Effects of Neuromuscular Electrical Stimulation Combined with Exercises versus an Exercise Program on the Physical Characteristics and Functions of the Elderly: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Determination of the Sample Size
2.3. Procedure
2.4. Outcome Measurements
2.4.1. Body Composition
2.4.2. Calf Circumference
2.4.3. Handgrip Strength
2.4.4. Five Times Sit-to-Stand Test
2.4.5. Timed Up-and-Go Test
2.4.6. One-Leg Stance Test
2.4.7. Y-Balance Test
2.5. Statistical Analysis
3. Results
3.1. Changes in the Physical Characteristics before and after Intervention
3.2. Comparison of the Difference between the Physical Characteristics before and after According to the Intervention in the Three Groups
3.2.1. Changes in Functional Effects before and after the Exercise Intervention
3.2.2. Comparisons of the Variables between Groups Regarding the Functional Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baumgartner, R.N.; Waters, D.L.; Gallagher, D.; Morley, J.E.; Garry, P.J. Predictors of skeletal muscle mass in elderly men and women. Mech. Ageing Dev. 1999, 107, 123–136. [Google Scholar] [CrossRef]
- Luukinen, H.; Koski, K.; Laippala, P.; Kivelä, S.L. Factors predicting fractures during falling impacts among home-dwelling older adults. J. Am. Geriatr. Soc. 1997, 45, 1302–1309. [Google Scholar] [CrossRef] [PubMed]
- Bax, L.; Staes, F.; Verhagen, A. Does Neuromuscular Electrical Stimulation Strengthen the Quadriceps Femoris? Sports Med. 2005, 35, 191–212. [Google Scholar] [CrossRef]
- Hainaut, K.; Duchateau, J. Neuromuscular Electrical Stimulation and Voluntary Exercise. Sports Med. 1992, 14, 100–113. [Google Scholar] [CrossRef]
- Nápolis, L.M.; Dal Corso, S.; Neder, J.A.; Malaguti, C.; Gimenes, A.C.O.; Nery, L.E. Neuromuscular electrical stimulation improves exercise tolerance in chronic obstructive pulmonary disease patients with better preserved fat-free mass. Clinics 2011, 66, 401–406. [Google Scholar] [CrossRef] [Green Version]
- Vaz, M.A.; Baroni, B.M.; Geremia, J.M.; Lanferdini, F.J.; Mayer, A.; Arampatzis, A.; Herzog, W. Neuromuscular electrical stimulation (NMES) reduces structural and functional losses of quadriceps muscle and improves health status in patients with knee osteoarthritis. J. Orthop. Res. 2013, 31, 511–516. [Google Scholar] [CrossRef] [Green Version]
- De Freitas, G.R.; Szpoganicz, C.; Ilha, J. Does Neuromuscular Electrical Stimulation Therapy Increase Voluntary Muscle Strength After Spinal Cord Injury? A Systematic Review. Top. Spinal Cord Inj. Rehabil. 2017, 24, 6–17. [Google Scholar] [CrossRef]
- Marotta, N.; Demeco, A.; Inzitari, M.T.; Caruso, M.G.; Ammendolia, A. Neuromuscular electrical stimulation and shortwave diathermy in unrecovered Bell palsy: A randomized controlled study. Medicine (Baltimore) 2020, 99, e19152. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Roig, M.; Karatzanos, E.; Nanas, S. Neuromuscular electrical stimulation for preventing skeletal-muscle weakness and wasting in critically ill patients: A systematic review. BMC Med. 2013, 11, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buford, T.W.; Anton, S.D.; Clark, D.J.; Higgins, T.J.; Cooke, M.B. Optimizing the Benefits of Exercise on Physical Function in Older Adults. PM & R 2014, 6, 528–543. [Google Scholar]
- Filippo, E.S.D.; Mancinelli, R.; Marrone, M.; Doria, C.; Verratti, V.; Toniolo, L.; Dantas, J.L.; Fulle, S.; Pietrangelo, T. Neuromuscular electrical stimulation improves skeletal muscle regeneration through satellite cell fusion with myofibers in healthy elderly subjects. J. Appl. Physiol. 2017, 123, 501–512. [Google Scholar] [CrossRef] [Green Version]
- Langeard, A.; Bigot, L.; Chastan, N.; Gauthier, A. Does neuromuscular electrical stimulation training of the lower limb have functional effects on the elderly?: A systematic review. Exp. Gerontol. 2017, 91, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Mulasi, U.; Kuchnia, A.J.; Cole, A.J.; Earthman, C.P. Bioimpedance at the bedside: Current applications, limitations, and opportunities. Nutr. Clin. Pr. 2015, 30, 180–193. [Google Scholar] [CrossRef] [Green Version]
- Rolland, Y.; Lauwers-Cances, V.; Cournot, M.; Nourhashémi, F.; Reynish, W.; Rivière, D.; Vellas, B.; Grandjean, H. Sarcopenia, Calf Circumference, and Physical Function of Elderly Women: A Cross-Sectional Study. J. Am. Geriatr. Soc. 2003, 51, 1120–1124. [Google Scholar] [CrossRef]
- Hirschfeld, H.P.; Kinsella, R.; Duque, G. Osteosarcopenia: Where bone, muscle, and fat collide. Osteoporos. Int. 2017, 28, 2781–2790. [Google Scholar] [CrossRef]
- Rantanen, T.; Volpato, S.; Luigi Ferrucci, M.; Eino Heikkinen, M.; Fried, L.P.; Guralnik, J.M. Handgrip Strength and Cause-Specific and Total Mortality in Older Disabled Women: Exploring the Mechanism. J. Am. Geriatr. Soc. 2003, 51, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Muehlbauer, T.; Stuerchler, M.; Granacher, U. Effects of climbing on core strength and mobility in adults. Int. J. Sports Med. 2012, 33, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Melo, T.A.d.; Duarte, A.C.M.; Bezerra, T.S.; França, F.; Soares, N.S.; Brito, D. The Five Times Sit-to-Stand Test: Safety and reliability with older intensive care unit patients at discharge. Rev. Bras. De Ter. Intensiva 2019, 31, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Tiedemann, A.; Shimada, H.; Sherrington, C.; Murray, S.; Lord, S. The comparative ability of eight functional mobility tests for predicting falls in community-dwelling older people. Age Ageing 2008, 37, 430–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar]
- Springer, B.A.; Marin, R.; Cyhan, T.; Roberts, H.; Gill, N.W. Normative values for the unipedal stance test with eyes open and closed. J. Geriatr. Phys. Ther. 2007, 30, 8–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.K.; Kang, M.H.; Lee, T.S.; Oh, J.S. Relationships among the Y balance test, Berg Balance Scale, and lower limb strength in middle-aged and older females. Braz. J. Phys. Ther. 2015, 19, 227–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benavent-Caballer, V.; Rosado-Calatayud, P.; Segura-Ortí, E.; Amer-Cuenca, J.J.; Lisón, J.F. Effects of three different low-intensity exercise interventions on physical performance, muscle CSA and activities of daily living: A randomized controlled trial. Exp. Gerontol. 2014, 58, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Taaffe, D.R.; Pruitt, L.; Pyka, G.; Guido, D.; Marcus, R. Comparative effects of high- and low-intensity resistance training on thigh muscle strength, fiber area, and tissue composition in elderly women. Clin. Physiol. 1996, 16, 381–392. [Google Scholar] [CrossRef]
- Kim, K.-M.; Croy, T.; Hertel, J.; Saliba, S. Effects of Neuromuscular Electrical Stimulation After Anterior Cruciate Ligament Reconstruction on Quadriceps Strength, Function, and Patient-Oriented Outcomes: A Systematic Review. J. Orthop. Sports Phys. Ther. 2010, 40, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Mignardot, J.-B.; Deschamps, T.; Le Goff, C.G.; Roumier, F.-X.; Duclay, J.; Martin, A.; Sixt, M.; Pousson, M.; Cornu, C. Neuromuscular electrical stimulation leads to physiological gains enhancing postural balance in the pre-frail elderly. Physiol. Rep. 2015, 3, e12471. [Google Scholar] [CrossRef] [Green Version]
Characteristics | CON Group (n = 8) | EX Group (n = 10) | EX + NMES Group (n = 9) | p |
---|---|---|---|---|
Age (years) | 71.88 ± 6.69 | 73.3 ± 4.50 | 73.22 ± 4.76 | 0.83 |
Height (cm) | 160.88 ± 6.08 | 154.46 ± 5.51 | 157.33 ± 4.74 | 0.06 |
Weight (kg) | 59.88 ± 4.64 | 53.72 ± 5.40 | 53.69 ± 8.62 | 0.10 |
Variable | Group | Baseline | At 4 Weeks | t | p |
---|---|---|---|---|---|
Skeletal muscle mass (kg) | CON | 22.34 ± 3.09 a | 22.13 ± 2.84 | 1.50 | 0.18 |
EX | 20.22 ± 2.14 | 19.95 ± 2.10 | 1.98 | 0.08 | |
EX + NMES | 20.56 ± 2.45 | 20.43 ± 2.34 | 1.21 | 0.26 | |
Body fat mass (kg) | CON | 31.3 ± 4.50 | 31.88 ± 4.01 | −1.40 | 0.20 |
EX | 29.31 ± 6.32 | 30.12 ± 5.30 | −1.54 | 0.16 | |
EX + NMES | 29.02 ± 5.20 | 28.86 ± 5.50 | 0.77 | 0.46 | |
Calf circumference (cm) | CON | 33.46 ± 0.96 | 33.69 ± 0.88 | −1.00 | 0.35 |
EX | 31.89 ± 1.28 | 32.85 ± 0.85 | −3.67 | 0.01 * | |
EX + NMES | 31.57 ± 2.98 | 32.61 ± 2.87 | −3.90 | 0.01 * |
Variable | CON Group (n = 8) | EX Group (n = 10) | EX + NMES Group (n = 9) | p |
---|---|---|---|---|
Skeletal muscle mass (kg) | −0.21 ± 0.40 a | −0.12 ± 0.30 | −0.27 ± 0.43 | 0.71 |
Body fat mass (kg) | 0.58 ± 1.16 | 0.81 ± 1.66 | −0.17 ± 0.65 | 0.24 |
Calf circumference (cm) | 0.23 ± 0.64 | 0.96 ± 0.83 | 1.04 ± 0.80 | 0.08 |
Variables | Group | Baseline | At 4 Weeks | t | p |
---|---|---|---|---|---|
Handgrip strength (kg) | CON | 20.78 ± 3.32 a | 21.19 ± 3.21 | −0.41 | 0.10 |
EX | 19.71 ± 4.90 | 20.67 ± 3.93 | −0.73 | 0.07 | |
EX + NMES | 20.67 ± 5.29 | 21.81 ± 4.63 | −0.88 | 0.04 * | |
Sit-to-stand (sec) | CON | 14.26 ± 1.57 | 13.49 ± 3.10 | 0.59 | 0.57 |
EX | 12.83 ± 3.38 | 9.92 ± 1.49 | 2.57 | 0.03 * | |
EX + NMES | 13.27 ± 3.28 | 9.37 ± 2.25 | 3.98 | 0.004 ** | |
Timed up-and-go test (sec) | CON | 10.39 ± 1.25 | 10.10 ± 1.18 | 0.59 | 0.58 |
EX | 10.99 ± 1.55 | 9.87 ± 1.59 | 1.83 | 0.10 | |
EX + NMES | 12.60 ± 2.56 | 9.88 ± 1.50 | 4.26 | 0.003 ** | |
One-leg stance (sec) | CON | 27.46 ± 18.52 | 28.51 ± 20.51 | −0.27 | 0.79 |
EX | 26.27 ± 17.97 | 36.06 ± 24.17 | −2.35 | 0.04 * | |
EX + NMES | 25.42 ± 17.11 | 39.10 ± 24.16 | −2.76 | 0.03 * | |
Y-balance test (cm) | CON | 69.08 ± 9.93 | 80.96 ± 14.26 | −2.25 | 0.06 |
EX | 81.24 ± 4.45 | 98.17 ± 8.75 | −4.38 | 0.002 ** | |
EX + NMES | 62.93 ± 12.01 | 91.30 ± 13.76 | −5.12 | 0.001 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, E.M.; Park, S.H. Effects of Neuromuscular Electrical Stimulation Combined with Exercises versus an Exercise Program on the Physical Characteristics and Functions of the Elderly: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2021, 18, 2463. https://doi.org/10.3390/ijerph18052463
Jang EM, Park SH. Effects of Neuromuscular Electrical Stimulation Combined with Exercises versus an Exercise Program on the Physical Characteristics and Functions of the Elderly: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health. 2021; 18(5):2463. https://doi.org/10.3390/ijerph18052463
Chicago/Turabian StyleJang, Eun Mi, and So Hyun Park. 2021. "Effects of Neuromuscular Electrical Stimulation Combined with Exercises versus an Exercise Program on the Physical Characteristics and Functions of the Elderly: A Randomized Controlled Trial" International Journal of Environmental Research and Public Health 18, no. 5: 2463. https://doi.org/10.3390/ijerph18052463
APA StyleJang, E. M., & Park, S. H. (2021). Effects of Neuromuscular Electrical Stimulation Combined with Exercises versus an Exercise Program on the Physical Characteristics and Functions of the Elderly: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 18(5), 2463. https://doi.org/10.3390/ijerph18052463