Preliminary Evidence That Taping Does Not Optimize Joint Coupling of the Foot and Ankle Joints in Patients with Chronic Ankle Instability
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Demographic and Spatiotemporal Data
3.2. Comparison CAI_BF versus Controls
3.3. Comparison CAI_BF versus CAI_HD versus CAI_LD
3.4. Joint Coupling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van Rijn, R.M.; van Os, A.G.; Bernsen, R.M.D.; Luijsterburg, P.A.; Koes, B.W.; Bierma-Zeinstra, S.M.A. What Is the Clinical Course of Acute Ankle Sprains? A Systematic Literature Review. Am. J. Med. 2008, 121. [Google Scholar] [CrossRef]
- Hertel, J.; Corbett, R.O. An Updated Model of Chronic Ankle Instability. J. Athl. Train. 2019, 54, 572–588. [Google Scholar] [CrossRef] [Green Version]
- Delahunt, E.; Remus, A. Risk Factors for Lateral Ankle Sprains and Chronic Ankle Instability. J. Athl. Train. 2019, 54, 611–616. [Google Scholar] [CrossRef] [Green Version]
- Gribble, P.A.; Delahunt, E.; Bleakley, C.; Caulfield, B.; Docherty, C.; Fourchet, F.; Fong, D.T.P.; Hertel, J.; Hiller, C.; Kaminski, T.; et al. Selection Criteria for Patients with Chronic Ankle Instability in Controlled Research: A Position Statement of the International Ankle Consortium. Br. J. Sports Med. 2014, 48, 1014–1018. [Google Scholar] [CrossRef] [Green Version]
- Deschamps, K.; Dingenen, B.; Pans, F.; Van Bavel, I.; Matricali, G.A.; Staes, F. Effect of Taping on Foot Kinematics in Persons with Chronic Ankle Instability. J. Sci. Med. Sport 2016, 19, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Deschamps, K.; Matricali, G.A.; Dingenen, B.; De Boeck, J.; Bronselaer, S.; Staes, F. Foot and Ankle Kinematics in Chronic Ankle Instability Subjects Using a Midfoot Strike Pattern When Running, Including Influence of Taping. Clin. Biomech. 2018, 54, 1–7. [Google Scholar] [CrossRef]
- Monaghan, K.; Delahunt, E.; Caulfield, B. Ankle Function during Gait in Patients with Chronic Ankle Instability Compared to Controls. Clin. Biomech. 2006, 21, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Delahunt, E.; Monaghan, K.; Caulfield, B. Altered Neuromuscular Control and Ankle Joint Kinematics during Walking in Subjects with Functional Instability of the Ankle Joint. Am. J. Sports Med. 2006, 34, 1970–1976. [Google Scholar] [CrossRef] [PubMed]
- Chinn, L.; Dicharry, J.; Hertel, J. Ankle Kinematics of Individuals with Chronic Ankle Instability While Walking and Jogging on a Treadmill in Shoes. Phys. Ther. Sport 2013, 14, 232–239. [Google Scholar] [CrossRef]
- De Ridder, R.; Willems, T.; Vanrenterghem, J.; Robinson, M.; Pataky, T.; Roosen, P. Gait Kinematics of Subjects with Ankle Instability Using a Multisegmented Foot Model. Med. Sci. Sports Exerc. 2013, 45, 2129–2136. [Google Scholar] [CrossRef]
- Dingenen, B.; Deschamps, K.; Delchambre, F.; Van Peer, E.; Staes, F.F.; Matricali, G.A. Effect of Taping on Multi-Segmental Foot Kinematic Patterns during Walking in Persons with Chronic Ankle Instability. J. Sci. Med. Sport 2017, 20, 835–840. [Google Scholar] [CrossRef]
- Moisan, G.; Descarreaux, M.; Cantin, V. Effects of Chronic Ankle Instability on Kinetics, Kinematics and Muscle Activity during Walking and Running: A Systematic Review. Gait Posture 2017, 52, 381–399. [Google Scholar] [CrossRef]
- Fraser, J.J.; Hart, J.M.; Saliba, S.F.; Park, J.S.; Tumperi, M.; Hertel, J. Multisegmented Ankle-Foot Kinematics during Gait Initiation in Ankle Sprains and Chronic Ankle Instability. Clin. Biomech. 2019, 68, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Drewes, L.K.; McKeon, P.O.; Casey Kerrigan, D.; Hertel, J. Dorsiflexion Deficit during Jogging with Chronic Ankle Instability. J. Sci. Med. Sport 2009, 12, 685–687. [Google Scholar] [CrossRef]
- Herb, C.C.; Chinn, L.; Dicharry, J.; McKeon, P.O.; Hart, J.M.; Hertel, J. Shank-Rearfoot Joint Coupling with Chronic Ankle Instability. J. Appl. Biomech. 2014, 30, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Drewes, L.K.; McKeon, P.O.; Paolini, G.; Riley, P.; Casey Kerrigan, D.; Ingersoll, C.D.; Hertel, J. Altered Ankle Kinematics and Shank-Rear-Foot Coupling in Those with Chronic Ankle Instability. J. Sport Rehabil. 2009, 18, 375–388. [Google Scholar] [CrossRef]
- Collin Herb, C.; Chinn, L.; Hertel, J. Altering Shank-Rear-Foot Joint Coupling during Gait with Ankle Taping in Patients with Chronic Ankle Instability and Healthy Controls. J. Sport Rehabil. 2016, 25, 13–22. [Google Scholar] [CrossRef]
- Chinn, L.; Dicharry, J.; Hart, J.M.; Saliba, S.; Wilder, R.; Hertel, J. Gait Kinematics after Taping in Participants with Chronic Ankle Instability. J. Athl. Train. 2014, 49, 322–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pohl, M.B.; Messenger, N.; Buckley, J.G. Forefoot, Rearfoot and Shank Coupling: Effect of Variations in Speed and Mode of Gait. Gait Posture 2007, 25, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Delahunt, E.; Coughlan, G.F.; Caulfield, B.; Nightingale, E.J.; Lin, C.W.C.; Hiller, C.E. Inclusion Criteria When Investigating Insufficiencies in Chronic Ankle Instability. Med. Sci. Sports Exerc. 2010. [Google Scholar] [CrossRef]
- Hiller, C.E.; Refshauge, K.M.; Bundy, A.C.; Herbert, R.D.; Kilbreath, S.L. The Cumberland Ankle Instability Tool: A Report of Validity and Reliability Testing. Arch. Phys. Med. Rehabil. 2006, 87, 1235–1241. [Google Scholar] [CrossRef]
- Leardini, A.; Benedetti, M.G.; Berti, L.; Bettinelli, D.; Nativo, R.; Giannini, S. Rear-Foot, Mid-Foot and Fore-Foot Motion during the Stance Phase of Gait. Gait Posture 2007, 25, 453–462. [Google Scholar] [CrossRef]
- Macdonald, R. Taping Techniques: Principles and Practice; Butterworth-Heinemann: Oxford, UK, 2004. [Google Scholar] [CrossRef]
- Vicenzino, B.; Feilding, J.; Howard, R.; Moore, R.; Smith, S. An Investigation of the Anti-Pronation Effect of Two Taping Methods after Application and Exercise. Gait Posture 1997. [Google Scholar] [CrossRef]
- Li, L.; Caldwell, G.E. Coefficient of Cross Correlation and the Time Domain Correspondence. J. Electromyogr. Kinesiol. 1999. [Google Scholar] [CrossRef]
- Pohl, M.B.; Messenger, N.; Buckley, J.G. Changes in Foot and Lower Limb Coupling Due to Systematic Variations in Step Width. Clin. Biomech. 2006, 21, 175–183. [Google Scholar] [CrossRef]
- Viseux, F.; Lemaire, A.; Barbier, F.; Charpentier, P.; Leteneur, S.; Villeneuve, P. How Can the Stimulation of Plantar Cutaneous Receptors Improve Postural Control? Review and Clinical Commentary. Neurophysiol. Clin. 2019. [Google Scholar] [CrossRef]
- Viseux, F.J.F. The Sensory Role of the Sole of the Foot: Review and Update on Clinical Perspectives. Neurophysiol. Clin. 2020. [Google Scholar] [CrossRef]
- Rao, S.; Saltzman, C.L.; Yack, H.J. Relationships between Segmental Foot Mobility and Plantar Loading in Individuals with and without Diabetes and Neuropathy. Gait Posture 2010. [Google Scholar] [CrossRef] [Green Version]
- Yen, S.-C.; Folmar, E.; Friend, K.A.; Wang, Y.-C.; Chui, K.K. Effects of Kinesiotaping and Athletic Taping on Ankle Kinematics during Walking in Individuals with Chronic Ankle Instability: A Pilot Study. Gait Posture 2018, 66, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Migel, K.; Wikstrom, E. Gait Biomechanics Following Taping and Bracing in Patients with Chronic Ankle Instability: A Critically Appraised Topic. J. Sport Rehabil. 2020, 29, 373–376. [Google Scholar] [CrossRef]
- Kuni, B.; Mussler, J.; Kalkum, E.; Schmitt, H.; Wolf, S.I. Effect of Kinesiotaping, Non-elastic Taping and Bracing on Segmental Foot Kinematics during Drop Landing in Healthy Subjects and Subjects with Chronic Ankle Instability. Physiotherapy 2016, 102, 287–293. [Google Scholar] [CrossRef]
- De Ridder, R.; Willems, T.; Vanrenterghem, J.; Verrelst, R.; De Blaiser, C.; Roosen, P. Taping Benefits Ankle Joint Landing Kinematics in Subjects with Chronic Ankle Instability. J. Sport Rehabil. 2020, 29, 162–167. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L. Acute Effect of Kinesiology Taping on Postural Stability in Individuals with Unilateral Chronic Ankle Instability. Front. Physiol. 2020, 11, 192. [Google Scholar] [CrossRef]
Demographic Characteristics | Control | CAI | ||
---|---|---|---|---|
Subjects | 12 | 15 | ||
Age (years) | 23.6 ± 4.1 | 22 ± 2.7 | ||
BMI (kg/m2) | 22.2 ± 2.0 | 23.6 ± 3.0 | ||
Male/Female | 4/7 | 6/9 | ||
Spatio-temporal parameters | Control | CAI_BF | CAI_LD | CAI-HD |
Running speed (m/s) | 3.6 ± 0.3 * | 3.2 ± 0.3 * | 3.2 ± 0.4 | 3.2 ± 0.4 |
Stride time (s) | 0.7 ± 0.1 | 0.7 ± 0.01 | 0.8 ± 0.1 | 0.7 ± 0.1 |
Swing time (% RC) | 69.1 ± 1.8 * | 65.8 ± 2.1 * | 67.1 ± 2.6 | 67.4 ± 2.5 |
Stance time (% RC) | 30.9 ± 1.8 * | 34.2 ± 2.1 * | 32.9 ± 2.6 | 32.6 ± 2.5 |
Peak Impact Phase (0–5%) | Absorption Phase (6–16%) | Generation Phase (17–31%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Controls | CAI_BF | p Value | Controls | CAI_BF | p Value | Controls | CAI_BF | p Value | ||
Sha-Cal | DF/PF | 3.6 (1.9) | 3.5 (1.2) | 0.8026 | 11.1 (3.1) | 10.1 (2.7) | 0.8808 | 37.4 (5.2) | 38.6 (3.9) | 0.9045 |
Inv/Eve | 2.9 (2.0) | 3.2 (1.7) | 0.8026 | 2.5 (1.0) | 2.2 (1.6) | 0.6171 | 5.5 (2.9) | 4.1 (2.0) | 0.5892 | |
Add/Abd | 1.6 (1.1) | 1.4 (1.2) | 0.9203 | 3.4 (1.9) | 3.6 (2.2) | 0.9840 | 7.4 (3.8) | 8.4 (3.7) | 0.9840 | |
Cal-Mid | DF/PF | 2.0 (1.9) | 1.6 (1.1) | 0.7039 | 6.9 (1.5) | 6.0 (2.2) | 0.5961 | 15.2 (3.9) | 15.5 (5.2) | 0.9283 |
Inv/Eve | 4.8 (2.0) | 4.9 (1.6) | 0.9840 | 2.3 (1.1) | 3.2 (1.5) | 0.5029 | 5.2 (1.1) | 7.3 (2.5) | 0.4065 | |
Add/Abd | 0.9 (0.6) | 1.7 (1.6) | 0.7188 | 1.4 (0.8) | 1.7 (0.6) | 0.8259 | 6.8 (1.7) | 6.5 (2.7) | 0.4593 | |
Mid-Met | DF/PF | 1.2 (0.9) | 1.6 (1.1) | 0.9124 | 1.7 (0.8) | 1.8 (1.4) | 0.6891 | 5.2 (1.5) | 4.7 (2.0) | 0.7263 |
Inv/Eve | 1.6 (1.3) | 2.3 (2.0) | 0.8572 | 1.3 (0.8) | 1.5 (0.9) | 0.7949 | 3.4 (1.5) | 3.2 (1.4) | 0.8650 | |
Add/Abd | 2.6 (2.0) | 1.9 (1.9) | 0.9045 | 1.4 (0.7) | 1.9 (1.2) | 0.4533 | 5.0 (1.6) | 5.2 (1.6) | 0.7414 | |
Cal-Met | DF/PF | 2.2 (1.7) | 1.9 (1.1) | 0.9124 | 6.9 (1.7) | 6.9 (2.0) | 0.9203 | 19.2 (4.5) | 19.3 (3.8) | 0.7795 |
Inv/Eve | 1.6 (1.0) | 2.5 (1.2) | 0.2340 | 1.3 (1.1) | 1.6 (1.3) | 0.8650 | 6.6 (1.7) | 5.7 (2.8) | 0.7718 | |
Add/Abd | 2.9 (2.3) | 4.3 (1.7) | 0.6599 | 1.8 (0.8) | 2.6 (1.6) | 0.5353 | 5.7 (1.7) | 5.9 (2.3) | 0.7279 | |
F2Ps | DF/PF | 7.6 (3.0) | 7.3 (3.9) | 0.8493 | 8.3 (4.0) | 7.5 (3.7) | 0.5823 | 30.4 (4.1) | 29.2 (5.3) | 0.4009 |
Peak Impact Phase (0–5%) | |||||
---|---|---|---|---|---|
CAI_BF 1 | CAI_HD 2 | CAI_LD 3 | p Value | ||
Sha-Cal | DF/PF | 3.5 (1.2) | 2.8 (1.4) | 3.9 (2.6) | 0.3098 |
Inv/Eve | 3.2 (1.7) | 3.2 (1.7) | 2.4 (1.4) | 0.0192 | |
Add/Abd | 1.4 (1.2) | 1.8 (2.1) | 2.9 (3.5) | 0.0649 | |
Cal-Mid | DF/PF | 1.6 (1.1) *,2 | 4.3 (2.6) *,1,3 | 1.6 (1.1) *,2 | 0.0089 |
Inv/Eve | 4.9 (1.6) *,3 | 3.3 (1.3) | 2.8 (1.1) *,1 | 0.0065 | |
Add/Abd | 1.7 (1.6) | 1.1 (0.9) | 0.9 (0.6) | 0.6835 | |
Mid-Met | DF/PF | 1.6 (1.1) | 2.5 (2.0) | 1.6 (1.2) | 0.2700 |
Inv/Eve | 2.3 (2.0) | 1.9 (1.2) | 1.4 (1.3) | 0.2583 | |
Add/Abd | 1.9 (1.9) | 1.1 (1.1) | 1.8 (1.3) | 0.3476 | |
Cal-Met | DF/PF | 1.9 (1.1) | 2.7 (1.2) | 2.0 (1.1) | 0.1203 |
Inv/Eve | 2.5 (1.2) | 1.9 (1.0) | 1.5 (0.8) | 0.0772 | |
Add/Abd | 4.3 (1.7) | 3.4 (1.4) | 2.7 (1.2) | 0.0220 | |
F2Ps | DF/PF | 7.3 (3.9) | 9.6 (5.7) | 7.4 (4.5) | 0.5009 |
Absorption Phase (6–16%) | |||||
---|---|---|---|---|---|
CAI_BF 1 | CAI_HD 2 | CAI_LD 3 | p Value | ||
Sha-Cal | DF/PF | 10.1 (2.7) | 10.4 (3.1) | 12.3 (3.3) | 0.2764 |
Inv/Eve | 2.2 (1.6) | 2.0 (0.8) | 2.7 (1.1) | 0.3625 | |
Add/Abd | 3.6 (2.2) | 3.1 (2.1) | 3.7 (2.0) | 0.7558 | |
Cal-Mid | DF/PF | 6.0 (2.2) *,3 | 6.8 (1.4) *,3 | 4.3 (1.1) *,1,2 | 0.0015 |
Inv/Eve | 3.2 (1.5) | 2.9 (1.5) | 2.3 (0.7) | 0.2495 | |
Add/Abd | 1.7 (0.6) | 1.4 (0.9) | 1.1 (0.6) | 0.0638 | |
Mid-Met | DF/PF | 1.8 (1.4) | 1.8 (1.0) | 2.1 (1.7) | 0.8345 |
Inv/Eve | 1.5 (0.9) | 1.7 (1.1) | 1.4 (0.6) | 0.7225 | |
Add/Abd | 1.9 (1.2) | 1.1 (0.6) | 1.2 (0.8) | 0.2870 | |
Cal-Met | DF/PF | 6.9 (2.0) | 6.5 (1.1) | 5.3 (2.5) | 0.1793 |
Inv/Eve | 1.6 (1.3) | 1.7 (1.2) | 1.5 (1.1) | 0.7888 | |
Add/Abd | 2.6 (1.6) | 2.8 (1.7) | 2.1 (1.4) | 0.6055 | |
F2Ps | DF/PF | 7.5 (3.7) | 6.4 (2.9) | 10.2 (8.4) | 0.5899 |
Generation Phase (17–31%) | |||||
---|---|---|---|---|---|
CAI_BF 1 | CAI_HD 2 | CAI_LD 3 | p Value | ||
Sha-Cal | DF/PF | 38.6 (3.9) *,2 | 32.1 (4.3) *,1,3 | 43.2 (3.8) *,2 | 0.0000 |
Inv/Eve | 4.1 (2.0) | 4.6 (2.8) | 4.3 (2.6) | 0.8426 | |
Add/Abd | 8.4 (3.7) | 7.8 (4.4) | 10.5 (3.9) | 0.3570 | |
Cal-Mid | DF/PF | 15.5 (5.2) | 17.9 (4.5) | 16.6 (4.6) | 0.5873 |
Inv/Eve | 7.3 (2.5) *,3 | 6.5 (1.2) *,3 | 4.6 (1.1) *,1,2 | 0.0011 | |
Add/Abd | 6.5 (2.7) *,2,3 | 3.0 (1.4) *,1 | 3.5 (2.0) *,1 | 0.0010 | |
Mid-Met | DF/PF | 4.7 (2.0) *,3 | 3.0 (1.8) | 2.4 (1.6) *,1 | 0.0056 |
Inv/Eve | 3.2 (1.4) | 2.3 (1.3) | 2.4 (1.1) | 0.2167 | |
Add/Abd | 5.2 (1.6) *,2,3 | 3.5 (1.4) *,1 | 3.4 (1.6) *,1 | 0.0014 | |
Cal-Met | DF/PF | 19.3 (3.8) | 20.5 (3.4) | 16.9 (4.4) | 0.0963 |
Inv/Eve | 5.7 (2.8) | 3.6 (1.5) | 4.4 (3.0) | 0.1094 | |
Add/Abd | 5.9 (2.3) | 5.8 (1.3) | 5.1 (1.9) | 0.6667 | |
F2Ps | DF/PF | 29.2 (5.3) | 23.0 (6.0) | 31.2 (10.1) | 0.0380 |
Control | CAI_BF | CAI_HD | CAI_LD | |
---|---|---|---|---|
Sha-Cal Inv/Eve Sha-Cal Add/Abd | 0.68 | 0.45 | 0.50 | 0.63 |
Sha-Cal Inv/Eve Cal-Met DF/PF | −0.82 | −0.46 | −0.57 | −0.49 |
Sha-Cal Inv/Eve Cal-Met Inv/Eve | −0.45 | −0.19 | 0.00 | −0.34 |
Sha-Cal Inv/Eve Cal-Met Add/Abd | 0.43 | 0.58 | 0.60 | 0.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deltour, C.; Dingenen, B.; Staes, F.; Deschamps, K.; Matricali, G.A. Preliminary Evidence That Taping Does Not Optimize Joint Coupling of the Foot and Ankle Joints in Patients with Chronic Ankle Instability. Int. J. Environ. Res. Public Health 2021, 18, 2029. https://doi.org/10.3390/ijerph18042029
Deltour C, Dingenen B, Staes F, Deschamps K, Matricali GA. Preliminary Evidence That Taping Does Not Optimize Joint Coupling of the Foot and Ankle Joints in Patients with Chronic Ankle Instability. International Journal of Environmental Research and Public Health. 2021; 18(4):2029. https://doi.org/10.3390/ijerph18042029
Chicago/Turabian StyleDeltour, Charles, Bart Dingenen, Filip Staes, Kevin Deschamps, and Giovanni A. Matricali. 2021. "Preliminary Evidence That Taping Does Not Optimize Joint Coupling of the Foot and Ankle Joints in Patients with Chronic Ankle Instability" International Journal of Environmental Research and Public Health 18, no. 4: 2029. https://doi.org/10.3390/ijerph18042029
APA StyleDeltour, C., Dingenen, B., Staes, F., Deschamps, K., & Matricali, G. A. (2021). Preliminary Evidence That Taping Does Not Optimize Joint Coupling of the Foot and Ankle Joints in Patients with Chronic Ankle Instability. International Journal of Environmental Research and Public Health, 18(4), 2029. https://doi.org/10.3390/ijerph18042029