Prát, S.; Brozek, B. Biology and Phisics of peloids. In Medical Hydrology; Lych, S., Ed.; Wawerly Press: Baltimore, MD, USA, 1963; pp. 254–272. [Google Scholar]
- Armijo, F.; Maraver, F.; Carretero, M.I.; Pozo, M.; Ramos, M.; Fernandez-Torán, M.A.; Corvillo, I. The water effect on instrumental hardness and adhesiveness of clay mixtures for pelotherapy. Appl. Clay Sci. 2015, 114, 395–401. [Google Scholar] [CrossRef]
- Nishinari, K.; Kohyama, K.; Kumagai, H.; Funami, T.; Bourne, M.C. Parameters of Texture Profile Analysis. Food Sci. Technol. Res. 2013, 19, 519–521. [Google Scholar] [CrossRef] [Green Version]
- Peleg, M. The instrumental texture profile analysis revisited. J. Texture Stud. 2019, 50, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Rambaud, A.; Rambaud, J.; Berger, G.; Pauvert, B. Mesure et étude du comportement thermique des boues thermales. J. Fr. Hydrol. 1986, 17, 293–302. [Google Scholar]
- Monasterio, A.M.; Grenovero, S. Influencia del Tratamiento termal (Fan/Hidro) en pacientes con diagnóstico de osteo-artrosis primaria de rodilla y manos derivados por el plan Termalismo al complejo termal de Copahue, Neuquén, Argentina en la temporada 2006–2007. In Investigaciones En El Ámbito Iberoamericano Sobre Peloides Termales; Legido, J.L., Mourelle, M.L., Eds.; University of Vigo: Vigo, Spain, 2008; pp. 29–40. ISBN 978-84-8158-385-4. [Google Scholar]
- Gouvêa, P.F.M.; Britschka, Z.M.N.; Gomes, C.d.O.M.S.; Queiroz, N.G.T.d.; Salvador, P.A.V.; Silva, P.S.C. Evaluation of the Use of Sterilized and Non-Sterilized Peruibe Black Mud in Patients with Knee Osteoarthritis. Int. J. Environ. Res. Public Health 2021, 18, 1666. [Google Scholar] [CrossRef]
- Filho, M.U. Fangoterapia en las articulaciones periféricas. Mecanismo de acción. Modelo de Protocolo Terapéutico en Artrosis de Rodilla. In Investigaciones En El Ámbito Iberoamericano Sobre Peloides Termales; Legido, J.L., Mourelle, M.L., Eds.; University of Vigo: Vigo, Spain, 2008; pp. 291–304. ISBN 978-84-8158-385-4. [Google Scholar]
- Navrátil, L.; Navratil, V.; Hajkova, S.; Hlinakova, P.; Dostalova, T.; Vranová, J. Comprehensive treatment of temporomandibular joint disorders. Cranio 2014, 32, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Sukenik, S.; Buskila, D.; Neumann, L.; Kleiner-Baumgarten, A.; Zimlichman, S.; Horowitz, J. Sulphur bath and mud pack treatment for rheumatoid arthritis at the Dead Sea area. Ann. Rheum. Dis. 1990, 49, 99–102. [Google Scholar] [CrossRef]
- Sukenik, S.; Buskila, D.; Neumann, L.; Kleiner-Baumgarten, A. Mud pack therapy in rheumatoid arthritis. Clin. Rheumatol. 1992, 11, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Sukenik, S.; Giryes, H.; Halevy, S.; Neumann, L.; Flusser, D.; Buskila, D. Treatment of psoriatic arthritis at the Dead Sea. J. Rheumatol. 1994, 21, 1305–1309. [Google Scholar]
- Elkayam, O.; Ophir, J.; Brener, S.; Paran, D.; Wigler, I.; Efron, D.; Even-Paz, Z.; Politi, Y.; Yaron, M. Immediate and delayed effects of treatment at the Dead Sea in patients with psoriatic arthritis. Rheumatol. Int. 2000, 19, 77–82. [Google Scholar] [CrossRef]
- Sukenik, S.; Baradin, R.; Codish, S.; Neumann, L.; Flusser, D.; Abu-Shakra, M.; Buskila, D. Balneotherapy at the Dead Sea area for patients with psoriatic arthritis and concomitant fibromyalgia. Isr. Med. Assoc. J. 2001, 3, 147–150. [Google Scholar] [PubMed]
- Codish, S.; Abu-Shakra, M.; Flusser, D.; Friger, M.; Sukenik, S. Mud compress therapy for the hands of patients with rheumatoid arthritis. Rheumatol. Int. 2005, 25, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Abu-Shakra, M.; Mayer, A.; Friger, M.; Harari, M. Dead Sea mud packs for chronic low back pain. Isr. Med. Assoc. J. 2014, 16, 574–577. [Google Scholar] [PubMed]
- Canelas, O.; Olabe, P.; Ovejero, L.; Fernandez-Jaen, T. Estudio prospectivo de 104 pacientes con gonartrosis sometidos a la cura terminal de Archena. Seguimiento a 6 meses. Bol. Soc. Esp. Hidrol. Med. 2010, 25, 73–74. [Google Scholar] [CrossRef] [Green Version]
- Morer, C.; Boestad, C.; Zuluaga, P.; Alvarez-Badillo, A.; Maraver, F. Effects of an intensive thalassotherapy and aquatic therapy program in stroke patients. A pilot study. Rev. Neurol. 2017, 65, 249–256. [Google Scholar]
- Morer, C.; Michan-Doña, A.; Alvarez-Badillo, A.; Zuluaga, P.; Maraver, F. Evaluation of the Feasibility of a Two-Week Course of Aquatic Therapy and Thalassotherapy in a Mild Post-Stroke Population. Int. J. Environ. Res. Public Health 2020, 17, 8163. [Google Scholar] [CrossRef]
- Britschka, Z.M.N.; Teodoro, W.R.; Velosa, A.P.P.; De Mello, S.B.V. The efficacy of Brazilian black mud treatment in chronic experimental arthritis. Rheumatol. Int. 2007, 28, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Halevy, S.; Sukenik, S. Different Modalities of Spa Therapy for Skin Diseases at the Dead Sea Area. Arch. Dermatol. 1998, 134, 1416–1420. [Google Scholar] [CrossRef] [PubMed]
- Matz, H.; Orion, E.; Wolf, R. Balneotherapy in dermatology. Dermatol. Ther. 2003, 16, 132–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, U.; Shoenfeld, Y.; Zakin, V.; Sherer, Y.; Sukenik, S. Scientific Evidence of the Therapeutic Effects of Dead Sea Treatments: A Systematic Review. Semin. Arthritis Rheum. 2012, 42, 186–200. [Google Scholar] [CrossRef] [PubMed]
- Ubogui, J.; Stengel, F.M.; Kien, M.C.; Sevinsky, L.; Lupo, L.R. Thermalism in Argentina. Alternative or complementary dermatologic therapy. Arch. Dermatol. 1998, 134, 1411–1412. [Google Scholar] [CrossRef] [PubMed]
- Ubogui, J.; Roma, A.; Garvier, V.; García, F.; Perrotta, G.; Monasterio, A. Seguimiento clínico de pacientes con psoriasis en las Termas de Copahue (Neuquén-Argentina). An. Hidrol. Med. 2007, 2, 75–84. [Google Scholar]
- Monasterio, A.M.; Armijo, F.; Maraver, F. Therapeutic Effects of the Mineral Waters from Copahue Spa. In Copahue Volcano. Active Volcanoes of the World; Tassi, F., Vaselli, O., Caselli, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 273–282. [Google Scholar] [CrossRef]
- Monasterio, A.M.; de Michele, D.; Untura Filho, M.; Giacomino, M.; Balderrain, A. Termas de Copahue. In El Termalismo Argentino; Complutense University: Madrid, Spain, 2008; pp. 151–163. ISBN 978-84-669-2981-3. [Google Scholar]
- Baschini, M.; Soria, C.O.; Pettinari, E.; Gamboa, M.; Sanchez, M.; Roca Jalil, M.E. Fangos de Copahue: Una visión desde la ciencia. In Copahue: La Ciencia, Lo Mágico Y El Arte De Curar; Soria, C.O., Roca Jalil, M.E., Vela, M.L., Eds.; EPROTEN: Neuquén, Argentine, 2018; pp. 25–47. ISBN 978-987-783-027-9. [Google Scholar]
- Roca Jalil, M.E.; Sanchez, M.; Pozo, M.; Soria, C.O.; Vela, L.; Gurnik, N.; Baschini, M. Assessment of natural and enhanced peloids from the Copahue thermal system (Argentina): Effects of the drying procedure on lidocaine adsorption. Appl. Clay Sci. 2020, 196, 105751. [Google Scholar] [CrossRef]
- da Silva, P.S.C.; Torrecilha, J.K.; Gouvea, P.F.D.M.; Máduar, M.F.; de Oliveira, S.M.B.; Scapin, M.A. Chemical and radiological characterization of Peruíbe Black Mud. Appl. Clay Sci. 2015, 118, 221–230. [Google Scholar] [CrossRef]
- Maraver, F.; Corvillo, I.; Palencia, V.; Armijo, F. Therapeutic muds in Spain. In Proceedings of the 3rd Symposium on Thermal Muds in Europe, Dax, France, 25–27 November 2004; pp. 23–27. [Google Scholar]
- Armijo, O. Estudio de los Peloides Españoles. Ph.D. Thesis, Complutense University of Madrid, Madrid, Spain, 2007. [Google Scholar]
- Maraver, F.; Armijo, O.; Armijo, F. Los peloides españoles: En la Catedra de Hidrología Médica. In Contribuciones Científicas en Memoria del Profesor Dr. Jesús Soto Torres; Cendrero, A., Gómez, J., Fernandez, P.L., Quindos, L.S., Ródenas, C., Sainz, C., Eds.; Cantabria University: Santander, Spain, 2008; pp. 97–110. ISBN 978-84-8102-522-4. [Google Scholar]
- Ovejero, L.; Ovejero, P. Tratamiento integral del paciente reumático en un balneario. Bol. Soc. Esp. Hidrol. Med. 2017, 32, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Gerencsér, G.; Murányi, E.; Szendi, K.; Varga, C. Ecotoxicological Hungarian peloids (medicinal muds). Appl. Clay Sci. 2010, 50, 47–50. [Google Scholar] [CrossRef]
- Gerencsér, G.; Szendi, K.; Berényi, K.; Varga, C. Can the use of medical muds cause genotoxicity in eukaryotic cells? A trial using comet assay. Environ. Geochem. Health 2014, 37, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Szendi, K.; Gerencsér, G.; Murányi, E.; Varga, C. Mutagenic activity of peloids in the Salmonella Ames test. Appl. Clay Sci. 2012, 55, 70–74. [Google Scholar] [CrossRef]
- Artymuk, N.V.; Kira, E.F.; Kondratieva, T.A. Intravaginal gel prepared from Dead Sea peloid for treating luteal-phase defect. Int. J. Gynecol. Obstet. 2010, 108, 72–73. [Google Scholar] [CrossRef] [PubMed]
- Spilioti, E.; Vargiami, M.; Letsiou, S.; Gardikis, K.; Sygouni, V.; Koutsoukos, P.; Chinou, I.; Kassi, E.; Moutsatsou, P. Biological properties of mud extracts derived from various spa resorts. Environ. Geochem. Health 2016, 39, 821–833. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Torán, M.A. Propiedades Físico-Químicas de Materiales Susceptibles de ser Utilizados en la Preparación de Peloides. Ph.D. Thesis, Complutense University of Madrid, Madrid, Spain, 2014. [Google Scholar]
- Martıánez-Cortizas, A.; Pontevedra-Pombal, X.; Garcıáa-Rodeja, E.; Nóvoa-Muñoz, J.C.; Shotyk, W. Mercury in a Spanish Peat Bog: Archive of Climate Change and Atmospheric Metal Deposition. Science 1999, 284, 939–942. [Google Scholar] [CrossRef] [PubMed]
- Pozo, M.; Armijo, F.; Maraver, F.; Ejeda, J.M.; Pozo, E.; Corvillo, I. Texture profile analysis (TPA) of clay/seawater mixtures useful for peloid preparation: Effects of clay concentration, pH and salinity. Appl. Clay Sci. 2018, 165, 40–51. [Google Scholar] [CrossRef]
- Hernández, A.C.; Awad, M.E.; Meléndez, W.; González, G.; López-Galindo, A.; Sánchez-Espejo, R.; García-Villén, F.; Viseras, C. Colloidal and Thermal Behaviors of Some Venezuelan Kaolin Pastes for Therapeutic Applications. Minerals 2019, 9, 756. [Google Scholar] [CrossRef] [Green Version]
Country Authors (Year), Location of MS | Diagnosis | Study Design | Modalities | Peloid Application, Duration, Number | Conclusions |
---|---|---|---|---|---|
Argentina | |||||
Monasterio and Grenovero (2008), Copahue [95] | Osteoarthritis, Knee and Hand | Prospective | Mud packs and/or General mud bath (Chancho), Thermal baths, Steam | 1 or 2 weeks 6 or 12 sessions 20 or 40 min/s | ↓ Pain |
Brazil | |||||
Gouvêa et al. (2021), Peruibe [96] | Osteoarthritis, Knee | Prospective | Muds | 9 weeks 45 sessions 20 min/s | ↓ Pain ↑ Joint flexibility ↑ Functional capacity |
Untura (2008), Poços de Caldas [97] | Osteoarthritis, Knee | Prospective | Muds, Kinesiotherapy, Physical therapy | 4 weeks 20 sessions 30–35 min/s | ↓ Pain ↑ Joint flexibility ↑ Functional capacity |
Czechia | |||||
Navrátil et al. (2014), Františkovy Lázně [98] | Temporomandibularjoint disorders | Prospective | Muds, Pulsed magnetic therapy, Laser therapy, Education | 10–20 weeks 10 sessions 30 min/s | ↓ Pain ↑ Opening ability mouth |
France | |||||
Forestier et al. (2010), Dax * [32] | Osteoarthritis, Knee | RCT | Muds, Massages, Showers, Pool sessions, Exercise therapy | 3 weeks 18 sessions 15 min/s | ↓ Pain ↑ Functional capacity |
Nguyen et al. (2017), Dax ** [46] | Low back pain | RCT | Muds, Jet showers, Massage, Hot showers, Hydro kinesiotherapy, Education | 5 days 6 sessions 15 min/s | NSD Pain NSD Disability NSD Quality of life |
Hungary | |||||
Gyarmati et al. (2017), Hévíz [52] | Osteoarthritis, Hand | RCT | Muds | 3 weeks 15 sessions 20 min/s | ↓ Pain ↓ Swollen joints ↑ Hand-grip strength |
Israel | |||||
Sukenik et al. (1990), Dead Sea [99] | Rheumatoid arthritis | RCT | Mud packs, Sulphur baths | 2 weeks 12 sessions 20 min/ | ↓ Morning stiffness ↑ Hand-grip strength ↑ ADL |
Sukenik et al. (1992), Dead Sea [100] | Rheumatoid arthritis | RCT | Mud packs | 2 weeks 12 sessions 20 min/ | ↓ Morning stiffness ↑ Hand-grip strength ↑ ADL |
Sukenik et al. (1994), Dead Sea [101] | Psoriatic arthritis | RCT | Mud packs, Sulphur baths, Dead sea water baths, Climatotherapy | 3 weeks 18 sessions 20 min/ | ↓ Morning stiffness ↑ Hand-grip strength ↑ ADL, ↓ PASI |
Elkayam et al. (2000), Dead Sea [102] | Psoriatic arthritis | RCT | Mud packs, Sulphur baths, Dead sea water baths, Climatotherapy | 4 weeks 24 sessions 20 min/ | ↓ Morning stiffness ↑ Hand-grip strength ↓ Pain, ↓ PASI |
Sukenik et al. (2001), Dead Sea [103] | Psoriatic arthritis and Fibromyalgia | RCT | Mud packs, Sulphur baths, Dead sea water baths, Climatotherapy | 4 weeks 24 sessions 20 min/ | ↓ Active joints ↓ Number tender points ↑ Pain threshold |
Flusser et al. (2002), Dead Sea [31] | Osteoarthritis, Knee | Prospective | Mud packs | 3 weeks 15 sessions 20 min/ | ↓ Pain ↑ Functional capacity |
Codish et al. (2005), Dead Sea [104] | Rheumatoid arthritis, Hand | RCT | Mud packs | 3 weeks 15 sessions 20 min/ | ↓ Pain ↓ Swollen joints |
Abu-Shakra et al. (2014), Dead Sea [105] | Low back pain | RCT | Mud packs | 3 weeks 15 sessions 20 min/ | ↓ Pain ↓ Disability ↓ Flexibility |
Spain | |||||
Canelas et al. (2010), Archena [106] | Osteoarthritis, Knee | Prospective | Muds, Sulphur baths, Showers, Massages | 12 days 12 sessions 30 min/s | ↓ Pain ↑ Functional capacity ↓ Drugs |
Espejo et al. (2013b), El Raposo [33] | Osteoarthritis, Knee | RCT | Muds, Baths, Thermal jets | 11 days 11 sessions 30 min/s | ↓ Pain ↑ Quality of life ↓ Drugs |
Ortega et al. (2017), El Raposo [11] | Osteoarthritis, Knee | Prospective | Muds, Baths, Thermal jets | 10 days 10 sessions 45 min/s | ↓ Pain ↑ Functional capacity ↑ Quality of life |
Gálvez et al. (2019), El Raposo [13] | Osteoarthritis, Knee | Prospective | Muds, Baths, Thermal jets | 10 days 10 sessions 45 min/s | ↓ Pain ↑ Functional capacity ↑ Quality of life |
Morer et al. (2017), Thalassia [107] | Post-stroke | Prospective | Muds, Aquatic therapy (Halliwick), Climatotherapy | 3 weeks 15 sessions 30 min/s | ↓ Pain ↑ Balance ↑ Mobility |
Morer et al. (2020), Thalassia [108] | Post-stroke | Prospective | Muds, Aquatic therapy (Halliwick), Climatotherapy | 2 weeks 10 sessions 30 min/s | ↓ Pain ↑ Balance ↑ Mobility |
MS and RM | Water (%) | Solids (%) | Ash (%) | Ash/Solids |
---|---|---|---|---|
Františkovy Lázně (Czechia) | 83.0 | 17.0 | 0.6 | 0.03 |
Polańczyk (Poland) | 87.1 | 12.9 | 0.6 | 0.04 |
Caldes Boi (Spain) | 84.4 | 15.6 | 1.6 | 0.10 |
Bad Bayersoien (Germany) | 85.6 | 14.5 | 1.9 | 0.13 |
Copahue (Argentina) | 56.2 | 43.8 | 16.0 | 0.36 |
Héviz (Hungary) | 77.7 | 22.3 | 10.0 | 0.45 |
Dead Sea (Israel) | 30.1 | 70.0 | 54.2 | 0.77 |
Lo Pagan (Spain) | 34.3 * | 65.7 * | 56.2 * | 0.85 * |
El Raposo (Spain) | 39.6 * | 60.4 * | 53.2 * | 0.88 * |
Thalassia (Spain) | 59.9 | 40.1 | 35.8 | 0.88 |
Carhue (Argentina) | 44.5 | 55.5 | 40.0 | 0.90 |
Peruibe (Brazil) | 58.8 | 41.2 | 37.6 | 0.91 |
Archena (Spain) | 74.6 * | 25.4 * | 23.3 * | 0.92 * |
Terdax (France) | 46.1 ** | 53.9 ** | 50.2 ** | 0.93 ** |
Arnedillo (Spain) | 31.4 * | 68.6 * | 64.5 * | 0.94 * |
Poços de Caldas (Brazil) | 52.6 | 49.8 | 47.4 | 0.95 |
C1 | 12.55 | 87.45 | 81.46 | 0.93 |
C2 | 11.54 | 88.46 | 82.70 | 0.93 |
C3 | 1.00 | 99.00 | 88.15 | 0.89 |
C4 | 8.3 | 91.70 | 85.93 | 0.94 |
C5 | 9.45 | 90.55 | 81.32 | 0.90 |
C6 | 10.14 | 89.86 | 82.19 | 0.91 |
P7 | 23.89 | 76.11 | 2.31 | 0.03 |
P8 | 31.96 | 68.04 | 39.37 | 0.57 |
MC9 | 4.07 | 95.93 | 0 | 0 |
MS and RM/DW | Hardness (g) | Adhesiveness (g s) | Cohesiveness | Adhesiveness/ Hardness |
---|---|---|---|---|
Peruibe (Brazil) | 38 | 1 | 0.48 | 0.01 |
Polańczyk (Poland) | 924 | 763 | 0.30 | 0.83 |
Bad Bayersoien (Germany) | 1163 | 1410 | 0.23 | 1.21 |
Copahue (Argentina) | 200 | 890 | 0.45 | 4.45 |
Františkovy Lázně (Czechia) | 105 | 709 | 0.56 | 6.78 |
Caldes Boi (Spain) | 106 | 909 | 0.61 | 8.56 |
Dead Sea (Israel) | 350 | 3097 | 0.86 | 8.84 |
Héviz (Hungary) | 139 | 1272 | 0.70 | 9.14 |
Arnedillo (Spain) | 462 * | 4962 * | 0.50 * | 10.74 |
Carhue (Argentina) | 65 | 696 | 0.96 | 10.76 |
Poços de Caldas (Brazil) | 122 | 1426 | 0.99 | 11.69 |
Thalassia (Spain) | 45 | 548 | 0.96 | 12.10 |
Lo Pagan (Spain) | 461 * | 6966 * | 0.50 * | 15.11 |
El Raposo (Spain) | 394 * | 7102 * | 0.80 * | 18.03 |
Archena (Spain) | 132 * | 2491 * | 0.80 * | 18.87 |
Terdax (France) | 138 * | 2646 * | 0.65 * | 19.17 |
C1 | 300 | 3672 | 0.96 | 12.24 |
C2 | 300 | 3216 | 0.92 | 10.72 |
C3 | 300 | 2481 | 0.71 | 8.27 |
C4 | 300 | 3317 | 0.88 | 11.06 |
C5 | 300 | 2950 | 0.81 | 9.83 |
C6 | 300 | 3558 | 0.93 | 11.86 |
P7 | 300 | 15 | 0.38 | 0.05 |
P8 | 300 | 1 | 0.26 | 0.003 |
MC9 | 300 | 1437 | 0.42 | 4.79 |
MS and RM/DW | Cp (J/gK) | tr (s) | Q (J) | Φ (J/s) |
---|---|---|---|---|
Dead Sea (Israel) | 1.9 | 400 | 10,830 | 27.1 |
Arnedillo (Spain) | 1.9 | 324 | 10,830 | 33.4 |
Lo Pagan (Spain) | 2.0 | 400 | 11,571 | 28.9 |
El Raposo (Spain) | 2.2 | 468 | 12,654 | 27.0 |
Terdax (France) | 2.4 | 456 | 13,908 | 30.5 |
Poços de Caldas (Brazil) | 2.5 | 564 | 14,136 | 25.1 |
Carhue (Argentina) | 2.8 | 578 | 15,789 | 27.3 |
Copahue (Argentina) | 2.9 | 648 | 16,302 | 25.2 |
Peruibe (Brazil) | 2.9 | 534 | 16,416 | 30.7 |
Thalassia (Spain) | 2.9 | 498 | 16,644 | 33.4 |
Archena (Spain) | 3.4 | 708 | 19,437 | 27.5 |
Héviz (Hungary) | 3.5 | 624 | 20,064 | 32.2 |
Františkovy Lázně (Czechia) | 3.7 | 744 | 21,033 | 28.3 |
Caldes Boi (Spain) | 3.7 | 684 | 21,204 | 31.0 |
Bad Bayersoien (Germany) | 3.8 | 696 | 21,432 | 30.8 |
Polańczyk (Poland) | 3.8 | 726 | 21,717 | 29.9 |
C1 | 2.6 | 486 | 15,039 | 30.9 |
C2 | 2.9 | 528 | 16,638 | 31.5 |
C3 | 2.1 | 330 | 12,176 | 36.9 |
C4 | 2.6 | 462 | 14,710 | 31.8 |
C5 | 3.0 | 468 | 16,814 | 35.9 |
C6 | 3.2 | 522 | 18,199 | 34.9 |
P7 | 3.6 | 624 | 20,675 | 33.1 |
P8 | 2.4 | 468 | 13,834 | 29.6 |
MC9 | 3.1 | 600 | 17,906 | 29.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maraver, F.; Armijo, F.; Fernandez-Toran, M.A.; Armijo, O.; Ejeda, J.M.; Vazquez, I.; Corvillo, I.; Torres-Piles, S. Peloids as Thermotherapeutic Agents. Int. J. Environ. Res. Public Health 2021, 18, 1965. https://doi.org/10.3390/ijerph18041965
Maraver F, Armijo F, Fernandez-Toran MA, Armijo O, Ejeda JM, Vazquez I, Corvillo I, Torres-Piles S. Peloids as Thermotherapeutic Agents. International Journal of Environmental Research and Public Health. 2021; 18(4):1965. https://doi.org/10.3390/ijerph18041965
Chicago/Turabian StyleMaraver, Francisco, Francisco Armijo, Miguel Angel Fernandez-Toran, Onica Armijo, Jose Manuel Ejeda, Iciar Vazquez, Iluminada Corvillo, and Silvia Torres-Piles. 2021. "Peloids as Thermotherapeutic Agents" International Journal of Environmental Research and Public Health 18, no. 4: 1965. https://doi.org/10.3390/ijerph18041965
APA StyleMaraver, F., Armijo, F., Fernandez-Toran, M. A., Armijo, O., Ejeda, J. M., Vazquez, I., Corvillo, I., & Torres-Piles, S. (2021). Peloids as Thermotherapeutic Agents. International Journal of Environmental Research and Public Health, 18(4), 1965. https://doi.org/10.3390/ijerph18041965