‘Dr. Google, What Is That on My Skin?’—Internet Searches Related to Skin Problems: Google Trends Data from 2004 to 2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Processing and Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vox, F.; Folkers, K.M.; Turi, A.; Caplan, A.L. Medical Crowdfunding for Scientifically Unsupported or Potentially Dangerous Treatments. JAMA 2018, 320, 1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karimkhani, C.; Dellavalle, R.P.; Coffeng, L.E.; Flohr, C.; Hay, R.J.; Langan, S.M.; Nsoesie, E.O.; Ferrari, A.J.; Erskine, H.E.; Silverberg, J.I.; et al. Global Skin Disease Morbidity and Mortality: An Update from the Global Burden of Disease Study 2013. JAMA Dermatol. 2017, 153, 406. [Google Scholar] [CrossRef] [PubMed]
- Seth, D.; Cheldize, K.; Brown, D.; Freeman, E.E. Global Burden of Skin Disease: Inequities and Innovations. Curr. Dermatol. Rep. 2017, 6, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Balieva, F.; Kupfer, J.; Lien, L.; Gieler, U.; Finlay, A.Y.; Tomás-Aragonés, L.; Poot, F.; Misery, L.; Sampogna, F.; van Middendorp, H.; et al. The Burden of Common Skin Diseases Assessed with the EQ5DTM: A European Multicentre Study in 13 Countries. Br. J. Dermatol. 2017, 176, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Verhoeven, E.W.M.; Kraaimaat, F.W.; van Weel, C.; van de Kerkhof, P.C.M.; Duller, P.; van der Valk, P.G.M.; van den Hoogen, H.J.M.; Bor, J.H.J.; Schers, H.J.; Evers, A.W.M. Skin Diseases in Family Medicine: Prevalence and Health Care Use. Ann. Fam. Med. 2008, 6, 349–354. [Google Scholar] [CrossRef] [Green Version]
- Zink, A.; Schuster, B.; Rüth, M.; Pereira, M.P.; Philipp-Dormston, W.G.; Biedermann, T.; Ständer, S. Medical Needs and Major Complaints Related to Pruritus in Germany: A 4-Year Retrospective Analysis Using Google AdWords Keyword Planner. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Kamiński, M.; Loniewski, I.; Misera, A.; Marlicz, W. Heartburn-Related Internet Searches and Trends of Interest across Six Western Countries: A Four-Year Retrospective Analysis Using Google Ads Keyword Planner. Int. J. Environ. Res. Public Health 2019, 16, 4591. [Google Scholar] [CrossRef] [Green Version]
- Kamiński, M.; Łoniewski, I.; Marlicz, W. “Dr. Google, I Am in Pain”—Global Internet Searches Associated with Pain: A Retrospective Analysis of Google Trends Data. Int. J. Environ. Res. Public Health 2020, 17, 954. [Google Scholar] [CrossRef] [Green Version]
- Schuster, B.; Ziehfreund, S.; Biedermann, T.; Zink, A. Psoriasis 2.0: Facebook as a source of disease-related information for patients with psoriasis. J. Dtsch. Dermatol. Ges. 2020, 18, 571–581. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Directorate-General for the Information Society and Media; TNS Political & Social European Citizens’ Digital Health Literacy: Report; European Commission: Brussels, Belgium, 2014; ISBN 978-92-79-43607-9. [Google Scholar]
- Beck, F.; Richard, J.-B.; Nguyen-Thanh, V.; Montagni, I.; Parizot, I.; Renahy, E. Use of the Internet as a Health Information Resource among French Young Adults: Results from a Nationally Representative Survey. J. Med. Internet Res. 2014, 16, e128. [Google Scholar] [CrossRef]
- Karimkhani, C.; Connett, J.; Boyers, L.; Quest, T.; Dellavalle, R.P. Dermatology on Instagram. Dermatol. Online J. 2014, 20, 13030/qt71g178w9. [Google Scholar] [PubMed]
- Patel, R.R.; Yazd, N.K.K.; Dellavalle, R.P. Dermatology on Snapchat. Dermatol. Online J. 2017, 23, 1–2. [Google Scholar]
- Claire, K.M.S.; Rietcheck, H.R.; Patel, R.R.; Dunnick, C.; Dellavalle, R.P. Dermatology on YouTube—An update and analysis of new trends. Dermatol. Online J. 2018, 24, 1–5. [Google Scholar]
- Braunberger, T.; Mounessa, J.; Rudningen, K.; Dunnick, C.A.; Dellavalle, R.P. Global Skin Diseases on Instagram Hashtags. Dermatol. Online J. 2017, 23, 1–4. [Google Scholar]
- Kang, R.; Lipner, S. Assessment of Internet Sources on Subungual Melanoma. Melanoma Res. 2018, 30, 416–419. [Google Scholar] [CrossRef] [PubMed]
- Kang, R.; Lipner, S. Evaluation of Onychomycosis Information on the Internet. J. Drugs Dermatol. 2019, 18, 484–487. [Google Scholar] [PubMed]
- Tizek, L.; Schielein, M.C.; Seifert, F.; Biedermann, T.; Böhner, A.; Zink, A. Skin Diseases Are More Common than We Think: Screening Results of an Unreferred Population at the Munich Oktoberfest. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 1421–1428. [Google Scholar] [CrossRef]
- StatCounter GlobalStats Search Engine Market Worldwide 2019. Available online: https://gs.statcounter.com/search-engine-market-share/all (accessed on 5 October 2019).
- Wongvibulsin, S.; Khanna, R.; Kwatra, S.G. Anatomic Localization and Quantitative Analysis of the Burden of Itch in the United States. J. Am. Acad. Dermatol. 2019, 82, 234–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tizek, L.; Schielein, M.; Rüth, M.; Ständer, S.; Pereira, M.P.; Eberlein, B.; Biedermann, T.; Zink, A. Influence of Climate on Google Internet Searches for Pruritus Across 16 German Cities: Retrospective Analysis. J. Med. Internet Res. 2019, 21, e13739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Q.; Xu, Z.; Dan, Y.-L.; Zhao, C.-N.; Mao, Y.-M.; Liu, L.-N.; Pan, H.-F. Seasonality and Global Public Interest in Psoriasis: An Infodemiology Study. Postgrad. Med. J. 2020, 96, 139–143. [Google Scholar] [CrossRef]
- Bloom, R.; Amber, K.T.; Hu, S.; Kirsner, R. Google Search Trends and Skin Cancer: Evaluating the US Population’s Interest in Skin Cancer and Its Association with Melanoma Outcomes. JAMA Dermatol. 2015, 151, 903. [Google Scholar] [CrossRef] [Green Version]
- Kamiński, M.; Łoniewski, I.; Marlicz, W. Global Internet Data on the Interest in Antibiotics and Probiotics Generated by Google Trends. Antibiotics 2019, 8, 147. [Google Scholar] [CrossRef] [Green Version]
- Kamiński, M.; Skonieczna-Żydecka, K.; Nowak, J.K.; Stachowska, E. Global and Local Diet Popularity Rankings, Their Secular Trends and Seasonal Variation in Google Trends Data. Nutrition 2020, 79, 110759. [Google Scholar] [CrossRef] [PubMed]
- Nuti, S.V.; Wayda, B.; Ranasinghe, I.; Wang, S.; Dreyer, R.P.; Chen, S.I.; Murugiah, K. The Use of Google Trends in Health Care Research: A Systematic Review. PLoS ONE 2014, 9, e109583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soutor, C.; Hordinsky, M.K. Clinical Dermatology, 1st ed.; Soutor, C., Hordinsky, M.K., Eds.; McGraw-Hill Education/Lange Medical Books: New York, NY, USA, 2013; ISBN 978-0-07-176915-0. [Google Scholar]
- McLeod, A.I. Kendall Rank Correlation and Mann-Kendall Trend Test 2011. Available online: https://cran.r-project.org/web/packages/Kendall/Kendall.pdf (accessed on 21 July 2019).
- Hyndman, R. Forecasting Functions for Time Series and Linear Models 2019. Available online: https://cran.r-project.org/web/packages/forecast/forecast.pdf (accessed on 21 July 2019).
- Doolittle, J.; Walker, P.; Mills, T.; Thurston, J. Hyperhidrosis: An Update on Prevalence and Severity in the United States. Arch. Dermatol. Res. 2016, 308, 743–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augustin, M.; Radtke, M.A.; Herberger, K.; Kornek, T.; Heigel, H.; Schaefer, I. Prevalence and Disease Burden of Hyperhidrosis in the Adult Population. Dermatology 2013, 227, 10–13. [Google Scholar] [CrossRef]
- Baran, R.; Maibach, H.I. Textbook of Cosmetic Dermatology, 5th ed.; CRC Press: Oakville, ON, Canada, 2017; ISBN 9781482257342. [Google Scholar]
- Lynn, D.D.; Umari, T.; Dellavalle, R.P.; Dunnick, C.A. The epidemiology of acne vulgaris in late adolescence. Adolesc. Health Med. Ther. 2016, 7, 13–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heng, A.H.S.; Chew, F.T. Systematic review of the epidemiology of acne vulgaris. Sci. Rep. 2020, 10, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Ogbechie-Godec, O.A.; Elbuluk, N. Melasma: An Up-to-Date Comprehensive Review. Dermatol. Ther. 2017, 7, 305–318. [Google Scholar] [CrossRef]
- Nisticò, S.P.; Tolone, M.; Zingoni, T.; Tamburi, F.; Scali, E.; Bennardo, L.; Cannarozzo, G. A New 675 Nm Laser Device in the Treatment of Melasma: Results of a Prospective Observational Study. Photobiomodul. Photomed. Laser Surg. 2020, 38, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Valdes-Rodriguez, R.; Mollanazar, N.; González-Muro, J.; Nattkemper, L.; Torres-Alvarez, B.; López-Esqueda, F.; Chan, Y.; Yosipovitch, G. Itch Prevalence and Characteristics in a Hispanic Geriatric Population: A Comprehensive Study Using a Standardized Itch Questionnaire. Acta Derm. Venereol. 2015, 95, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, S.; Mukhopadhyay, T. Dandruff: The Most Commercially Exploited Skin Disease. Indian J. Dermatol. 2010, 55, 130. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, J.; Yoshida, H.; Ito, S.; Naoe, A.; Fujimura, T.; Kitahara, T.; Takema, Y.; Zerweck, C.; Grove, G.L. Dry Skin in the Winter Is Related to the Ceramide Profile in the Stratum Corneum and Can Be Improved by Treatment with a Eucalyptus Extract. J. Cosmet. Dermatol. 2013, 12, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Engebretsen, K.A.; Johansen, J.D.; Kezic, S.; Linneberg, A.; Thyssen, J.P. The Effect of Environmental Humidity and Temperature on Skin Barrier Function and Dermatitis. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 223–249. [Google Scholar] [CrossRef]
- Fleischer, A.B. Atopic Dermatitis: The Relationship to Temperature and Seasonality in the United States. Int. J. Dermatol. 2019, 58, 465–471. [Google Scholar] [CrossRef]
- Randall, V.A.; Ebling, F.J.G. Seasonal Changes in Human Hair Growth. Br. J. Dermatol. 1991, 124, 146–151. [Google Scholar] [CrossRef]
- Klode, J.; Stoffels, I.; Körber, A.; Weindorf, M.; Dissemond, J. Relationship between the Seasonal Onset of Chronic Venous Leg Ulcers and Climatic Factors: Seasonal Onset of Chronic Venous Leg Ulcers and Climatic Factors. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 1415–1419. [Google Scholar] [CrossRef]
- Hwang, H.H.; Lim, I.S.; Choi, B.-S.; Yi, D.Y. Analysis of Seasonal Tendencies in Pediatric Henoch—Schönlein Purpura and Comparison with Outbreak of Infectious Diseases. Medicine 2018, 97, e12217. [Google Scholar] [CrossRef]
- Furue, M.; Yamazaki, S.; Jimbow, K.; Tsuchida, T.; Amagai, M.; Tanaka, T.; Matsunaga, K.; Muto, M.; Morita, E.; Akiyama, M.; et al. Prevalence of Dermatological Disorders in Japan: A Nationwide, Cross-Sectional, Seasonal, Multicenter, Hospital-Based Study: Prevalence of Dermatological Disorders in Japan. J. Dermatol. 2011, 38, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Pascoe, V.L.; Kimball, A.B. Seasonal Variation of Acne and Psoriasis: A 3-Year Study Using the Physician Global Assessment Severity Scale. J. Am. Acad. Dermatol. 2015, 73, 523–525. [Google Scholar] [CrossRef] [PubMed]
- Park, K.Y.; Jeong, G.J.; Seo, S.J.; Kim, M.N.; Rho, N.-K. Seasonality of Acne Severity in Korean Patients: Data from a Dermatologic Clinic and Military Hospital. J. Eur. Acad. Dermatol. Venereol. 2019, 33, e480–e482. [Google Scholar] [CrossRef] [PubMed]
- Hsiang, E.Y.; Semenov, Y.R.; Aguh, C.; Kwatra, S.G. Seasonality of Hair Loss: A Time Series Analysis of Google Trends Data 2004–2016. Br. J. Dermatol. 2018, 178, 978–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halls, A.; Nunes, D.; Muller, I.; Angier, E.; Grimshaw, K.; Santer, M. Hope You Find Your “Eureka” Moment Soon: A Qualitative Study of Parents/Carers’ Online Discussions around Allergy, Allergy Tests and Eczema. BMJ Open 2018, 8, e022861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riddoch, L.H. It Takes One to Know One: Exploring Patient Dialogue on Rosacea Web-Based Platforms and Their Potential for Significant Harm. J. Dermatol. Treat. 2019, 30, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Freeman, K.; Dinnes, J.; Chuchu, N.; Takwoingi, Y.; Bayliss, S.E.; Matin, R.N.; Jain, A.; Walter, F.M.; Williams, H.C.; Deeks, J.J. Algorithm Based Smartphone Apps to Assess Risk of Skin Cancer in Adults: Systematic Review of Diagnostic Accuracy Studies. BMJ 2020, 368, m127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No | Topic | Proportion of RSV in Comparison to Scar |
---|---|---|
1. | Itch | 2.21 |
2. | Hair loss | 1.56 |
3. | Skin rash | 1.38 |
4. | Perspiration | 1.32 |
5. | Scar | 1.00 |
6. | Wart | 0.85 |
Pustule | ||
7. | Blister | 0.56 |
8. | Hives | 0.54 |
9. | Cellulite | 0.50 |
10. | Stretch marks | 0.47 |
11. | Comedo | 0.46 |
Skin ulcer | 0.46 | |
13. | Nevus | 0.38 |
Nodule | 0.38 | |
15. | Dandruff | 0.37 |
16. | Eczema | 0.43 |
Xeroderma | 0.33 | |
18. | Melanocytic nevus | 0.32 |
19. | Erythema | 0.28 |
20. | Freckle | 0.26 |
21. | Papilloma | 0.22 |
22. | Melasma | 0.18 |
23. | Skin tag | 0.13 |
24. | Papule | 0.09 |
25. | Vesicle | 0.08 |
26. | Hyperpigmentation | 0.07 |
Telangiectasia | 0.07 | |
28 | Liver spot | 0.06 |
Petechia | 0.06 | |
30. | Abrasion | 0.05 |
Pustule | 0.05 | |
32. | Eschar | 0.04 |
33. | Skin fissure | 0.02 |
34. | Café au lait spot | 0.01 |
Topic | Seasonal Mann-Kendall Test | Slope [RSV/Year] | TBATS (Seasonality Present, Period [month]) | Month with the Highest Seasonal Component [RSV] | Month with the Lowest Seasonal Component [RSV] | Seasonal Component Amplitude [RSV] |
---|---|---|---|---|---|---|
Abrasion | tau = 0.70; *** | 2.83; *** | YES, 12 | June (8.87) | December (−8.66) | 17.54 |
Blister | tau = 0.95; *** | 3.37; *** | YES, 12 | July (15.47) | December (−9.52) | 24.99 |
Café au lait spot | tau = 0.20; *** | 0.47; 0.018 | YES, 12 | July (12.32) | November (−8.35) | 20.67 |
Cellulite | tau = 0.45; *** | 1.15; *** | YES, 12 | May (21.61) | December (−22.16) | 43.77 |
Comedo | tau = 0.92; *** | 5.15; *** | YES, 12 | August (3.27) | October (−2.50) | 5.77 |
Dandruff | tau = 0.92; *** | 4.66; *** | YES, 12 | January (9.08) | June (−7.60) | 16.68 |
Eczema | tau = 0.75; *** | 2.50; *** | YES, 12 | May (6.25) | September (−6.69) | 12.94 |
Erythema | tau = 0.73; *** | 1.57; *** | YES, 12 | July (6.40) | December (−8.37) | 14.78 |
Eschar | tau = 0.70; *** | 1.70; *** | YES, 12 | June (1.58) | December (−4.87) | 6.45 |
Freckle | tau = 0.86; *** | 3.36; *** | YES, 12 | June (5.32) | December (−7.75) | 13.07 |
Hair loss | tau = 0.64; *** | 1.34; *** | NO, - | - | - | - |
Hives | tau = 0.70; *** | 2.03; *** | YES, 12 | July (5.33) | December (−6.06) | 11.39 |
Hyperpigmentation | tau = 0.80; *** | 3.39; *** | YES, 12 | June (6.96) | December (−11.05) | 18.02 |
Itch | tau = 0.99; *** | 4.83; *** | YES, 12 | July (5.32) | December (−3.20) | 8.52 |
Liver spot | tau = 0.72; *** | 1.47; *** | YES, 12 | July (16.15) | December (−17.20) | 33.35 |
Melanocytic nevus | tau = 0.80; *** | 2.73; *** | YES, 12 | July (11.93) | December (−12.03) | 23.97 |
Melasma | tau = 0.92; *** | 4.62; *** | YES, 12 | July (6.20) | December (−8.00) | 14.21 |
Nevus | tau = 0.92; *** | 4.17; *** | YES, 12 | July (4.87) | November (−5.02) | 9.89 |
Nodule | tau = 0.94; *** | 3.78; *** | YES, 12 | May (2.31) | December (−5.88) | 8.19 |
Papilloma | tau = 0.73; *** | 2.15; *** | YES, 12 | October (5.69) | December (−12.64) | 18.33 |
Papule | tau = 0.56; *** | 1.09; *** | YES, 12 | July (3.65) | December (−5.75) | 9.40 |
Perspiration | tau = 0.90; *** | 2.85; *** | YES, 12 | July (12.3) | December (−9.71) | 22.01 |
Petechia | tau = 0.76; *** | 2.15; *** | YES, 12 | May (10.59) | December (−9.04) | 19.63 |
Pustule | tau = 0.90; *** | 3.89; *** | YES, 12 | July (6.63) | December (−6.4) | 13.03 |
Scar | tau = 0.92; *** | 3.63; *** | YES, 12 | July (4.26) | December (−5.65) | 9.91 |
Skin fissure | tau = 0.71; *** | 3.46; *** | YES, 12 | December (12.23) | September (−6.85) | 19.07 |
Skin rash | tau = 0.94; *** | 3.34; *** | YES, 12 | July (8.35) | December (−5.57) | 13.92 |
Skin tag | tau = 0.83; *** | 3.94; *** | YES, 12 | August (8.33) | December (−6.14) | 14.47 |
Skin ulcer | tau = 0.86; *** | 3.21; *** | YES, 12 | October (1.77) | January (−2.73) | 4.50 |
Stretch marks | tau = 0.60; *** | 2.52; *** | YES, 12 | July (11.51) | December (−11.74) | 23.24 |
Telangiectasia | tau = 0.54; *** | 0.96; *** | YES, 12 | June (15.05) | December (−15.25) | 30.30 |
Vesicle | tau = 0.52; *** | 1.06; *** | YES, 12 | October (17.25) | July (−14.24) | 31.49 |
Wart | tau = 0.84; *** | 2.42; *** | YES, 12 | July (11.78) | December (−11.09) | 22.87 |
Xeroderma | tau = 0.92; *** | 4.02; *** | YES, 12 | January (10.77) | September (−8.34) | 19.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamiński, M.; Tizek, L.; Zink, A. ‘Dr. Google, What Is That on My Skin?’—Internet Searches Related to Skin Problems: Google Trends Data from 2004 to 2019. Int. J. Environ. Res. Public Health 2021, 18, 2541. https://doi.org/10.3390/ijerph18052541
Kamiński M, Tizek L, Zink A. ‘Dr. Google, What Is That on My Skin?’—Internet Searches Related to Skin Problems: Google Trends Data from 2004 to 2019. International Journal of Environmental Research and Public Health. 2021; 18(5):2541. https://doi.org/10.3390/ijerph18052541
Chicago/Turabian StyleKamiński, Mikołaj, Linda Tizek, and Alexander Zink. 2021. "‘Dr. Google, What Is That on My Skin?’—Internet Searches Related to Skin Problems: Google Trends Data from 2004 to 2019" International Journal of Environmental Research and Public Health 18, no. 5: 2541. https://doi.org/10.3390/ijerph18052541
APA StyleKamiński, M., Tizek, L., & Zink, A. (2021). ‘Dr. Google, What Is That on My Skin?’—Internet Searches Related to Skin Problems: Google Trends Data from 2004 to 2019. International Journal of Environmental Research and Public Health, 18(5), 2541. https://doi.org/10.3390/ijerph18052541