The Effects of Differences in the Morphologies of the Ulnar Collateral Ligament and Common Tendon of the Flexor-Pronator Muscles on Elbow Valgus Braking Function: A Simulation Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cadavers
2.2. Methods
3. Results
3.1. Changes in Strain for Each Group during Flexion and Extension
3.2. Changes in Strain When Elbow Valgus (10°) Was Added at Elbow Joint Flexion and Extension in Each Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ciccotti, M.G.; Pollack, K.M.; Ciccotti, M.C.; D’Angelo, J.; Ahmad, C.S.; Altchek, D.; Andrews, J.; Curriero, F.C. Elbow Injuries in Professional Baseball: Epidemiological Findings From the Major League Baseball Injury Surveillance System. Am. J. Sports Med. 2017, 45, 2319–2328. [Google Scholar] [CrossRef]
- Jobe, F.W.; Stark, H.; Lombardo, S.J. Reconstruction of the ulnar collateral ligament in athletes. J. Bone Joint Surg. Am. 1986, 68, 1158–1163. [Google Scholar] [CrossRef] [PubMed]
- Callaway, G.H.; Field, L.D.; Deng, X.H.; Torzilli, P.A.; O’Brien, S.J.; Altchek, D.W.; Warren, R.F. Biomechanical evaluation of the medial collateral ligament of the elbow. J. Bone Joint Surg. Am. 1997, 79, 1223–1231. [Google Scholar] [CrossRef] [PubMed]
- Buford, W.L., Jr.; Snijders, J.W.; Patel, V.V.; Curry, C.M.; Smith, B.A. Specimen specific, 3D modeling of the elbow—Prediction of strain in the medial collateral ligament. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 3348–3351. [Google Scholar]
- Ciccotti, M.G.; Siegler, S.; Kuri, J.A., 2nd; Thinnes, J.H.; Murphy, D.J.T. Comparison of the biomechanical profile of the intact ulnar collateral ligament with the modified Jobe and the Docking reconstructed elbow: An in vitro study. Am. J. Sports Med. 2009, 37, 974–981. [Google Scholar] [CrossRef]
- Cohen, S.B.; Woods, D.P.; Siegler, S.; Dodson, C.C.; Namani, R.; Ciccotti, M.G. Biomechanical comparison of graft fixation at 30 degrees and 90 degrees of elbow flexion for ulnar collateral ligament reconstruction by the docking technique. J. Shoulder Elb. Surg. 2015, 24, 265–272. [Google Scholar] [CrossRef]
- Jackson, T.J.; Jarrell, S.E.; Adamson, G.J.; Chung, K.C.; Lee, T.Q. Biomechanical differences of the anterior and posterior bands of the ulnar collateral ligament of the elbow. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2016, 24, 2319–2323. [Google Scholar] [CrossRef]
- Wavreille, G.; Seraphin, J.; Chantelot, C.; Marchandise, X.; Fontaine, C. Ligament fibre recruitment of the elbow joint during gravity-loaded passive motion: An experimental study. Clin. Biomech. 2008, 23, 193–202. [Google Scholar] [CrossRef]
- Davidson, P.A.; Pink, M.; Perry, J.; Jobe, F.W. Functional anatomy of the flexor pronator muscle group in relation to the medial collateral ligament of the elbow. Am. J. Sports Med. 1995, 23, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Morrey, B.F.; An, K.N. Functional anatomy of the ligaments of the elbow. Clin. Orthop. Relat. Res. 1985, 201, 84–90. [Google Scholar] [CrossRef]
- Otoshi, K.; Kikuchi, S.; Shishido, H.; Konno, S. The proximal origins of the flexor-pronator muscles and their role in the dynamic stabilization of the elbow joint: An anatomical study. Surg. Radiol. Anat. 2014, 36, 289–294. [Google Scholar] [CrossRef]
- Hoshika, S.; Nimura, A.; Yamaguchi, R.; Nasu, H.; Yamaguchi, K.; Sugaya, H.; Akita, K. Medial elbow anatomy: A paradigm shift for UCL injury prevention and management. Clin. Anat. 2019, 32, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Ikezu, M.; Edama, M.; Matsuzawa, K.; Kaneko, F.; Shimizu, S.; Hirabayashi, R.; Kageyama, I. Morphological Features of the Ulnar Collateral Ligament of the Elbow and Common Tendon of Flexor-Pronator Muscles. Orthop. J. Sports Med. 2020, 8, 2325967120952415. [Google Scholar] [CrossRef]
- Shimizu, S.; Edama, M.; Ikezu, M.; Matsuzawa, K.; Kaneko, F.; Kageyama, I. Morphological features of the posterior oblique ligament of the ulnar collateral ligament of the elbow joint. Surg. Radiol. Anat. 2020, 42, 243–248. [Google Scholar] [CrossRef]
- Edama, M.; Kageyama, I.; Kikumoto, T.; Nakamura, M.; Ito, W.; Nakamura, E.; Hirabayashi, R.; Takabayashi, T.; Inai, T.; Onishi, H. The effects on calcaneofibular ligament function of differences in the angle of the calcaneofibular ligament with respect to the long axis of the fibula: A simulation study. J. Foot Ankle Res. 2017, 10, 60. [Google Scholar] [CrossRef]
- Edama, M.; Takabayashi, T.; Inai, T.; Kikumoto, T.; Ito, W.; Nakamura, E.; Hirabayashi, R.; Ikezu, M.; Kaneko, F.; Kageyama, I. The effect of differences in the number of fiber bundles of the anterior tibial ligament on ankle braking function: A simulation study. Surgical and radiologic anatomy. Surg. Radiol. Anat. 2019, 41, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; van der Helm, F.C.; Veeger, H.E.; Makhsous, M.; Van Roy, P.; Anglin, C.; Nagels, J.; Karduna, A.R.; McQuade, K.; Wang, X.; et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion--Part II: Shoulder, elbow, wrist and hand. J. Biomech. 2005, 38, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Meskers, C.G.; van der Helm, F.C.; Rozendaal, L.A.; Rozing, P.M. In vivo estimation of the glenohumeral joint rotation center from scapular bony landmarks by linear regression. J. Biomech. 1998, 31, 93–96. [Google Scholar] [CrossRef]
- Jackson, T.J.; Adamson, G.J.; Peterson, A.; Patton, J.; McGarry, M.H.; Lee, T.Q. Ulnar collateral ligament reconstruction using bisuspensory fixation: A biomechanical comparison with the docking technique. Am. J. Sports Med. 2013, 41, 1158–1164. [Google Scholar] [CrossRef] [PubMed]
- Kongsgaard, M.; Reitelseder, S.; Pedersen, T.G.; Holm, L.; Aagaard, P.; Kjaer, M.; Magnusson, S.P. Region specific patellar tendon hypertrophy in humans following resistance training. Acta Physiol. 2007, 191, 111–121. [Google Scholar] [CrossRef]
- Edama, M.; Kubo, M.; Onishi, H.; Takabayashi, T.; Inai, T.; Yokoyama, E.; Hiroshi, W.; Satoshi, N.; Kageyama, I. Differences in the degree of stretching applied to Achilles tendon fibers when the calcaneus is pronated or supinated. Foot Ankle Online J. 2016, 9, 5. [Google Scholar]
- An, K.N.; Hui, F.C.; Morrey, B.F.; Linscheid, R.L.; Chao, E.Y. Muscles across the elbow joint: A biomechanical analysis. J. Biomech. 1981, 14, 659–669. [Google Scholar] [CrossRef]
- Buchanan, T.S.; Delp, S.L.; Solbeck, J.A. Muscular resistance to varus and valgus loads at the elbow. J. Biomech. Eng. 1998, 120, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Buffi, J.H.; Werner, K.; Kepple, T.; Murray, W.M. Computing muscle, ligament, and osseous contributions to the elbow varus moment during baseball pitching. Ann. Biomed. Eng. 2015, 43, 404–415. [Google Scholar] [CrossRef] [Green Version]
- Digiovine, N.M.; Jobe, F.W.; Pink, M.; Perry, J. An electromyographic analysis of the upper extremity in pitching. J. Shoulder Elb. Surg. 1992, 1, 15–25. [Google Scholar] [CrossRef]
- Hamilton, C.D.; Glousman, R.E.; Jobe, F.W.; Brault, J.; Pink, M.; Perry, J. Dynamic stability of the elbow: Electromyographic analysis of the flexor pronator group and the extensor group in pitchers with valgus instability. J. Shoulder Elb. Surg. 1996, 5, 347–354. [Google Scholar] [CrossRef]
- Lin, F.; Kohli, N.; Perlmutter, S.; Lim, D.; Nuber, G.W.; Makhsous, M. Muscle contribution to elbow joint valgus stability. J. Shoulder Elb. Surg. 2007, 16, 795–802. [Google Scholar] [CrossRef]
- Otoshi, K.; Kikuchi, S.; Shishido, H.; Konno, S. Ultrasonographic assessment of the flexor pronator muscles as a dynamic stabilizer of the elbow against valgus force. Fukushima J. Med. Sci. 2014, 60, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Park, M.C.; Ahmad, C.S. Dynamic contributions of the flexor-pronator mass to elbow valgus stability. J. Bone Joint Surg. Am. 2004, 86, 2268–2274. [Google Scholar] [CrossRef]
- Pexa, B.S.; Ryan, E.D.; Myers, J.B. Medial Elbow Joint Space Increases With Valgus Stress and Decreases When Cued to Perform A Maximal Grip Contraction. Am. J. Sports Med. 2018, 46, 1114–1119. [Google Scholar] [CrossRef]
- Sisto, D.J.; Jobe, F.W.; Moynes, D.R.; Antonelli, D.J. An electromyographic analysis of the elbow in pitching. Am. J. Sports Med. 1987, 15, 260–263. [Google Scholar] [CrossRef]
- Tajika, T.; Oya, N.; Ichinose, T.; Hamano, N.; Sasaki, T.; Shimoyama, D.; Shitara, H.; Yamamoto, A.; Kobayashi, T.; Sakamoto, M.; et al. Flexor pronator muscles’ contribution to elbow joint valgus stability: Ultrasonographic analysis in high school pitchers with and without symptoms. JSES Int. 2020, 4, 9–14. [Google Scholar] [CrossRef]
- Udall, J.H.; Fitzpatrick, M.J.; McGarry, M.H.; Leba, T.B.; Lee, T.Q. Effects of flexor-pronator muscle loading on valgus stability of the elbow with an intact, stretched, and resected medial ulnar collateral ligament. J. Shoulder Elb. Surg. 2009, 18, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Regan, W.D.; Korinek, S.L.; Morrey, B.F.; An, K.N. Biomechanical study of ligaments around the elbow joint. Clin. Orthop. Relat. Res. 1991, 271, 170–179. [Google Scholar] [CrossRef]
- Smith, M.V.; Castile, R.M.; Brophy, R.H.; Dewan, A.; Bernholt, D.; Lake, S.P. Mechanical Properties and Microstructural Collagen Alignment of the Ulnar Collateral Ligament During Dynamic Loading. Am. J. Sports Med. 2019, 47, 151–157. [Google Scholar] [CrossRef]
- Ericson, A.; Arndt, A.; Stark, A.; Wretenberg, P.; Lundberg, A. Variation in the position and orientation of the elbow flexion axis. J. Bone Joint Surg. 2003, 85, 538–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goto, A.; Moritomo, H.; Murase, T.; Oka, K.; Sugamoto, K.; Arimura, T.; Nakajima, Y.; Yamazaki, T.; Sato, Y.; Tamura, S.; et al. In vivo elbow biomechanical analysis during flexion: Three-dimensional motion analysis using magnetic resonance imaging. J. Shoulder Elb. Surg. 2004, 13, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Miyake, J.; Moritomo, H.; Masatomi, T.; Kataoka, T.; Murase, T.; Yoshikawa, H.; Sugamoto, K. In vivo and 3-dimensional functional anatomy of the anterior bundle of the medial collateral ligament of the elbow. J. Shoulder Elb. Surg. 2012, 21, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
Group | 0° | 30° | 60° | 90° | 120° |
---|---|---|---|---|---|
ACT | |||||
Group I | 9.4 | 9.3 | 6.0 | 0 | −7.3 |
Group II | 17.0 | 15.6 | 9.6 | 0 | −11.3 |
Group III | 10.0 | 10.3 | 6.7 | 0 | −8.6 |
PCT | |||||
Group I | −10.2 | −6.8 | −3.1 | 0 | 1.7 |
Group II | −14.3 | −8.9 | −3.7 | 0 | 1.4 |
Group III | 10.3 | 6.8 | 3.1 | 0 | −1.4 |
AB 1 | |||||
Group I | 7.4 | 6.0 | 3.3 | 0 | −3.0 |
Group II | 14.6 | 10.1 | 4.7 | 0 | −2.7 |
Group III | 18.3 | 13.6 | 6.7 | 0 | −4.5 |
AB 2 | |||||
Group I | 3.4 | 2.4 | 1.2 | 0 | −0.8 |
Group II | 9.1 | 5.3 | 1.9 | 0 | 0.1 |
Group III | 18.9 | 13.6 | 6.7 | 0 | −4.5 |
AB 3 | |||||
Group I | 0.5 | −0.5 | −0.7 | 0 | 1.4 |
Group II | 2.6 | 0.9 | −0.8 | 0 | 3.0 |
Group III | 20.9 | 14.1 | 6.5 | 0 | −3.2 |
PB 1 | |||||
Group I | 29.1 | 18.7 | 8.0 | 0 | −2.1 |
Group II | 30.1 | 16.9 | 5.5 | 0 | 2.8 |
Group III | 10.5 | 7.0 | 3.2 | 0 | −1.6 |
PB 2 | |||||
Group I | 36.5 | 18.7 | 8.0 | 0 | −2.1 |
Group II | 27.1 | 14.8 | 4.5 | 0 | 3.2 |
Group III | 15.1 | 10.2 | 4.7 | 0 | −2.4 |
PB 3 | |||||
Group I | 21.5 | 13.7 | 5.7 | 0 | −1.5 |
Group II | 5.9 | −1.9 | −4.2 | 0 | 9.0 |
Group III | −7.6 | −7.5 | −4.7 | 0 | 5.1 |
PB 4 | |||||
Group I | 10.1 | 5.4 | 1.7 | 0 | 1.0 |
Group II | −1.3 | −5.7 | −5.2 | 0 | 7.9 |
Group III | −15.8 | −13.5 | −7.6 | 0 | 7.0 |
Group | 0° | 30° | 60° | 90° | 120° |
---|---|---|---|---|---|
ACT | |||||
Group I | 20.3 | 20.2 | 16.9 | 11.2 | 4.3 |
Group II | 30.9 | 29.4 | 23.5 | 14.2 | 3.3 |
Group III | 19.8 | 20.0 | 16.6 | 10.2 | 2.2 |
PCT | |||||
Group I | 0.8 | 4.0 | 7.6 | 10.5 | 12.0 |
Group II | −1.5 | 3.7 | 8.7 | 12.1 | 13.2 |
Group III | 21.7 | 18.3 | 14.7 | 11.9 | 10.7 |
AB 1 | |||||
Group I | 20.5 | 19.1 | 16.5 | 13.4 | 10.5 |
Group II | 28.9 | 24.4 | 19.2 | 14.7 | 12.3 |
Group III | 31.3 | 26.9 | 20.6 | 13.8 | 8.4 |
AB 2 | |||||
Group I | 16.3 | 15.3 | 14.1 | 13.0 | 12.3 |
Group II | 17.8 | 15.4 | 14.0 | 15.0 | 18.1 |
Group III | 34.1 | 27.5 | 20.2 | 14.2 | 11.4 |
AB 3 | |||||
Group I | 23.5 | 19.8 | 14.1 | 13.0 | 12.3 |
Group II | 17.8 | 15.4 | 16.7 | 15.0 | 15.2 |
Group III | 34.1 | 27.5 | 20.2 | 14.2 | 11.4 |
PB 1 | |||||
Group I | 21.4 | 13.4 | 5.8 | 0.9 | 0.6 |
Group II | 43.7 | 30.9 | 20.5 | 16.3 | 20.0 |
Group III | 21.7 | 18.3 | 14.7 | 11.7 | 10.4 |
PB 2 | |||||
Group I | 40.8 | 28.8 | 15.7 | 5.3 | 1.5 |
Group II | 32.3 | 20.3 | 11.6 | 9.5 | 14.8 |
Group III | 21.7 | 16.7 | 11.3 | 7.0 | 5.3 |
PB 3 | |||||
Group I | 21.4 | 13.4 | 5.8 | 0.9 | 0.6 |
Group II | 4.2 | −1.8 | −1.5 | 4.8 | 14.7 |
Group III | −6.0 | −5.2 | −1.7 | 3.1 | 8.1 |
PB 4 | |||||
Group I | 7.7 | 3.1 | −0.3 | −1.5 | −0.1 |
Group II | −6.3 | −9.3 | −7.1 | −0.7 | 7.6 |
Group III | −19.4 | −16.1 | −9.5 | −1.8 | 5.0 |
Average | |||||
Group I | 20.1 | 16.2 | 12.0 | 8.7 | 7.4 |
Group II | 19.3 | 14.8 | 11.7 | 11.2 | 13.3 |
Group III | 17.5 | 14.8 | 11.9 | 9.4 | 7.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikezu, M.; Edama, M.; Inai, T.; Matsuzawa, K.; Kaneko, F.; Hirabayashi, R.; Kageyama, I. The Effects of Differences in the Morphologies of the Ulnar Collateral Ligament and Common Tendon of the Flexor-Pronator Muscles on Elbow Valgus Braking Function: A Simulation Study. Int. J. Environ. Res. Public Health 2021, 18, 1986. https://doi.org/10.3390/ijerph18041986
Ikezu M, Edama M, Inai T, Matsuzawa K, Kaneko F, Hirabayashi R, Kageyama I. The Effects of Differences in the Morphologies of the Ulnar Collateral Ligament and Common Tendon of the Flexor-Pronator Muscles on Elbow Valgus Braking Function: A Simulation Study. International Journal of Environmental Research and Public Health. 2021; 18(4):1986. https://doi.org/10.3390/ijerph18041986
Chicago/Turabian StyleIkezu, Masahiro, Mutsuaki Edama, Takuma Inai, Kanta Matsuzawa, Fumiya Kaneko, Ryo Hirabayashi, and Ikuo Kageyama. 2021. "The Effects of Differences in the Morphologies of the Ulnar Collateral Ligament and Common Tendon of the Flexor-Pronator Muscles on Elbow Valgus Braking Function: A Simulation Study" International Journal of Environmental Research and Public Health 18, no. 4: 1986. https://doi.org/10.3390/ijerph18041986
APA StyleIkezu, M., Edama, M., Inai, T., Matsuzawa, K., Kaneko, F., Hirabayashi, R., & Kageyama, I. (2021). The Effects of Differences in the Morphologies of the Ulnar Collateral Ligament and Common Tendon of the Flexor-Pronator Muscles on Elbow Valgus Braking Function: A Simulation Study. International Journal of Environmental Research and Public Health, 18(4), 1986. https://doi.org/10.3390/ijerph18041986