Evaluating the Inequality of Medical Service Accessibility Using Smart Card Data
Abstract
:1. Introduction
2. Literature Review
3. Study Area and Data Processing
3.1. Study Area and Spatial Unit
3.2. Datasets and Data Processing
3.2.1. Hospitals Service Data
3.2.2. SCD
3.2.3. Population and Housing Price Data
4. Methodology
4.1. Measuring Medical Accessibility Based on Transport Mode
4.2. Spatial Autocorrelation
4.3. Spatial Durbin Model
5. Results and Discussion
5.1. Attenuation Parameter Results of Travel Time and Euclidean Distance
5.2. Spatiotemporal Medical Service Accessibility
5.3. Inequality Evaluation of Medical Service Accessibility
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, C.; He, Q.; Liu, Y.; Chen, W.; Gao, Y. Inequality of public health and its role in spatial accessibility to medical facilities in China. Appl. Geogr. 2018, 92, 50–62. [Google Scholar] [CrossRef]
- Luo, W.; Qi, Y. An enhanced two-step floating catchment area (E2SFCA) method for measuring spatial accessibility to primary care physicians. Health Place 2009, 15, 1100–1107. [Google Scholar] [CrossRef]
- Cheng, G.; Zeng, X.; Duan, L.; Lu, X.; Sun, H.; Jiang, T.; Li, Y. Spatial difference analysis for accessibility to high level hospitals based on travel time in Shenzhen, China. Habitat Int. 2016, 53, 485–494. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Du, F.; Huang, J.; Liu, Y. Access to hospitals: Potential vs. observed. Cities 2020, 100, 102671. [Google Scholar] [CrossRef]
- Wang, F. Quantitative Methods and Applications in GIS; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- García-Albertos, P.; Picornell, M.; Salas-Olmedo, M.H.; Gutiérrez, J. Exploring the potential of mobile phone records and online route planners for dynamic accessibility analysis. Transp. Res. Part A Policy Pract. 2019, 125, 294–307. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, T.; Wang, H.; Zeng, Z. Dynamic accessibility mapping using floating car data: A network-constrained density estimation approach. J. Transp. Geogr. 2011, 19, 379–393. [Google Scholar] [CrossRef]
- Gould, P.R. Spatial Diffusion, Resource Paper No. 4; ERIC: Washington, DC, USA, 1969. [Google Scholar]
- Hansen, W.G. How Accessibility Shapes Land Use. J. Am. Inst. Plan. 1959, 25, 73–76. [Google Scholar] [CrossRef]
- Weibull, J.W. An axiomatic approach to the measurement of accessibility. Reg. Sci. Urban Econ. 1976, 6, 357–379. [Google Scholar] [CrossRef]
- Luo, J.; Chen, G.; Li, C.; Xia, B.; Sun, X.; Chen, S. Use of an E2SFCA Method to Measure and Analyse Spatial Accessibility to Medical Services for Elderly People in Wuhan, China. Int. J. Environ. Res. Public Health 2018, 15, 1503. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Wang, F. Spatial accessibility to primary care and physician shortage area designation: A case study in Illinois with GIS approaches. In Geographic Information Systems and Health Applications; IGI Global: Hershey, PA, USA, 2003; pp. 261–279. [Google Scholar]
- Luo, W.; Wang, F. Measures of Spatial Accessibility to Health Care in a GIS Environment: Synthesis and a Case Study in the Chicago Region. Environ. Plan. B Plan. Des. 2003, 30, 865–884. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Whippo, T. Variable catchment sizes for the two-step floating catchment area (2SFCA) method. Health Place 2012, 18, 789–795. [Google Scholar] [CrossRef]
- Cheng, M.; Lian, Y. Spatial accessibility of urban medical facilities based on improved potential model: A case study of Yangpu District in Shanghai. Prog. Geogr. 2018, 2. Available online: https://en.cnki.com.cn/Article_en/CJFDTotal-DLKJ201802010.htm (accessed on 28 February 2021).
- Salze, P.; Banos, A.; Oppert, J.M.; Charreire, H.; Casey, R.; Simon, C.; Chaix, B.; Badariotti, D.; Weber, C. Estimating spatial accessibility to facilities on the regional scale: An extended commuting-based interac-tion potential model. Int. J. Health Geogr. 2011, 10, 2. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Zhang, Y.; Sun, X. Definition of the Radiation Scope of the Logistics Park Based on Applying the Road Accessibility Analysis to a Potential Model. ICTE 2015 2015, 875–882. [Google Scholar] [CrossRef]
- Mao, L.; Nekorchuk, D. Measuring spatial accessibility to healthcare for populations with multiple transpor-tation modes. Health Place 2013, 24, 115–122. [Google Scholar] [CrossRef]
- Dony, C.C.; Delmelle, E.M.; Delmelle, E.C. Re-conceptualizing accessibility to parks in multi-modal cities: A Variable-width Floating Catchment Area (VFCA) method. Landsc. Urban Plan. 2015, 143, 90–99. [Google Scholar] [CrossRef]
- Wang, H.; Kwan, M.-P.; Hu, M. Social exclusion and accessibility among low- and non-low-income groups: A case study of Nanjing, China. Cities 2020, 101, 102684. [Google Scholar] [CrossRef]
- Mavoa, S.; Witten, K.; McCreanor, T.; O’Sullivan, D. GIS based destination accessibility via public transit and walking in Auckland, New Zealand. J. Transp. Geogr. 2012, 20, 15–22. [Google Scholar] [CrossRef]
- Kawakami, N.; Winkleby, M.; Skog, L.; Szulkin, R.; Sundquist, K. Differences in neighborhood accessibility to health-related resources: A nationwide comparison between deprived and affluent neighborhoods in Sweden. Health Place 2011, 17, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.H.; Shen, Y. Spatial difference of medical facility accessibility and influencing factors: A comparative study of registered and floating populations in Shanghai. Prog. Geogr. 2018, 37, 1075–1085. [Google Scholar]
- Guo, Y.; Chang, S.S.; Chen, M.; Yip, P.S. Do poorer areas have poorer access to services in Hong Kong? A small-area analysis based on multi-ple spatial accessibility indicators. Soc. Indicat. Res. 2018, 138, 1–21. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, S.; Qi, W. Spatial Differentiation and Influencing Mechanism of Medical Care Accessibility in Beijing: A Migrant Equality Perspective. Chin. Geogr. Sci. 2018, 28, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Anselin, L. Spatial Econometrics: Methods and Models; Springer: Berlin/Heidelberg, Germany, 2013; Volume 4. [Google Scholar]
- Wang, J.; Kwan, M.-P. Hexagon-Based Adaptive Crystal Growth Voronoi Diagrams Based on Weighted Planes for Service Area Delimitation. ISPRS Int. J. Geo-Inf. 2018, 7, 257. [Google Scholar] [CrossRef] [Green Version]
- Comber, A.; Brunsdon, C.; Green, E. Using a GIS-based network analysis to determine urban green-space accessibility for different ethnic and religious groups. Landsc. Urban Plan. 2008, 86, 103–114. [Google Scholar] [CrossRef] [Green Version]
- China Statiscal Yearbook in 2017. Available online: http://www.stats.gov.cn/tjsj/ndsj/2017/indexeh.htm (accessed on 7 March 2021).
- Beijing Municipal Health Commission in 2016. Available online: http://wjw.beijing.gov.cn/sy_20013/ (accessed on 7 March 2021).
- Li, X.; Huang, J.; Zhang, H. An analysis of hospital preparedness capacity for public health emergency in four regions of China: Beijing, Shandong, Guangxi, and Hainan. BMC Public Health 2008, 8, 319. [Google Scholar] [CrossRef] [Green Version]
- Hare, T.S.; Barcus, H.R. Geographical accessibility and Kentucky’s heart-related hospital services. Appl. Geogr. 2007, 27, 181–205. [Google Scholar] [CrossRef]
- Zhang, W.; Deng, Z.; Evans, R.; Xiang, F.; Ye, Q.; Zeng, R. Social Media Landscape of the Tertiary Referral Hospitals in China: Observational Descriptive Study. J. Med. Internet Res. 2018, 20, e249. [Google Scholar] [CrossRef]
- Higgs, G.; Gould, M. Is there a role for GIS in the ‘new NHS’? Health Place 2001, 7, 247–259. [Google Scholar] [CrossRef]
- Beijing Transportation Development & Research Center Annual Report in 2017. Available online: http://www.bjtrc.org.cn/ (accessed on 7 March 2021).
- Kong, X.; Liu, Y.; Wang, Y.; Tong, D.; Zhang, J. Investigating Public Facility Characteristics from a Spatial Interaction Perspective: A Case Study of Beijing Hospitals Using Taxi Data. ISPRS Int. J. Geo-Inf. 2017, 6, 38. [Google Scholar] [CrossRef]
- Guagliardo, M.F. Spatial accessibility of primary care: Concepts, methods and challenges. Int. J. Health Geogr. 2004, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234. [Google Scholar] [CrossRef]
- Moran, P.A.P. The Interpretation of Statistical Maps. J. R. Stat. Soc. Ser. B (Methodol.) 1948, 10, 243–251. [Google Scholar] [CrossRef]
- Altman, E.I. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. J. Financ. 1968, 23, 589–609. [Google Scholar] [CrossRef]
- Arbia, G. A Primer for Spatial Econometrics: With Applications in R; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Anselin, L. Local Indicators of Spatial Association-LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Rivas, R.; Patil, D.; Hristidis, V.; Barr, J.R.; Srinivasan, N. The impact of colleges and hospitals to local real estate markets. J. Big Data 2019, 6, 7. [Google Scholar] [CrossRef]
- Paelinck, J.H.P.; Klaassen, L.H. Spatial Econometrics. Saxon House Farnborough; Kiel Institute for World Economics: Kiel, Germany, 1979. [Google Scholar]
- Qiang, W.; Lee, H.F.; Lin, Z.; Wong, D.W. Revisiting the impact of vehicle emissions and other contributors to air pollution in urban built-up areas: A dynamic spatial econometric analysis. Sci. Total Environ. 2020, 740, 140098. [Google Scholar] [CrossRef]
- Debarsy, N.; Ertur, C.; Lesage, J.P. Interpreting dynamic space–time panel data models. Stat. Methodol. 2012, 9, 158–171. [Google Scholar] [CrossRef] [Green Version]
- Elhorst, J.P. Applied Spatial Econometrics: Raising the Bar. Spat. Econ. Anal. 2010, 5, 9–28. [Google Scholar] [CrossRef]
- Elhorst, J.P. Specification and Estimation of Spatial Panel Data Models. Int. Reg. Sci. Rev. 2003, 26, 244–268. [Google Scholar] [CrossRef]
- Lin, G.C. The Redevelopment of China’s Construction Land: Practising Land Property Rights in Cities through Renewals. China Q. 2015, 224, 865–887. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, P.; Yue, W.; Song, Y. Impacts of land finance on urban sprawl in China: The case of Chongqing. Land Use Policy 2018, 72, 420–432. [Google Scholar] [CrossRef]
Column Name | Meaning | Data Format |
---|---|---|
LINE_CODE | Bus/subway line number | 1 |
ON_LON | Longitude of boarding station | 116.225941 |
ON_LAT | Latitude of boarding station | 39.915451 |
OFF_LON | Longitude of alighting station | 116.231219 |
OFF_LAT | Latitude of alighting station | 39.906253 |
ON_TIME | Boarding time | 12 April 2016 0630 |
OFF_TIME | Alighting time | 12 April 2016 0800 |
COST_TIME | Travel cost | 99 |
NUM | Number of people traveling | 3 |
Time Period | Accessibility | Z-Score | p-Value |
---|---|---|---|
Overall | 0.187 | 13.4147 | 0.01 ** |
Weekday morning peak | 0.136 | 14.3514 | 0.01 ** |
Weekday off-peak | 0.096 | 5.9416 | 0.02 * |
Weekday evening peak | 0.135 | 15.6096 | 0.01 ** |
Weekend morning peak | 0.191 | 17.9121 | 0.01 ** |
Weekend off-peak | 0.136 | 13.2672 | 0.01 ** |
Weekend evening peak | 0.135 | 17.3546 | 0.01 ** |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) |
---|---|---|---|---|---|---|---|
A | WDMPA | WDOPA | WDEPA | WEMPA | WEOPA | WEEPA | |
ln(house price) | −0.006 * (0.003) | −0.039 *** (0.012) | −0.018 ** (0.009) | −0.024 ** (0.010) | −0.073 *** (0.022) | −0.037 *** (0.014) | −0.051 ** (0.020) |
W × ln(house price) | −0.009 *** (0.001) | −0.067 *** (0.004) | −0.026 *** (0.008) | −0.038 *** (0.004) | −0.121 *** (0.010) | −0.055 *** (0.005) | −0.063 *** (0.006) |
Constant | 0.09 *** (0.035) | 0.675 *** (0.123) | 0.265 *** (0.093) | 0.374 *** (0.104) | 1.189 *** (0.234) | 0.563 *** (0.143) | 0.655 *** (0.201) |
Observations | 2745 |
A | WDMPA | WDOPA | WDEPA | WEMPA | WEOPA | WEEPA | |
---|---|---|---|---|---|---|---|
Direct effect | |||||||
ln(house price) | −0.010 *** (0.0033) | −0.038 *** (0.012) | −0.018 ** (0.009) | −0.025 ** (0.010) | −0.074 *** (0.022) | −0.037 *** (0.014) | −0.053 ** (0.020) |
Indirect effect | |||||||
ln(house price) | 0.014 *** (0.004) | 0.061 *** (0.014) | 0.033 *** (0.012) | 0.044 *** (0.013) | 0.133 *** (0.029) | 0.066 *** (0.018) | 0.036 (0.047) |
Total effect | |||||||
ln(house price) | 0.004 *** (0.001) | 0.022 *** (0.002) | 0.014 *** (0.003) | 0.020 *** (0.003) | 0.059 *** (0.007) | 0.029 *** (0.005) | −0.017 (0.049) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Lin, Z.; Huang, J.; Gao, H.; Shi, W. Evaluating the Inequality of Medical Service Accessibility Using Smart Card Data. Int. J. Environ. Res. Public Health 2021, 18, 2711. https://doi.org/10.3390/ijerph18052711
Liu X, Lin Z, Huang J, Gao H, Shi W. Evaluating the Inequality of Medical Service Accessibility Using Smart Card Data. International Journal of Environmental Research and Public Health. 2021; 18(5):2711. https://doi.org/10.3390/ijerph18052711
Chicago/Turabian StyleLiu, Xintao, Ziwei Lin, Jianwei Huang, He Gao, and Wenzhong Shi. 2021. "Evaluating the Inequality of Medical Service Accessibility Using Smart Card Data" International Journal of Environmental Research and Public Health 18, no. 5: 2711. https://doi.org/10.3390/ijerph18052711
APA StyleLiu, X., Lin, Z., Huang, J., Gao, H., & Shi, W. (2021). Evaluating the Inequality of Medical Service Accessibility Using Smart Card Data. International Journal of Environmental Research and Public Health, 18(5), 2711. https://doi.org/10.3390/ijerph18052711