A Study of Optimal Specifications for Light Shelves with Photovoltaic Modules to Improve Indoor Comfort and Save Building Energy
Abstract
:1. Introduction
1.1. The Concept and Research Trends of Light Shelves
1.2. PV Module Concept and Power Generation Principle
1.3. Consideration of Optimal Indoor Illumination and Temperature Standards
2. Materials and Methods
2.1. PV Module Light Shelf Variable Settings for Performance Evaluation
2.2. Performance Evaluation Environment Settings
2.3. Performance Evaluation Method
3. Results and Discussion
3.1. Performance Evaluation Results
3.2. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Arens, E.; Taub, M.; Dickerhoff, D.; Bauman, F.; Fountain, M.; Pasut, W.; Fannon, D.; Zhai, Y.; Pigman, M. Using footwarmers in offices for thermal comfort and energy savings. Energy Build. 2015, 104, 233–243. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Li, N.; Wang, X.; He, M.; He, D. Comfort, Energy Efficiency and Adoption of Personal Cooling Systems in Warm Environments: A Field Experimental Study. Int. J. Environ. Res. Public Health 2017, 14, 1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Energy Agency. Global Status Report for Buildings and Construction 2019. 2020. Available online: https://www.iea.org/reports/global-status-report-for-buildings-and-construction-2019 (accessed on 11 January 2021).
- Department of Energy. 2016 Renewable Energy Data Book. 2016. Available online: https://www.energy.gov/eere/analysis/downloads/2015-renewable-energy-data-book (accessed on 11 January 2021).
- Lee, H.; Seo, J. Performance Evaluation of External Light Shelves by Applying a Prism Sheet. Energies 2020, 13, 4618. [Google Scholar] [CrossRef]
- Lee, H. A Basic Study on the Performance Evaluation of a Movable Light Shelf with a Rolling Reflector That Can Change Reflectivity to Improve the Visual Environment. Int. J. Environ. Res. Public Health 2020, 17, 8338. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Gim, S.-H.; Seo, J.; Kim, Y. Study on movable light-shelf system with location-awareness technology for lighting energy saving. Indoor Built Environ. 2017, 26, 796–812. [Google Scholar] [CrossRef]
- Kim, K.; Lee, H.; Jang, H.; Park, C.; Choi, C. Energy-saving performance of light shelves under the application of user-awareness technology and light-dimming control. Sustain. Cities Soc. 2019, 44, 582–596. [Google Scholar] [CrossRef]
- Peng, C.; Huang, Y.; Wu, Z. Building-integrated photovoltaics (BIPV) in architectural design in China. Energy Build. 2011, 43, 3592–3598. [Google Scholar] [CrossRef]
- Chae, Y.T.; Kim, J.; Park, H.; Shin, B. Building energy performance evaluation of building integrated photovoltaic (BIPV) window with semi-transparent solar cells. Appl. Energy 2014, 129, 217–227. [Google Scholar] [CrossRef]
- Akata, M.A.E.A.; Njomo, D.; Mempouo, B. The effect of building integrated photovoltaic system (Bipvs) on indoor air temperatures and humidity (Iath) in the tropical region of Cameroon. Futur. Cities Environ. 2015, 1, 1. [Google Scholar] [CrossRef]
- Lee, H. Performance evaluation of a light shelf with a solar module based on the solar module attachment area. Build. Environ. 2019, 159, 106161. [Google Scholar] [CrossRef]
- Lee, H.; Jeon, G.; Seo, J.; Kim, Y. Daylighting performance improvement of a light-shelf using diffused reflection. Indoor Built Environ. 2016, 26, 717–726. [Google Scholar] [CrossRef]
- Lee, H.; Kim, K.; Seo, J.; Kim, Y. Effectiveness of a perforated light shelf for energy saving. Energy Build. 2017, 144, 144–151. [Google Scholar] [CrossRef]
- Lee, H.; Jang, H.-I.; Seo, J. A preliminary study on the performance of an awning system with a built-in light shelf. Build. Environ. 2018, 131, 255–263. [Google Scholar] [CrossRef]
- Claros, S.-T.; Soler, A. Indoor daylight climate–influence of light shelf and model reflectance on light shelf performance in Madrid for hours with unit sunshine fraction. Build. Environ. 2002, 37, 587–598. [Google Scholar] [CrossRef]
- Hwang, T.; Kim, J.T.; Chung, Y. Power performance of photovoltaic-integrated lightshelf systems. Indoor Built Environ. 2013, 23, 180–188. [Google Scholar] [CrossRef]
- Lim, Y.-W.; Heng, C. Dynamic internal light shelf for tropical daylighting in high-rise office buildings. Build. Environ. 2016, 106, 155–166. [Google Scholar] [CrossRef]
- Meresi, A. Evaluating daylight performance of light shelves combined with external blinds in south-facing classrooms in Athens, Greece. Energy Build. 2016, 116, 190–205. [Google Scholar] [CrossRef]
- Berardi, U.; Anaraki, H.K. The benefits of light shelves over the daylight illuminance in office buildings in Toronto. Indoor Built Environ. 2016, 27, 244–262. [Google Scholar] [CrossRef]
- Warrier, G.A.; Raphael, B. Performance evaluation of light shelves. Energy Build. 2017, 140, 19–27. [Google Scholar] [CrossRef]
- Lee, H.; Seo, J.; Kim, S. Improvement of light-shelf performance through the use of a diffusion sheet. Build. Environ. 2018, 144, 248–258. [Google Scholar] [CrossRef]
- Mesloub, A.; Ghosh, A. Daylighting Performance of Light Shelf Photovoltaics (LSPV) for Office Buildings in Hot Desert-Like Regions. Appl. Sci. 2020, 10, 7959. [Google Scholar] [CrossRef]
- Yadav, S.; Panda, S. Thermal performance of BIPV system by considering periodic nature of insolation and optimum tilt-angle of PV panel. Renew. Energy 2020, 150, 136–146. [Google Scholar] [CrossRef]
- Goncalves, J.; Van Hooff, T.; Saelens, D. Performance of BIPV modules under different climatic conditions. WEENTECH Proc. Energy 2019, 5, 107–115. [Google Scholar] [CrossRef]
- Dobrzycki, A.; Kurz, D.; Mikulski, S.; Wodnicki, G. Analysis of the Impact of Building Integrated Photovoltaics (BIPV) on Reducing the Demand for Electricity and Heat in Buildings Located in Poland. Energies 2020, 13, 2549. [Google Scholar] [CrossRef]
- Illuminating Engineering Society. The Lighting Handbook, 10th ed.; Illuminating Engineering Society (IES): New York, NY, USA, 2011. [Google Scholar]
- ISZ 9110: 2010. Recommended Levels of Illumination; Japanese Industrial Standards Committee: Tokyo, Japan, 2010. [Google Scholar]
- KSA 3011–2013. Recommended Levels of Illumination; The Korean Standards Association (KSA): Seoul, Korea, 1998. [Google Scholar]
- EN 12464-1: 2002. Light and Lighting—Lighting of Work Places. Part 1: Indoor Work Places; European Committee for Standardization: Brussels, Belgium, 2002. [Google Scholar]
- GB 50034-2013. Standard for Lighting Design of Buildings; China Lighting Standards: Beijing, China, 2014. [Google Scholar]
- ANSI/ASHRAE 55-2013. Thermal Environmental Conditions for Human Occupancy; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2013. [Google Scholar]
- ISO 10211: 2007. Thermal Bridges in Building Construction–Heat Flows and Surface Temperatures–Detailed Calculations; International Organization for Standardization: Geneva, Switzerland, 2007. [Google Scholar]
- Jung, B.K.; Choi, A.S. An Experimental Study of the Optimum Spatial Characteristics and Location of Photosensor for Daylight Responsive Dimming Systems. J. Korean Inst. Illum. Electr. Install. Eng. 2003, 17, 8–14. [Google Scholar] [CrossRef]
- Lee, H.; Choi, C.-H.; Seo, J. Development of a Wall Module Employing Aircap Layers. Energy Build. 2018, 177, 413–422. [Google Scholar] [CrossRef]
- Korea Meteorological Administration. Domestic Climate Data Average Value Data (30 Years). 2020. Available online: https://www.weather.go.kr/weather/climate/average_30years.jsp (accessed on 11 January 2021).
Author (Year) | Factors Considered to Improve Daylighting Performance | Primary Results | Consideration of Thermal Environment during Performance Evaluation | |
---|---|---|---|---|
Light Shelf Variable | Applied Technology | |||
Claros and Soler (2002) [16] | Reflectance | - | Indoor illumination distribution | Not considered |
Hwang et al. (2014) [17] | - | PV module (attached to the front of the light shelf reflector) | Electricity generation | Not considered |
Lin and Heng (2016) [18] | Height, reflector shape | - | Indoor illumination distribution | Not considered |
Meresi (2016) [19] | Width, angle, type | - | Indoor illumination distribution | Not considered |
Lee et al. (2016) [13] | Reflector shape | - | Indoor illumination distribution, lighting energy consumption | Not considered |
Lee et al. (2016) [7] | Angle | Location awareness technology | Indoor illumination distribution, lighting energy consumption | Not considered |
Berardi and Anaraki (2016) [20] | Light shelf installation | Window installation location and area | Indoor illumination distribution | Not considered |
Lee et al. (2017) [14] | Width, angle | Perforated light shelf reflector | Indoor illumination distribution, lighting energy consumption | Not considered |
Warrier and Raphael (2017) [21] | Reflectance (material) | - | Indoor illumination distribution, glare | Not considered |
Lee et al. (2018) [15] | Angle | Awning + light shelf | Indoor illumination distribution, lighting energy consumption | Not considered |
Lee et al. (2018) [22] | Reflectance, angle | Diffusion sheet | Indoor illumination distribution, glare, lighting energy consumption | Not considered |
Kim et al. (2018) [8] | Angle | User awareness technology | Indoor illumination distribution, lighting energy consumption | Not considered |
Lee (2019) [12] | Angle | PV module (adjusting PV attachment area) | Indoor illumination distribution, electricity generation, lighting energy consumption | Not considered |
Mesloub and Ghosh (2020) [23] | Width, type, reflector type | PV module | Indoor illumination distribution, electricity generation | Not considered |
Lee and Seo (2020) [5] | Angle | Prism sheet | Indoor illumination distribution, lighting energy consumption | Not considered |
Lee (2020) [6] | Angle, reflectance | Changing reflectance through rolling technology | Indoor illumination distribution, glare, lighting energy consumption | Not considered |
Illumination Standards (Country) | Task Grade | Scope (lx) | ||
---|---|---|---|---|
Minimum Allowed Illumination | Standard Allowed Illumination | Maximum Allowed Illumination | ||
IES (USA) [27] | General | 500 | 750 | 1000 |
JIS Z 9110 (Japan) [28] | 300 | 500 | 600 | |
KS A 3011 (Republic of Korea) [29] | 300 | 400 | 600 |
Illumination Standards | Specific Purpose | Average Illuminance (lx) |
---|---|---|
EN 12464-1 (Europe) [30] | Writing, typing, reading, data processing | 500 |
CAD workstations | 500 | |
Conference and meeting rooms | 500 | |
GB 50034-2013 (China) [31] | Graphic design | 500 |
High-quality office space | 500 | |
Sales office | 500 |
Standards | Summer (°C) | Winter (°C) |
---|---|---|
ANSI/ASHRAE Standard 55-2013 (USA) [32] | 23.0–26.0 | 20.0–23.5 |
ISO 10211: 2007 (Europe) [33] | 23.0–26.0 | 20.0–24.0 |
Case | Light Shelf Installation | Light Shelf Variables | Ratio of PV Modules Attached to the Light Shelf Reflector (Number of PV Cells) | |||
---|---|---|---|---|---|---|
Width | Height | Angle | Reflectance | |||
1 | × | - | - | - | - | - |
2 | O | 0.52 m | Installed 1.8 m from the floor | 10° increments, from −70° to 30° | 85% (Specular reflection film) | 0% (0) |
3 | 33.3% (12) | |||||
4 | 66.9% (24) | |||||
5 | 100% (36) |
Type | Size (mm) | Power | Efficiency | Grade |
---|---|---|---|---|
Poly cell | 156 × 156 | 4.43 W | 18.2% | A |
Room Size, Wall Material, and Reflexibility | |
---|---|
Size | 4.9 m (W) × 6.6 m (D) × 2.5 m (H) |
Wall material | Insulation panel (Thk 100 mm) |
Reflexibility | Ceiling 86%, wall 46%, floor 25% |
Window size and material | |
Size | 1.9 m (W) × 1.7 m (H) |
Type | Double glazed 12 mm (3 CL + 6 A + 3 CL) |
Thermal transmittance | 2.83 W/m2·K (Summer), 2.69 W/m2·K (Winter) |
Transmissivity | 80% |
Lighting | |
Type | Eight-level dimming (LED type), four units |
Dimensions (mm) | 600 × 600 |
Dimming range | 10%–100% |
Energy consumption for phased light dimming | Dimming levels 1, 2, 3, 4, 5, 6, 7, and 8 are 12.3 kWh, 18.3 kWh, 22.0 kWh, 27.7 kWh, 34.0 kWh, 38.5 kWh, 42.6 kWh, and 50.8 kWh, respectively. |
Air conditioner | |
Model | AP-SM302 (EHP: Electric Heat Pump) |
Capacity | Heating: 13,200 W; Cooling: 11,000 W |
Energy consumption | Heating: 3.90 kW; Cooling: 3.90 kW |
COP | Heating: 3.38; Cooling: 2.82 |
Illuminance sensor | |
Sensing element | Silicon photo sensor, with filter |
Detection range | 0–200,000 lx |
Precision | ±3% |
Temperature sensor | |
Sensing element | NTC (Negative temperature coefficient thermistor) 10 kΩ: AN Type |
Detection range | −40–90 °C |
Precision | ±0.3 °C |
Artificial solar Light Radiation Apparatus | |
Precision of solar light radiation | Grade-A (According to ASTM E927-85) |
Range of illumination | 0–80,000 lx |
Directions | South aspect |
Energy monitoring system | |
Model | SPM-141 |
Measurement capacity | Single phase (220 V, 1–50 A) |
Measurement items | Power/voltage/current, real-time, and accumulated amount |
Error rate | Within 2.0% |
Season | Time | |||||
---|---|---|---|---|---|---|
10:00–11:00 | 11:00–12:00 | 12:00–13:00 | 13:00–14:00 | 14:00–15:00 | ||
Summer | Illuminance | 70,000 lx | 80,000 lx | 70,000 lx | ||
Solar irradiation | 429 W/m2 | 503 W/m2 | 429 W/m2 | |||
Solar altitude | 76.5° | |||||
Temperature | 35 °C | |||||
Middle Season | Illuminance | 50,000 lx | 60,000 lx | 50,000 lx | ||
Solar irradiation | 375 W/m2 | 359 W/m2 | 376 W/m2 | |||
Solar altitude | 52.5° | |||||
Temperature | 21.2 °C | |||||
Winter | Illuminance | 20,000 lx | 30,000 lx | 20,000 lx | ||
Solar irradiation | 283 W/m2 | 340 W/m2 | 283 W/m2 | |||
Solar altitude | 29.5° | |||||
Temperature | −11.3 °C |
Equipment Name | Measurement Item (Measurement Capacity) | Error Rate |
---|---|---|
MULLER 3201 | DC voltage (~6.000–1000 V), DC current (~6.000–10.00 A) | ±0.5% + 3 |
Case | Light Shelf Angle | Summer (External Illuminance: 80,000 lx) | Middle season (External Illuminance: 60,000 lx) | Winter (External Illuminance: 30,000 lx) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Illuminance Sensor (lx) | Uniformity Ratio | Illuminance Sensor (lx) | Uniformity Ratio | Illuminance Sensor (lx) | Uniformity Ratio | |||||
Min. | Ave. | Min. | Ave. | Min. | Ave. | |||||
1 | Not installed | 44.1 | 432.7 | 0.102 | 136.9 | 517.4 | 0.264 | 289.3 | 5552.1 | 0.052 |
2 | −70 | 38.8 | 340.0 | 0.114 | 64.5 | 351.9 | 0.183 | 111.7 | 2678.9 | 0.042 |
−60 | 40.4 | 343.5 | 0.118 | 66.9 | 353.4 | 0.189 | 124.8 | 2947.3 | 0.042 | |
−50 | 46.6 | 351.2 | 0.133 | 70.2 | 355.3 | 0.198 | 145.5 | 3408.1 | 0.043 | |
−40 | 54.4 | 359.8 | 0.151 | 76.3 | 358.1 | 0.213 | 193.3 | 4032.1 | 0.048 | |
−30 | 61.0 | 365.9 | 0.167 | 99.5 | 362.8 | 0.274 | 230.5 | 4678.3 | 0.049 | |
−20 | 68.2 | 376.5 | 0.181 | 123.8 | 368.3 | 0.336 | 245.1 | 4871.4 | 0.050 | |
−10 | 76.1 | 391.0 | 0.195 | 132.3 | 371.2 | 0.356 | 259.1 | 4987.4 | 0.052 | |
0 | 81.9 | 400.5 | 0.204 | 139.2 | 382.2 | 0.364 | 270.0 | 5089.2 | 0.053 | |
10 | 85.3 | 410.2 | 0.208 | 146.3 | 391.2 | 0.374 | 284.3 | 5187.6 | 0.055 | |
20 | 92.2 | 418.5 | 0.220 | 156.2 | 401.2 | 0.389 | 287.1 | 5452.0 | 0.053 | |
30 | 108.6 | 425.3 | 0.255 | 165.7 | 513.4 | 0.323 | 268.3 | 5181.9 | 0.052 | |
3 | −70 | 36.8 | 326.4 | 0.113 | 62.4 | 337.8 | 0.185 | 108.0 | 2639.0 | 0.041 |
−60 | 37.6 | 329.8 | 0.114 | 64.7 | 339.3 | 0.191 | 120.6 | 2844.1 | 0.042 | |
−50 | 41.3 | 337.2 | 0.122 | 67.9 | 341.1 | 0.199 | 139.2 | 3271.8 | 0.043 | |
−40 | 47.1 | 345.4 | 0.136 | 73.8 | 343.8 | 0.215 | 167.6 | 3870.8 | 0.043 | |
−30 | 52.9 | 351.3 | 0.151 | 86.2 | 348.3 | 0.248 | 199.8 | 4491.1 | 0.044 | |
−20 | 59.1 | 361.4 | 0.164 | 107.3 | 353.6 | 0.303 | 212.4 | 4676.6 | 0.045 | |
−10 | 66.0 | 375.4 | 0.176 | 114.7 | 356.4 | 0.322 | 224.6 | 4787.9 | 0.047 | |
0 | 71.0 | 384.5 | 0.185 | 120.6 | 366.9 | 0.329 | 234.0 | 4885.6 | 0.048 | |
10 | 73.9 | 393.8 | 0.188 | 126.8 | 375.6 | 0.338 | 246.4 | 4928.3 | 0.050 | |
20 | 79.9 | 401.8 | 0.199 | 135.4 | 385.2 | 0.351 | 261.4 | 5288.5 | 0.049 | |
30 | 91.5 | 406.5 | 0.225 | 143.6 | 492.9 | 0.291 | 246.0 | 4974.1 | 0.049 | |
4 | −70 | 35.3 | 319.6 | 0.110 | 60.4 | 330.8 | 0.183 | 104.7 | 2531.3 | 0.041 |
−60 | 35.6 | 322.9 | 0.110 | 62.7 | 332.2 | 0.189 | 116.9 | 2770.5 | 0.042 | |
−50 | 38.0 | 330.1 | 0.115 | 65.8 | 334.0 | 0.197 | 134.9 | 3203.6 | 0.042 | |
−40 | 41.0 | 338.2 | 0.121 | 71.5 | 336.6 | 0.212 | 163.1 | 3749.8 | 0.043 | |
−30 | 46.0 | 343.9 | 0.134 | 75.0 | 341.0 | 0.220 | 194.4 | 4350.8 | 0.045 | |
−20 | 49.1 | 353.9 | 0.139 | 89.1 | 346.2 | 0.257 | 205.3 | 4481.7 | 0.046 | |
−10 | 54.8 | 367.5 | 0.149 | 95.3 | 348.9 | 0.273 | 217.1 | 4688.1 | 0.046 | |
0 | 60.1 | 376.5 | 0.160 | 102.1 | 359.3 | 0.284 | 226.2 | 4783.8 | 0.047 | |
10 | 64.1 | 385.6 | 0.166 | 109.9 | 367.7 | 0.299 | 234.0 | 4800.2 | 0.049 | |
20 | 69.3 | 393.4 | 0.176 | 117.3 | 377.1 | 0.311 | 252.7 | 5124.9 | 0.049 | |
30 | 79.3 | 395.1 | 0.201 | 124.5 | 482.6 | 0.258 | 233.7 | 4871.0 | 0.048 | |
5 | −70 | 34.8 | 316.2 | 0.110 | 59.3 | 327.3 | 0.181 | 104.1 | 2517.9 | 0.041 |
−60 | 35.2 | 320.3 | 0.110 | 63.0 | 335.7 | 0.188 | 112.3 | 2741.0 | 0.041 | |
−50 | 37.8 | 333.6 | 0.113 | 64.2 | 337.5 | 0.190 | 127.4 | 3067.3 | 0.042 | |
−40 | 39.8 | 341.8 | 0.116 | 67.5 | 340.2 | 0.198 | 153.8 | 3628.9 | 0.042 | |
−30 | 42.1 | 347.6 | 0.121 | 68.7 | 344.7 | 0.199 | 178.9 | 4163.7 | 0.043 | |
−20 | 47.1 | 357.7 | 0.132 | 85.4 | 349.9 | 0.244 | 188.9 | 4286.9 | 0.044 | |
−10 | 50.4 | 371.5 | 0.136 | 87.6 | 352.6 | 0.249 | 199.7 | 4488.7 | 0.044 | |
0 | 55.3 | 368.5 | 0.150 | 93.9 | 351.6 | 0.267 | 208.1 | 4580.2 | 0.045 | |
10 | 58.9 | 377.4 | 0.156 | 101.1 | 359.9 | 0.281 | 215.3 | 4722.9 | 0.046 | |
20 | 63.7 | 385.0 | 0.165 | 107.9 | 369.1 | 0.292 | 232.5 | 5015.9 | 0.046 | |
30 | 73.0 | 386.7 | 0.189 | 114.5 | 472.3 | 0.242 | 215.0 | 4767.3 | 0.045 |
Season | External Illuminance (lx) | Lighting Dimming Control: Light Number (Dimming Level) | Consumption of Lighting Energy (kWh) |
---|---|---|---|
Summer | 80,000 | 1(8) + 3(8) + 2(5) | 0.712 |
70,000 | 1(8) + 3(8) + 2(8) | ||
Middle Season | 60,000 | 1(8) + 3(4) | 0.411 |
50,000 | 1(8) + 3(5) | ||
Winter | 30,000 | 1(2) | 0.123 |
20,000 | 1(5) |
Case | Optimal Light Shelf Angle | Lighting Energy Consumption (kWh) | Power Generated by PV Module (kWh) | Total Energy Consumption (kWh) | Energy-Saving Ratio Compared to No Light Shelf |
---|---|---|---|---|---|
A | B | ∑ A − B | |||
2 | 30 | 0.471 | 0 | 0.471 | 33.8% reduction |
3 | 20 | 0.618 | 0.110 | 0.508 | 28.7% reduction |
4 | −10 | 0.737 | 0.318 | 0.419 | 41.2% reduction |
5 | −10 | 0.896 | 0.473 | 0.423 | 40.6% reduction |
Case | Optimal Light Shelf Angle | Lighting Energy Consumption (kWh) | Power Generated by PV Module (kWh) | Total Energy Consumption (kWh) | Energy-Saving Ratio Compared to No Light Shelf |
---|---|---|---|---|---|
A | B | ∑ A − B | |||
2 | 20 | 0.335 | 0 | 0.335 | 18.5% reduction |
3 | 20 | 0.411 | 0.067 | 0.344 | 16.3% reduction |
4 | 20 | 0.492 | 0.129 | 0.363 | 11.7% reduction |
5 | −30 | 0.704 | 0.508 | 0.196 | 52.3% reduction |
Case | Optimal Light Shelf Angle | Lighting Energy Consumption (kWh) | Power Generated by PV Module (kWh) | Total Energy Consumption (kWh) | Energy-Saving Ratio Compared to No Light Shelf |
---|---|---|---|---|---|
A | B | ∑ A − B | |||
2 | 10 | 0.134 | 0 | 0.134 | 8.9% increase |
3 | 10 | 0.134 | 0.007 | 0.127 | 3.3% increase |
4 | 10 | 0.134 | 0.004 | 0.130 | 5.7% increase |
5 | 10 | 0.160 | 0.006 | 0.154 | 25.2% increase |
Case | Light Shelf Angle | Summer | Winter | ||||||
---|---|---|---|---|---|---|---|---|---|
L.C. (kWh) | P.G. (kWh) | C.C. (kWh) | T.C. (kWh) | L.C. (kWh) | P.G. (kWh) | C.C. (kWh) | T.C. (kWh) | ||
A | B | C | ∑ A + B − C | A | B | C | ∑ A + B − C | ||
1 | Not installed | 0.712 | 0 | 1.840 | 2.552 | 0.123 | 0 | 3.521 | 3.644 |
2 | −70 | 0.872 | 0 | 1.656 | 2.528 | 0.589 | 0 | 4.492 | 5.081 |
−60 | 0.843 | 0 | 1.653 | 2.496 | 0.589 | 0 | 4.485 | 5.074 | |
−50 | 0.799 | 0 | 1.650 | 2.449 | 0.589 | 0 | 4.461 | 5.050 | |
−40 | 0.762 | 0 | 1.654 | 2.416 | 0.364 | 0 | 4.404 | 4.768 | |
−30 | 0.712 | 0 | 1.658 | 2.370 | 0.291 | 0 | 4.320 | 4.611 | |
−20 | 0.712 | 0 | 1.663 | 2.375 | 0.160 | 0 | 4.211 | 4.371 | |
−10 | 0.695 | 0 | 1.668 | 2.363 | 0.160 | 0 | 4.084 | 4.244 | |
0 | 0.642 | 0 | 1.674 | 2.316 | 0.134 | 0 | 3.936 | 4.070 | |
10 | 0.545 | 0 | 1.678 | 2.223 | 0.134 | 0 | 3.778 | 3.912 | |
20 | 0.508 | 0 | 1.701 | 2.209 | 0.123 | 0 | 3.612 | 3.735 | |
30 | 0.471 | 0 | 1.709 | 2.180 | 0.134 | - | 3.590 | 3.724 | |
3 | −70 | 0.896 | 0.033 | 1.694 | 2.557 | 0.589 | 0.030 | 4.512 | 5.071 |
−60 | 0.854 | 0.067 | 1.701 | 2.488 | 0.589 | 0.032 | 4.507 | 5.064 | |
−50 | 0.843 | 0.097 | 1.703 | 2.449 | 0.589 | 0.029 | 4.482 | 5.042 | |
−40 | 0.799 | 0.116 | 1.723 | 2.406 | 0.545 | 0.027 | 4.422 | 4.940 | |
−30 | 0.750 | 0.133 | 1.750 | 2.367 | 0.335 | 0.023 | 4.335 | 4.647 | |
−20 | 0.712 | 0.148 | 1.768 | 2.332 | 0.254 | 0.019 | 4.223 | 4.458 | |
−10 | 0.695 | 0.161 | 1.780 | 2.314 | 0.160 | 0.013 | 4.094 | 4.241 | |
0 | 0.668 | 0.145 | 1.778 | 2.301 | 0.134 | 0.007 | 3.944 | 4.071 | |
10 | 0.642 | 0.128 | 1.770 | 2.284 | 0.134 | 0.002 | 3.784 | 3.916 | |
20 | 0.618 | 0.110 | 1.768 | 2.276 | 0.134 | 0.001 | 3.615 | 3.748 | |
30 | 0.618 | 0.092 | 1.761 | 2.287 | 0.134 | - | 3.591 | 3.725 | |
4 | −70 | 0.896 | 0.065 | 1.766 | 2.597 | 0.589 | 0.059 | 4.532 | 5.062 |
−60 | 0.872 | 0.133 | 1.773 | 2.512 | 0.589 | 0.062 | 4.529 | 5.056 | |
−50 | 0.843 | 0.192 | 1.775 | 2.426 | 0.589 | 0.057 | 4.502 | 5.034 | |
−40 | 0.806 | 0.229 | 1.795 | 2.372 | 0.589 | 0.053 | 4.440 | 4.976 | |
−30 | 0.799 | 0.264 | 1.824 | 2.359 | 0.441 | 0.045 | 4.350 | 4.746 | |
−20 | 0.762 | 0.293 | 1.842 | 2.311 | 0.335 | 0.037 | 4.235 | 4.533 | |
−10 | 0.695 | 0.318 | 1.855 | 2.232 | 0.291 | 0.025 | 4.103 | 4.369 | |
0 | 0.695 | 0.286 | 1.853 | 2.262 | 0.160 | 0.014 | 3.952 | 4.098 | |
10 | 0.668 | 0.254 | 1.844 | 2.258 | 0.134 | 0.004 | 3.790 | 3.920 | |
20 | 0.668 | 0.217 | 1.843 | 2.294 | 0.134 | 0.002 | 3.618 | 3.750 | |
30 | 0.642 | 0.182 | 1.835 | 2.295 | 0.134 | - | 3.592 | 3.726 | |
5 | −70 | 0.896 | 0.098 | 1.838 | 2.636 | 0.589 | 0.089 | 4.552 | 5.052 |
−60 | 0.896 | 0.197 | 1.846 | 2.545 | 0.589 | 0.095 | 4.551 | 5.045 | |
−50 | 0.896 | 0.285 | 1.848 | 2.459 | 0.589 | 0.086 | 4.522 | 5.025 | |
−40 | 0.896 | 0.340 | 1.869 | 2.425 | 0.589 | 0.080 | 4.457 | 4.966 | |
−30 | 0.896 | 0.393 | 1.899 | 2.402 | 0.589 | 0.068 | 4.365 | 4.886 | |
−20 | 0.896 | 0.435 | 1.918 | 2.379 | 0.545 | 0.056 | 4.247 | 4.736 | |
−10 | 0.896 | 0.473 | 1.931 | 2.354 | 0.364 | 0.039 | 4.113 | 4.438 | |
0 | 0.896 | 0.425 | 1.929 | 2.400 | 0.187 | 0.021 | 3.960 | 4.126 | |
10 | 0.872 | 0.377 | 1.920 | 2.415 | 0.160 | 0.006 | 3.795 | 3.949 | |
20 | 0.843 | 0.322 | 1.918 | 2.439 | 0.134 | 0.003 | 3.621 | 3.752 | |
30 | 0.843 | 0.270 | 1.910 | 2.483 | 0.134 | - | 3.593 | 3.727 |
Case | Season | PV Module Light Shelf without Considering Heating and Cooling Energy | PV Module Light Shelf Considering Heating and Cooling Energy | ||||
---|---|---|---|---|---|---|---|
Optimal Angle | E.C. (kWh) | Total Energy Consumption (kWh) | Optimal Angle | E.C. (kWh) | Total Energy Consumption (kWh) | ||
2 | Summer | 30 | 0.471 | 0.940 | 30 | 2.180 | 6.427 |
Middle season | 20 | 0.335 | 20 | 0.335 | |||
Winter | 10 | 0.134 | 10 | 3.912 | |||
3 | Summer | 20 | 0.508 | 0.978 | 20 | 2.276 | 6.536 |
Middle season | 20 | 0.344 | 20 | 0.344 | |||
Winter | 0 | 0.127 | 10 | 3.916 | |||
4 | Summer | −10 | 0.377 | 0.870 | −10 | 2.232 | 6.515 |
Middle season | 20 | 0.363 | 20 | 0.363 | |||
Winter | 10 | 0.130 | 10 | 3.920 | |||
5 | Summer | −10 | 0.423 | 0.773 | −10 | 2.354 | 6.499 |
Middle season | −30 | 0.196 | −30 | 0.196 | |||
Winter | 10 | 0.154 | 10 | 3.949 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Zhao, X.; Seo, J. A Study of Optimal Specifications for Light Shelves with Photovoltaic Modules to Improve Indoor Comfort and Save Building Energy. Int. J. Environ. Res. Public Health 2021, 18, 2574. https://doi.org/10.3390/ijerph18052574
Lee H, Zhao X, Seo J. A Study of Optimal Specifications for Light Shelves with Photovoltaic Modules to Improve Indoor Comfort and Save Building Energy. International Journal of Environmental Research and Public Health. 2021; 18(5):2574. https://doi.org/10.3390/ijerph18052574
Chicago/Turabian StyleLee, Heangwoo, Xiaolong Zhao, and Janghoo Seo. 2021. "A Study of Optimal Specifications for Light Shelves with Photovoltaic Modules to Improve Indoor Comfort and Save Building Energy" International Journal of Environmental Research and Public Health 18, no. 5: 2574. https://doi.org/10.3390/ijerph18052574
APA StyleLee, H., Zhao, X., & Seo, J. (2021). A Study of Optimal Specifications for Light Shelves with Photovoltaic Modules to Improve Indoor Comfort and Save Building Energy. International Journal of Environmental Research and Public Health, 18(5), 2574. https://doi.org/10.3390/ijerph18052574