Impact of Prolonged Exposure to a Slippery Surface on Postural Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Procedures
2.4. Statistical Analysis
3. Results
3.1. Time of Exposure and Static Postural Stability
3.2. Nature of the Standing Surface and Static Postural Stability
4. Discussion
4.1. Physiological Workload and Prolonged Walking on Postural Stability
4.2. Nature of the Walking Surface on Postural Stability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- National Census of Fatal Occupational Injuries, Bureau of Labor Statistics, US Department of Labor. 2017. Available online: https://www.bls.gov/ (accessed on 12 March 2020).
- Incidence Rates of Nonfatal Occupational Injuries and Illness by Industry and Case Types, Bureau of Labor Statistics, US Department of Labor. 2017. Available online: https://www.bls.gov/ (accessed on 12 March 2020).
- Yoon, H.-Y.; Lockhart, T.E. Nonfatal occupational injuries associated with slips and falls in the United States. Int. J. Ind. Ergon. 2006, 36, 83–92. [Google Scholar] [CrossRef] [Green Version]
- United States Department of Labor, Bureau of Labor Statistics. Census of Fatal Occupational Injuries; U.S. Bureau of Labor Statistics: Washington, DC, USA, 2014. [Google Scholar]
- Courtney, T.K.; Sorock, G.S.; Manning, D.P.; Collins, J.W.; Holbein-Jenny, M.A. Occupational slip, trip, and fall-related injuries can the contribution of slipperiness be isolated? Ergonomics 2001, 44, 1118–1137. [Google Scholar] [CrossRef] [PubMed]
- Redfern, M.S.; Di Pasquale, J. Biomechanics of descending ramps. Gait Posture 1997, 6, 119–125. [Google Scholar] [CrossRef]
- Menant, J.C.; Perry, S.D.; Steele, J.R.; Menz, H.B.; Munro, B.J.; Lord, S.R. Effects of Shoe Characteristics on Dynamic Stability When Walking on Even and Uneven Surfaces in Young and Older People. Arch. Phys. Med. Rehabil. 2008, 89, 1970–1976. [Google Scholar] [CrossRef]
- Nardone, A.; Tarantola, J.; Giordano, A.; Schieppati, M. Fatigue effects on body balance. Electroencephalogr. Clin. Neurophysiol. 1997, 105, 309–320. [Google Scholar] [CrossRef]
- Horak, F.B. Clinical measurement of postural control in adults. Phys. Ther. 1987, 67, 1881–1885. [Google Scholar] [CrossRef]
- Chander, H.; Wade, C.; Garner, J.C. The influence of occupational footwear on dynamic balance perturbations. Footwear Sci. 2015, 7, 115–126. [Google Scholar] [CrossRef]
- Allin, L.J.; Brolinson, P.G.; Beach, B.M.; Kim, S.; Nussbaum, M.A.; Roberto, K.A.; Madigan, M.L. Perturbation-based balance training targeting both slip- and trip-induced falls among older adults: A randomized controlled trial. BMC Geriatr. 2020, 20, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Chander, H.; Garner, J.; Wade, C. Slip outcomes in firefighters: A comparison of rubber and leather boots. Occup. Ergon. 2016, 13, 67–77. [Google Scholar] [CrossRef]
- Chander, H.; Garner, J.C.; Wade, C. Impact on balance while walking in occupational footwear. Footwear Sci. 2014, 6, 59–66. [Google Scholar] [CrossRef]
- Chander, H.; Wade, C.; Garner, J.C.; Knight, A.C. Slip initiation in alternative and slip-resistant footwear. Int. J. Occup. Saf. Ergon. 2017, 23, 558–569. [Google Scholar] [CrossRef] [PubMed]
- Chander, H.; Knight, A.C.; Garner, J.C.; Wade, C.; Carruth, D.W.; DeBusk, H.; Hill, C.M. Impact of military type footwear and workload on heel contact dynamics during slip events. Int. J. Ind. Ergon. 2018, 66, 18–25. [Google Scholar] [CrossRef]
- Liming, S.; Hailong, S. Muscle force response characteristics of the slipping leg after an unexpected slip. Chin. J. Tissue Eng. Res. 2020, 25, 1184–1189. [Google Scholar]
- Bell, J.L.; Collins, J.W.; Wolf, L.; Grönqvist, R.; Chiou, S.; Chang, W.R.; Sorock, G.S.; Courtney, T.K.; Lombardi, D.A.; Evanoff, B. Evaluation of a comprehensive slip, trip and fall prevention programme for hospital employees. Ergonomics 2008, 51, 1906–1925. [Google Scholar] [CrossRef]
- Courtney, T.K.; Webster, B.S. Antecedent factors and disabling occupational morbidity—Insights from the new BLS data. AIHAJ 2001, 62, 622–632. [Google Scholar] [CrossRef]
- Heller, M.F.; Challis, J.H.; Sharkey, N.A. Changes in postural sway as a consequence of wearing a military backpack. Gait Posture 2009, 30, 115–117. [Google Scholar] [CrossRef] [PubMed]
- Wade, C.; Davis, J. Postural sway following prolonged exposure to an inclined surface. Saf. Sci. 2009, 47, 652–658. [Google Scholar] [CrossRef]
- Wade, C.; Davis, J.; Weimar, W. Balance and exposure to an elevated sloped surface. Gait Posture 2013, 39, 599–605. [Google Scholar] [CrossRef]
- Chander, H.; Knight, A.C.; Garner, J.C.; Wade, C.; Carruth, D.; Wilson, S.J.; Gdovin, J.R.; Williams, C.C. Impact of military type footwear and load carrying workload on postural stability. Ergonomics 2019, 62, 103–114. [Google Scholar] [CrossRef]
- Roberts, M.; Talbot, C.; Kay, A.; Price, M.; Hill, M. Changes in postural sway and gait characteristics as a consequence of anterior load carriage. Gait Posture 2018, 66, 139–145. [Google Scholar] [CrossRef]
- Qu, X.; Yeo, J.C. Effects of load carriage and fatigue on gait characteristics. J. Biomech. 2011, 44, 1259–1263. [Google Scholar] [CrossRef]
- Lee, J.; Yoon, Y.; Shin, C. The Effect of Backpack Load Carriage on the Kinetics and Kinematics of Ankle and Knee Joints During Uphill Walking. J. Appl. Biomech. 2017, 33, 1–26. [Google Scholar] [CrossRef]
- Majumdar, D.; Pal, M.; Majumdar, D. Effects of military load carriage on kinematics of gait. Ergonomics 2010, 53, 782–791. [Google Scholar] [CrossRef] [PubMed]
- LaFiandra, M.; Wagenaar, R.C.; Holt, K.G.; Obusek, J.P. How do load carriage and walking speed influence trunk coordination and stride parameters? J. Biomech. 2003, 36, 87–95. [Google Scholar] [CrossRef]
- Ferguson, B. ACSM’s Guidelines for Exercise Testing and Prescription 9th Ed. 2014. J. Can. Chiropr. Assoc. 2014, 58, 328. [Google Scholar]
- Kim, S.; Lockhart, T.E. The effects of 10% front load carriage on the likelihood of slips and falls. Ind. Health 2008, 46, 32–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehnen, G.; Magnani, R.; Souza, G.; Rodrigues, F.; Andrade, A.; Vieira, M. Effects of backpack loads and positions on the variability of gait spatiotemporal parameters in young adults. Res. Biomed. Eng. 2017, 33, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Zultowski, I.; Aruin, A. Carrying loads and postural sway in standing: The effect of load placement and magnitude. Work 2008, 30, 359–368. [Google Scholar]
- Shigaki, L.; Vieira, E.R.; de Oliveira Gil, A.W.; Araújo, C.G.A.; Carmargo, M.Z.; Sturion, L.A.; de Oliveira, M.R.; da Silva, R.A. Effects of Holding an External Load on the Standing Balance of Older and Younger Adults With and Without Chronic Low Back Pain. J. Manip. Physiol. Ther. 2017, 40, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Bigland-Ritchie, B.; Woods, J.J. Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve 1984, 7, 691–699. [Google Scholar] [CrossRef]
- Parreira, R.B.; Amorim, C.F.; Gil, A.W.; Teixeira, D.C.; Bilodeau, M.; da Silva, R.A. Effect of trunk extensor fatigue on the postural balance of elderly and young adults during unipodal task. Eur. J. Appl. Physiol. 2013, 113, 1989–1996. [Google Scholar] [CrossRef] [PubMed]
- Vuillerme, N.; Danion, F.; Forestier, N.; Nougier, V. Postural sway under muscle vibration and muscle fatigue in humans. Neurosci. Lett. 2002, 333, 131–135. [Google Scholar] [CrossRef]
- Kodithuwakku Arachchige, S.N.; Chander, H.; Turner, A.J.; Wilson, S.J.; Simpson, J.D.; Knight, A.C.; Burch V., R.F.; Wade, C.; Garner, J.C.; Carruth, D. Muscle Activity during Postural Stability Tasks: Role of Military Footwear and Load Carriage. Safety 2020, 6, 35. [Google Scholar] [CrossRef]
- Redfern, M.S.; Cham, R.; Gielo-Perczak, K.; Grönqvist, R.; Hirvonen, M.; Lanshammar, H.; Marpet, M.; Pai, C.Y.C., IV; Powers, C. Biomechanics of Slips. Ergonomics 2001, 44, 1138–1166. [Google Scholar] [CrossRef]
- Chvatal, S.A.; Ting, L.H. Voluntary and reactive recruitment of locomotor muscle synergies during perturbed walking. J. Neurosci. 2012, 32, 12237–12250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, T.; Higuchi, H.; Onodera, H.; Hokkirigawa, K.; Masani, K. Misalignment of the Desired and Measured Center of Pressure Describes Falls Caused by Slip during Turning. PLoS ONE 2016, 11, e0155418. [Google Scholar] [CrossRef] [PubMed]
Sway Parameter | Dry Surface | Slippery Surface | ||||
---|---|---|---|---|---|---|
0 min | 30 min | 60 min | 0 min | 30 min | 60 min | |
Stable condition | ||||||
COP-X average | 1.34 ± 0.80 | 1.42 ± 0.81 | 1.65 ± 1.05 | 1.43 ± 0.84 | 1.49 ± 0.78 | 1.04 ± 0.57 |
COP-Y average | 4.57 ± 2.12 | 4.76 ± 1.82 | 4.59 ± 3.20 | 5.00 ± 1.82 | 4.21 ± 1.46 | 4.30 ± 1.77 |
Average displacement along X axis | 0.31 ± 0.12 | 0.41 ± 0.15 * | 0.41 ± 0.19 | 0.35 ± 0.15 | 0.41 ± 0.18 * | 0.44 ± 0.26 |
Average displacement along Y-axis | 0.41 ± 0.09 | 0.55 ± 0.22 * | 0.55 ± 0.19 * | 0.43 ± 0.19 | 0.57 ± 0.19 * | 0.55 ± 0.31 * |
95% ellipsoid area | 6.24 ± 4.47 | 13.13 ± 12.72 * | 12.03 ± 8.92 * | 9.54 ± 8.01 | 10.47 ± 6.71 * | 11.62 ± 10.68 * |
Unstable condition | ||||||
COP-X average | 0.78 ± 0.49 | 1.09 ± 0.78 | 1.03 ± 0.62 | 1.05 ± 0.71 # | 1.34 ± 0.81 # | 1.13 ± 0.71 # |
COP-Y average | 2.74 ± 1.98 | 3.04 ± 2.27 | 3.02 ± 2.16 | 3.01 ± 1.51 | 2.96 ± 1.73 | 2.86 ± 1.35 |
Average displacement along X axis | 0.47 ± 0.16 | 0.54 ± 0.18 | 0.54 ± 0.19 | 0.48 ± 0.17 | 0.46 ± 0.16 | 0.49 ± 0.13 |
Average displacement along Y-axis | 0.60 ± 0.23 | 0.66 ± 0.19 | 0.72 ± 0.28 | 0.60 ± 0.16 | 0.65 ± 0.21 | 0.63 ± 0.22 |
95% ellipsoid area | 11.54 ± 8.06 | 15.34 ± 8.07 | 15.35 ± 9.21 | 11.85 ± 8.31 | 12.98 ± 9.08 | 12.06 ± 7.32 |
Sway Parameter | Time | Surface | Time*Surface | ||||||
---|---|---|---|---|---|---|---|---|---|
Stable condition | F | p | η2 | F | p | η2 | F | p | ηp2 |
COP-X average | 0.48 | 0.626 | 0.03 | 1.39 | 0.254 | 0.08 | 4.46 | 0.019 * | 0.21 |
COP-Y average | 0.88 | 0.423 | 0.05 | 0.10 | 0.751 | 0.01 | 1.24 | 0.301 | 0.07 |
Average displacement along X axis | 4.55 | 0.018 * | 0.21 | 0.18 | 0.681 | 0.01 | 0.29 | 0.753 | 0.02 |
Average displacement along Y-axis | 11.44 | 0.000 * | 0.40 | 0.19 | 0.667 | 0.01 | 0.07 | 0.932 | 0.00 |
95% ellipsoid area | 5.42 | 0.009 * | 0.24 | 0.00 | 0.977 | 0.00 | 2.26 | 0.120 | 0.12 |
Unstable condition | |||||||||
COP-X average | 2.33 | 0.113 | 0.12 | 4.50 | 0.049 * | 0.21 | 0.16 | 0.852 | 0.01 |
COP-Y average | 0.10 | 0.908 | 0.01 | 0.00 | 0.978 | 0.00 | 0.36 | 0.697 | 0.02 |
Average displacement along X axis | 0.99 | 0.382 | 0.06 | 0.86 | 0.366 | 0.05 | 1.18 | 0.320 | 0.07 |
Average displacement along Y-axis | 2.68 | 0.083 | 0.14 | 1.10 | 0.310 | 0.06 | 1.21 | 0.310 | 0.07 |
95% ellipsoid area | 1.94 | 0.159 | 0.10 | 0.61 | 0.447 | 0.03 | 1.20 | 0.315 | 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kodithuwakku Arachchige, S.N.K.; Chander, H.; Turner, A.J.; Knight, A.C. Impact of Prolonged Exposure to a Slippery Surface on Postural Stability. Int. J. Environ. Res. Public Health 2021, 18, 2214. https://doi.org/10.3390/ijerph18052214
Kodithuwakku Arachchige SNK, Chander H, Turner AJ, Knight AC. Impact of Prolonged Exposure to a Slippery Surface on Postural Stability. International Journal of Environmental Research and Public Health. 2021; 18(5):2214. https://doi.org/10.3390/ijerph18052214
Chicago/Turabian StyleKodithuwakku Arachchige, Sachini N. K., Harish Chander, Alana J. Turner, and Adam C. Knight. 2021. "Impact of Prolonged Exposure to a Slippery Surface on Postural Stability" International Journal of Environmental Research and Public Health 18, no. 5: 2214. https://doi.org/10.3390/ijerph18052214
APA StyleKodithuwakku Arachchige, S. N. K., Chander, H., Turner, A. J., & Knight, A. C. (2021). Impact of Prolonged Exposure to a Slippery Surface on Postural Stability. International Journal of Environmental Research and Public Health, 18(5), 2214. https://doi.org/10.3390/ijerph18052214