The Relationship between Long Noncoding RNA H19 Polymorphism and the Epidermal Growth Factor Receptor Phenotypes on the Clinicopathological Characteristics of Lung Adenocarcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethnic Declaration
2.2. Subject Selection
2.3. Genomic DNA Extraction and EGFR Sequencing
2.4. The Genotyping of LncRNA H19 SNPs via Real-Time PCR
2.5. Statistical Analysis
3. Results
3.1. Demographics of the Study Population
3.2. Distribution Frequency of LncRNA H19 SNP in Different EGFR Phenotypes
3.3. Correlation of Distribution between LncRNA H19 and EGFR Phenotypes to the Clinicopathological Characteristics in LADC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barta, J.A.; Powell, C.A.; Wisnivesky, J.P. Global epidemiology of lung cancer. Ann. Glob. Health 2019, 85, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C. Lung cancer molecular epidemiology in china: Recent trends. Transl. Lung Cancer Res. 2014, 3, 270–279. [Google Scholar]
- Lortet-Tieulent, J.; Soerjomataram, I.; Ferlay, J.; Rutherford, M.; Weiderpass, E.; Bray, F. International trends in lung cancer incidence by histological subtype: Adenocarcinoma stabilizing in men but still increasing in women. Lung Cancer 2014, 84, 13–22. [Google Scholar] [CrossRef]
- De Groot, P.; Munden, R.F. Lung cancer epidemiology, risk factors, and prevention. Radiol. Clin. N. Am. 2012, 50, 863–876. [Google Scholar] [CrossRef]
- Nakamura, H.; Saji, H. Worldwide trend of increasing primary adenocarcinoma of the lung. Surg. Today 2014, 44, 1004–1012. [Google Scholar] [CrossRef] [PubMed]
- Denisenko, T.V.; Budkevich, I.N.; Zhivotovsky, B. Cell death-based treatment of lung adenocarcinoma. Cell Death Dis. 2018, 9, 117. [Google Scholar] [CrossRef]
- Devarakonda, S.; Morgensztern, D.; Govindan, R. Genomic alterations in lung adenocarcinoma. Lancet Oncol. 2015, 16, e342–e351. [Google Scholar] [CrossRef]
- Calvayrac, O.; Pradines, A.; Pons, E.; Mazières, J.; Guibert, N. Molecular biomarkers for lung adenocarcinoma. Eur. Respir. J. 2017, 49, 1601734. [Google Scholar] [CrossRef]
- Tsiambas, E.; Lefas, A.Y.; Georgiannos, S.N.; Ragos, V.; Fotiades, P.P.; Grapsa, D.; Stamatelopoulos, A.; Kavantzas, N.; Patsouris, E.; Syrigos, K. Egfr gene deregulation mechanisms in lung adenocarcinoma: A molecular review. Pathol. Res. Pract. 2016, 212, 672–677. [Google Scholar] [CrossRef]
- Singh, V.; Guleria, P.; Malik, P.S.; Mohan, A.; Thulkar, S.; Pandey, R.M.; Luthra, K.; Arava, S.; Ray, R.; Jain, D. Epidermal growth factor receptor (egfr), kras, and braf mutations in lung adenocarcinomas: A study from india. Curr. Probl. Cancer 2019, 43, 391–401. [Google Scholar] [CrossRef]
- Siegelin, M.D.; Borczuk, A.C. Epidermal growth factor receptor mutations in lung adenocarcinoma. Lab. Invest. 2014, 94, 129–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, T.; Matsumura, Y.; Araki, O.; Karube, Y.; Maeda, S.; Kobayashi, S.; Chida, M. Epidermal growth factor receptor gene mutation in pleural lavage cytology findings of primary lung adenocarcinoma cases. Ann. Thorac. Cardiovasc. Surg. 2018, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; Cui, Z.; Gao, M.; Li, S.; Song, M.; Wang, Y.; Tong, L.; Bi, Y.; Zhang, Z.; Wang, S.; et al. Genetic polymorphisms of prncr1 and lung cancer risk in chinese northeast population: A case-control study and meta-analysis. DNA Cell Biol. 2020, 40, 132–144. [Google Scholar] [CrossRef]
- Hu, B.; Liu, D.; Liu, Y.; Li, Z. DNA repair-based gene expression signature and distinct molecular subtypes for prediction of clinical outcomes in lung adenocarcinoma. Front. Med. 2020, 7, 615981. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.Y.; Chiou, H.L.; Tsao, S.M.; Huang, C.C.; Lin, C.Y.; Lee, C.Y.; Tsao, T.C.; Yang, S.F.; Huang, Y.W. Association of carbonic anhydrase 9 polymorphism and the epithelial growth factor receptor mutations in lung adenocarcinoma patients. Diagnostics 2020, 10, 266. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Hsieh, M.J.; Wu, W.J.; Chiang, W.L.; Liu, T.C.; Yang, S.F.; Tsao, T.C. Association of endothelial nitric oxide synthase (enos) polymorphisms with egfr-mutated lung adenocarcinoma in taiwan. J. Cancer 2018, 9, 2518–2524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, P.J.; Hsieh, M.J.; Lee, C.I.; Yen, C.H.; Wang, H.L.; Chiang, W.L.; Liu, T.C.; Tsao, T.C.; Lee, C.Y.; Yang, S.F. Impact of aurora kinase a polymorphism and epithelial growth factor receptor mutations on the clinicopathological characteristics of lung adenocarcinoma. Int. J. Environ. Res. Public Health 2020, 17, 7350. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Q.; Cui, K.; Ma, A.; Zhang, H. Association between h19 polymorphisms and nsclc risk in a chinese population. J. Buon 2019, 24, 913–917. [Google Scholar]
- Liao, S.; Yu, C.; Liu, H.; Zhang, C.; Li, Y.; Zhong, X. Long non-coding rna h19 promotes the proliferation and invasion of lung cancer cells and regulates the expression of e-cadherin, n-cadherin, and vimentin. Onco Targets Ther. 2019, 12, 4099–4107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghafouri-Fard, S.; Esmaeili, M.; Taheri, M. H19 lncrna: Roles in tumorigenesis. Biomed. Pharmacother. 2020, 123, 109774. [Google Scholar] [CrossRef]
- Huang, M.C.; Chou, Y.H.; Shen, H.P.; Ng, S.C.; Lee, Y.C.; Sun, Y.H.; Hsu, C.F.; Yang, S.F.; Wang, P.H. The clinicopathological characteristic associations of long non-coding rna gene h19 polymorphisms with uterine cervical cancer. J. Cancer 2019, 10, 6191–6198. [Google Scholar] [CrossRef]
- Hu, J.C.; Lin, C.Y.; Wang, S.S.; Chiu, K.Y.; Li, J.R.; Chen, C.S.; Hung, S.C.; Yang, C.K.; Ou, Y.C.; Cheng, C.L.; et al. Impact of h19 polymorphisms on prostate cancer clinicopathologic characteristics. Diagnostics 2020, 10, 656. [Google Scholar] [CrossRef]
- Lei, Y.; Guo, W.; Chen, B.; Chen, L.; Gong, J.; Li, W. Tumor‑released lncrna h19 promotes gefitinib resistance via packaging into exosomes in non‑small cell lung cancer. Oncol. Rep. 2018, 40, 3438–3446. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Feng, C.; Li, Y.; Ma, Y.; Cai, R. Lncrna h19 promotes lung cancer proliferation and metastasis by inhibiting mir-200a function. Mol. Cell Biochem. 2019, 460. [Google Scholar] [CrossRef]
- Wu, Y.L.; Chien, M.H.; Chou, Y.E.; Chang, J.H.; Liu, T.C.; Tsao, T.C.; Chou, M.C.; Yang, S.F. Association of egfr mutations and hmgb1 genetic polymorphisms in lung adenocarcinoma patients. J. Cancer 2019, 10, 2907–2914. [Google Scholar] [CrossRef] [Green Version]
- Shiraishi, K.; Okada, Y.; Takahashi, A.; Kamatani, Y.; Momozawa, Y.; Ashikawa, K.; Kunitoh, H.; Matsumoto, S.; Takano, A.; Shimizu, K.; et al. Association of variations in hla class ii and other loci with susceptibility to egfr-mutated lung adenocarcinoma. Nat. Commun. 2016, 7, 12451. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, N.; Zhang, L.; Song, Y.; Liu, J.; Yu, J.; Yang, M. Oncogene hsph1 modulated by the rs2280059 genetic variant diminishes egfr-tkis efficiency in advanced lung adenocarcinoma. Carcinogenesis 2020, 41, 1195–1202. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Guo, S.; Wang, Y.; Wang, H.; Lu, D.; Wang, J.; Jin, L.; Jiang, G.; Wu, J.; et al. Effect of ercc2 rs13181 and rs1799793 polymorphisms and environmental factors on the prognosis of patients with lung cancer. Am. J. Transl. Res. 2020, 12, 6941–6953. [Google Scholar]
- El Osta, B.; Behera, M.; Kim, S.; Berry, L.D.; Sica, G.; Pillai, R.N.; Owonikoko, T.K.; Kris, M.G.; Johnson, B.E.; Kwiatkowski, D.J.; et al. Characteristics and outcomes of patients with metastatic kras-mutant lung adenocarcinomas: The lung cancer mutation consortium experience. J. Thorac. Oncol. 2019, 14, 876–889. [Google Scholar] [CrossRef]
- Isaka, T.; Yokose, T.; Ito, H.; Nagata, M.; Furumoto, H.; Nishii, T.; Katayama, K.; Yamada, K.; Nakayama, H.; Masuda, M. Correlations between the egfr mutation status and clinicopathological features of clinical stage I lung adenocarcinoma. Medicine 2015, 94, e1784. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Lv, T.; Zhu, S.; Lu, Z.; Shen, Q.; Xia, L.; Wu, J.; Song, Y.; Liu, H. Computed tomography and clinical features associated with epidermal growth factor receptor mutation status in stage i/ii lung adenocarcinoma. Thorac. Cancer 2017, 8, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, R.Q.; Ai, Y.Q.; Zhang, J.; Zhao, P.Z.; Li, Y.F.; He, W.J.; Xia, Y.X.; Li, W.H. Exon 19 deletion was associated with better survival outcomes in advanced lung adenocarcinoma with mutant egfr treated with egfr-tkis as second-line therapy after first-line chemotherapy: A retrospective analysis of 128 patients. Clin. Transl. Oncol. 2015, 17, 727–736. [Google Scholar] [CrossRef]
- Yang, J.C.; Wu, Y.L.; Schuler, M.; Sebastian, M.; Popat, S.; Yamamoto, N.; Zhou, C.; Hu, C.P.; O’Byrne, K.; Feng, J.; et al. Afatinib versus cisplatin-based chemotherapy for egfr mutation-positive lung adenocarcinoma (lux-lung 3 and lux-lung 6): Analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 2015, 16, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Hua, Y.; Jin, J.; Wang, H.; Du, M.; Zhu, L.; Chu, H.; Zhang, Z.; Wang, M. Association of genetic variants in lncrna h19 with risk of colorectal cancer in a chinese population. Oncotarget 2016, 7, 25470–25477. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Ye, F.; Yin, C.; Zhuang, Y.; Yue, G.; Zhang, G. The interaction between mir-141 and lncrna-h19 in regulating cell proliferation and migration in gastric cancer. Cell Physiol. Biochem. 2015, 36, 1440–1452. [Google Scholar] [CrossRef]
- Yang, P.J.; Hsieh, M.J.; Hung, T.W.; Wang, S.S.; Chen, S.C.; Lee, M.C.; Yang, S.F.; Chou, Y.E. Effects of long noncoding rna h19 polymorphisms on urothelial cell carcinoma development. Int. J. Environ. Res. Public Health 2019, 16, 1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, E.R.; Chou, Y.E.; Liu, Y.F.; Hsueh, K.C.; Lee, H.L.; Yang, S.F.; Su, S.C. Association of lncrna h19 gene polymorphisms with the occurrence of hepatocellular carcinoma. Genes 2019, 10, 506. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Guo, G.; Zhang, H.; Zhou, B.; Bai, L.; Chen, H.; Zhao, Y.; Yan, Y. Association between h19 snp rs217727 and lung cancer risk in a chinese population: A case control study. BMC Med. Genet. 2018, 19, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isobe, K.; Hata, Y.; Tochigi, N.; Kaburaki, K.; Kobayashi, H.; Makino, T.; Otsuka, H.; Sato, F.; Ishida, F.; Kikuchi, N.; et al. Clinical significance of bim deletion polymorphism in non-small-cell lung cancer with epidermal growth factor receptor mutation. J. Thorac. Oncol. 2014, 9, 483–487. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.H.; Lai, T.C.; Yang, P.J.; Shih, P.C.; Yang, Y.C.; Lee, K.L.; Liu, T.C.; Tsao, T.C.; Yang, S.F.; Chien, M.H. Associations of timp-3 genetic polymorphisms with egfr statuses and cancer clinicopathologic development in lung adenocarcinoma patients. Int. J. Mol. Sci. 2020, 21, 8023. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yang, Q.; Huang, Q.; Zhang, H.; Zhang, Z.; Gao, J.; Ren, W.; Hu, Y.; Lin, Y.; Dang, Y.; et al. The rs2839698 single nucleotide polymorphism of lncrna h19 is associated with post-operative prognosis in t3 gastric adenocarcinoma. Clin. Lab. 2018, 64, 105–112. [Google Scholar] [CrossRef]
- Cui, P.; Zhao, Y.; Chu, X.; He, N.; Zheng, H.; Han, J.; Song, F.; Chen, K. Snp rs2071095 in lincrna h19 is associated with breast cancer risk. Breast Cancer Res. Treat. 2018, 171, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.Y.; Liu, H.; Ding, Z.B.; Xi, H.P.; Wang, G.W. Lncrna snhg16 promotes glioma tumorigenicity through mir-373/egfr axis by activating pi3k/akt pathway. Genomics 2020, 112, 1021–1029. [Google Scholar] [CrossRef]
- Tang, R.; Chen, J.; Tang, M.; Liao, Z.; Zhou, L.; Jiang, J.; Hu, Y.; Liao, Q.; Xiong, W.; Tang, Y.; et al. Lncrna slco4a1-as1 predicts poor prognosis and promotes proliferation and metastasis via the egfr/mapk pathway in colorectal cancer. Int. J. Biol. Sci. 2019, 15, 2885–2896. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, M.; Moazeni-Roodi, A.; Sarabandi, S.; Karami, S.; Ghavami, S. Association between genetic polymorphisms of long noncoding rna h19 and cancer risk: A meta-analysis. J. Genet. 2019, 98, 81. [Google Scholar] [CrossRef] [PubMed]
- Melia, T.; Waxman, D.J. Genetic factors contributing to extensive variability of sex-specific hepatic gene expression in diversity outbred mice. PLoS ONE 2020, 15, e0242665. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Jiao, Y.; Jiao, Y.; Garcia-Godoy, F.; Gu, W.; Liu, Q. Sex difference in egfr pathways in mouse kidney-potential impact on the immune system. BMC Genet. 2016, 17, 146. [Google Scholar] [CrossRef] [Green Version]
- Sayad, A.; Ghafouri-Fard, S.; Shams, B.; Arsang-Jang, S.; Gholami, L.; Taheri, M. Sex-specific up-regulation of p50-associated cox-2 extragenic rna (pacer) lncrna in periodontitis. Heliyon 2020, 6, e03897. [Google Scholar] [CrossRef]
- Riaz, M.; Berns, E.M.; Sieuwerts, A.M.; Ruigrok-Ritstier, K.; de Weerd, V.; Groenewoud, A.; Uitterlinden, A.G.; Look, M.P.; Klijn, J.G.; Sleijfer, S.; et al. Correlation of breast cancer susceptibility loci with patient characteristics, metastasis-free survival, and mrna expression of the nearest genes. Breast Cancer Res. Treat. 2012, 133, 843–851. [Google Scholar] [CrossRef]
- Verhaegh, G.W.; Verkleij, L.; Vermeulen, S.H.; den Heijer, M.; Witjes, J.A.; Kiemeney, L.A. Polymorphisms in the h19 gene and the risk of bladder cancer. Eur. Urol. 2008, 54, 1118–1126. [Google Scholar] [CrossRef]
- Lai, L.C.; Tsai, M.H.; Chen, P.C.; Chen, L.H.; Hsiao, J.H.; Chen, S.K.; Lu, T.P.; Lee, J.M.; Hsu, C.P.; Hsiao, C.K.; et al. Snp rs10248565 in hdac9 as a novel genomic aberration biomarker of lung adenocarcinoma in non-smoking women. J. Biomed. Sci. 2014, 21, 24. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.; Dong, S.S.; Ding, J.M.; Rong, Y.; Zhang, Y.J.; Chen, H.; Chen, J.B.; Chen, Y.X.; Yan, H.; Dai, Z.; et al. Sex-specific snp-snp interaction analyses within topologically associated domains reveals angpt1 as a novel tumor suppressor gene for lung cancer. Genes Chromosomes Cancer 2019, 59, 13–22. [Google Scholar] [CrossRef]
- Huang, K.; Hu, E.; Li, W.; Lv, J.; He, Y.; Deng, G.; Xiao, J.; Yang, C.; Zhao, X.; Chen, L.; et al. Association of pd-1 polymorphisms with the risk and prognosis of lung adenocarcinoma in the northeastern chinese han population. BMC Med. Genet. 2019, 20, 177. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Chen, P.; Yang, S.; Li, G.; Bao, W.; Wu, P.; Jiang, S. Chka mediates the poor prognosis of lung adenocarcinoma and acts as a prognostic indicator. Oncol. Lett. 2016, 12, 1849–1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.R.; Kim, S.Y.; Kim, C.H.; Yang, S.H.; Lee, J.C.; Choi, C.M.; Na, I.I. Sex-specific incidence of egfr mutation and its association with age and obesity in lung adenocarcinomas: A retrospective analysis. J. Cancer Res. Clin. Oncol. 2017, 143, 2283–2290. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, H.; Endo, K.; Takada, M.; Kawahara, M.; Kitahara, N.; Tanaka, H.; Okumura, M.; Matsumura, A.; Iuchi, K.; Kawaguchi, T.; et al. L858r egfr mutation status correlated with clinico-pathological features of japanese lung cancer. Lung Cancer 2006, 54, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.Y.; Ryu, J.S.; Sim, Y.S.; Kim, D.; Lee, S.Y.; Choi, J.; Park, S.; Ryu, Y.J.; Lee, J.H.; Chang, J.H. Clinical significance of egfr mutation types in lung adenocarcinoma: A multi-centre korean study. PLoS ONE 2020, 15, e0228925. [Google Scholar] [CrossRef]
Variable | EGFR Wild-Type (N = 223) n (%) | EGFR Mutation (N = 323) n (%) | p Value |
---|---|---|---|
Age | |||
Mean ± SD | 64.60 ± 12.22 | 65.33 ± 12.62 | 0.501 |
Gender | |||
Male | 137 (61.4%) | 109 (33.7%) | <0.001 |
Female | 86 (38.6%) | 214 (66.3%) | |
Cigarette smoking status | |||
Never-smoker | 105 (47.1%) | 260 (80.5%) | <0.001 |
Ever-smoker | 118 (52.9%) | 63 (19.5%) | |
Stage | |||
I + II | 50 (22.4%) | 77 (23.8%) | 0.700 |
III + IV | 173 (77.6%) | 246 (76.2%) | |
Tumor T status | |||
T1 + T2 | 111 (49.8%) | 174 (53.9%) | 0.346 |
T3 + T4 | 112 (50.2%) | 149 (46.1%) | |
Lymph node status | |||
Negative | 61 (27.4%) | 90 (27.9%) | 0.896 |
Positive | 162 (72.6%) | 233 (72.1%) | |
Distant Metastasis | |||
Negative | 99 (44.4%) | 129 (39.9%) | 0.299 |
Positive | 124 (55.6%) | 194 (60.1%) | |
Cell differentiation | |||
Well | 19 (8.5%) | 35 (10.8%) | <0.001 |
Moderately | 136 (61.0%) | 251 (77.7%) | |
Poorly | 68 (30.5%) | 37 (11.5%) |
Genotypes | Wild-Type (N = 223) | EGFR Mutation (N = 323) | AOR (95% CI) | p Value |
---|---|---|---|---|
rs217727 | ||||
CC | 97 (43.5%) | 125 (38.7%) | 1.00 | |
CT | 95 (42.6%) | 154 (47.7%) | 1.56 (1.05–2.34) | 0.030 |
TT | 31 (13.9%) | 44 (13.6%) | 1.20 (0.68–2.11) | 0.543 |
CT + TT | 126 (56.5%) | 198 (61.3%) | 1.46 (1.01–2.13) | 0.047 |
rs2107425 | ||||
CC | 81 (36.3%) | 106 (32.8%) | 1.00 | |
CT | 101 (45.3%) | 163 (50.5%) | 1.46 (0.97–2.21) | 0.071 |
TT | 41 (18.4%) | 54 (16.7%) | 0.97 (0.57–1.65) | 0.915 |
CT + TT | 142 (63.7%) | 217 (67.2%) | 1.31 (0.89–1.92) | 0.176 |
rs2839698 | ||||
CC | 105 (47.1%) | 157 (48.6%) | 1.00 | |
CT | 88 (39.5%) | 140 (43.3%) | 1.01 (0.68–1.49) | 0.981 |
TT | 30 (13.4%) | 26 (8.1%) | 0.53 (0.28–1.01) | 0.061 |
CT + TT | 118 (52.9%) | 166 (51.4%) | 0.88 (0.61–1.27) | 0.492 |
rs3024270 | ||||
CC | 60 (26.9%) | 94 (29.1%) | 1.00 | |
CG | 108 (48.4%) | 166 (51.4%) | 0.95 (0.62–1.46) | 0.811 |
GG | 55 (24.7%) | 63 (19.5%) | 0.68 (0.41–1.15) | 0.155 |
CG + GG | 163 (73.1%) | 229 (70.9%) | 0.86 (0.57–1.29) | 0.468 |
rs3741219 | ||||
AA | 101 (45.3%) | 154 (47.7%) | 1.00 | |
AG | 90 (40.4%) | 135 (41.8%) | 0.92 (0.62–1.36) | 0.659 |
GG | 32 (14.3%) | 34 (10.5%) | 0.63 (0.35–1.12) | 0.116 |
AG + GG | 122 (54.7%) | 169 (52.3%) | 0.84 (0.58–1.21) | 0.351 |
Genotypes | Male (N = 246) | Female (N = 300) | ||||
---|---|---|---|---|---|---|
Wild-Type (N = 137) | EGFR Mutation (N = 109) | AOR (95% CI) | Wild-Type (N = 86) | EGFR Mutation (N = 214) | AOR (95% CI) | |
rs217727 | ||||||
CC | 46 (33.6%) | 40 (36.7%) | 1.00 | 51 (59.3%) | 85 (39.7%) | 1.00 |
CT | 73 (53.3%) | 54 (49.5%) | 0.85 (0.48–1.52) | 22 (25.6%) | 100 (46.7%) | 2.94 (1.62–5.33) *,a |
TT | 18 (13.1%) | 15 (13.8%) | 0.87 (0.37–2.01) | 13 (15.1%) | 29 (13.6%) | 1.54 (0.71–3.34) |
CT + TT | 91 (66.4%) | 69 (63.3%) | 0.86 (0.49–1.49) | 35 (40.7%) | 129 (60.3%) | 2.44 (1.44–4.15) *,b |
rs2107425 | ||||||
CC | 39 (28.5%) | 36 (33.0%) | 1.00 | 42 (48.8%) | 70 (32.7%) | 1.00 |
CT | 75 (54.7%) | 59 (54.1%) | 0.82 (0.45–1.48) | 26 (30.2%) | 104 (48.6%) | 2.62 (1.44–4.74) *,c |
TT | 23 (16.8%) | 14 (12.8%) | 0.57 (0.25–1.33) | 18 (20.9%) | 40 (18.7%) | 1.46 (0.73–2.92) |
CT + TT | 98 (71.5%) | 73 (67.0%) | 0.76 (0.43–1.34) | 44 (51.2%) | 144 (67.3%) | 2.14 (1.26–3.63) *,d |
rs2839698 | ||||||
CC | 70 (51.1%) | 58 (53.2%) | 1.00 | 35 (40.7%) | 99 (46.3%) | 1.00 |
CT | 52 (38.0%) | 43 (39.4%) | 1.04 (0.60–1.80) | 36 (41.9%) | 97 (45.3%) | 0.96 (0.55–1.68) |
TT | 15 (10.9%) | 8 (7.3%) | 0.69 (0.26–1.80) | 15 (17.4%) | 18 (8.4%) | 0.42 (0.19–0.94) *,e |
CT + TT | 67 (48.9%) | 51 (46.8%) | 0.96 (0.57–1.62) | 51 (59.3%) | 115 (53.7%) | 0.80 (0.48–1.35) |
rs3024270 | ||||||
CC | 40 (29.2%) | 34 (31.2%) | 1.00 | 20 (23.3%) | 60 (28.0%) | 1.00 |
CG | 67 (48.9%) | 58 (53.2%) | 1.04 (0.57–1.90) | 41 (47.7%) | 108 (50.5%) | 0.84 (0.45–1.59) |
GG | 30 (21.9%) | 17 (15.6%) | 0.80 (0.37–1.74) | 25 (29.0%) | 46 (21.5%) | 0.58 (0.28–1.18) |
CG + GG | 97 (70.8%) | 75 (68.8%) | 0.97 (0.55–1.72) | 66 (76.7%) | 154 (72.0%) | 0.74 (0.41–1.35) |
rs3741219 | ||||||
AA | 68 (49.6%) | 58 (53.2%) | 1.00 | 33 (38.4%) | 96 (44.9%) | 1.00 |
AG | 53 (38.7%) | 41 (37.6%) | 0.92 (0.53–1.61) | 37 (43.0%) | 94 (43.9%) | 0.91 (0.52–1.59) |
GG | 16 (11.7%) | 10 (9.2%) | 0.82 (0.34–2.01) | 16 (18.6%) | 24 (11.2%) | 0.51 (0.24–1.10) |
AG + GG | 69 (50.4%) | 51 (46.8%) | 0.90 (0.53–1.52) | 53 (61.6%) | 118 (55.1%) | 0.79 (0.47–1.33) |
Variable | ALL (N = 546) | EGFR Wild-Type (N = 223) | EGFR Mutation (N = 323) | ||||||
---|---|---|---|---|---|---|---|---|---|
CC (N = 222) | CT + TT (N = 324) | p Value | CC (N = 97) | CT + TT (N = 126) | p Value | CC (N = 125) | CT + TT (N = 198) | p Value | |
Stages | |||||||||
I + II | 52 (23.4%) | 75 (23.1%) | 0.940 | 24 (24.7%) | 26 (20.6%) | 0.466 | 28 (22.4%) | 49 (24.7%) | 0.630 |
III + IV | 170 (76.6%) | 249 (76.9%) | 73 (75.3%) | 100 (79.4%) | 97 (77.6%) | 149 (75.3%) | |||
Tumor T status | |||||||||
T1 + T2 | 125 (56.3%) | 160 (49.4%) | 0.112 | 56 (57.7%) | 55 (43.7%) | 0.037 | 69 (55.2%) | 105 (53.0%) | 0.703 |
T3 + T4 | 97 (43.7%) | 164 (50.6%) | 41 (42.3%) | 71 (56.3%) | 56 (44.8%) | 93 (47.0%) | |||
Lymph node status | |||||||||
Negative | 62 (27.9%) | 89 (27.5%) | 0.906 | 27 (27.8%) | 34 (27.0%) | 0.888 | 35 (28.0%) | 55 (27.8%) | 0.965 |
Positive | 160 (72.1%) | 235 (72.5%) | 70 (72.2%) | 92 (73.0%) | 90 (72.0%) | 143 (72.2%) | |||
Distant metastasis | |||||||||
Negative | 100 (45.0%) | 128 (39.5%) | 0.197 | 48 (49.5%) | 51 (40.5%) | 0.180 | 52 (41.6%) | 77 (38.9%) | 0.628 |
Positive | 122 (55.0%) | 196 (60.5%) | 49 (50.5%) | 75 (59.5%) | 73 (58.4%) | 121 (61.1%) | |||
Cell differentiation | |||||||||
Well/Moderately | 186 (83.8%) | 255 (78.7%) | 0.139 | 76 (78.4%) | 79 (62.7%) | 0.012 | 110 (88.0%) | 176 (88.9%) | 0.807 |
Poorly | 36 (16.2%) | 69 (21.3%) | 21 (21.6%) | 47 (37.3%) | 15 (12.0%) | 22 (11.1%) |
Variable | ALL (N = 546) | EGFR Wild-Type (N = 223) | EGFR Mutation (N = 323) | ||||||
---|---|---|---|---|---|---|---|---|---|
CC (N = 187) | CT + TT (N = 359) | p Value | CC (N = 81) | CT + TT (N = 142) | p Value | CC (N = 106) | CT + TT (N = 217) | p Value | |
stages | |||||||||
I + II | 42 (22.5%) | 85 (23.7%) | 0.749 | 20 (24.7%) | 30 (21.1%) | 0.539 | 22 (20.8%) | 55 (25.3%) | 0.363 |
III + IV | 145 (77.5%) | 274 (76.3%) | 61 (75.3%) | 112 (78.9%) | 84 (79.2%) | 162 (74.7%) | |||
Tumor T status | |||||||||
T1 + T2 | 110 (58.8%) | 175 (48.7%) | 0.025 | 50 (61.7%) | 61 (43.0%) | 0.007 | 60 (56.6%) | 114 (52.5%) | 0.491 |
T3 + T4 | 77 (41.2%) | 184 (51.3%) | 31 (38.3%) | 81 (57.0%) | 46 (43.4%) | 103 (47.5%) | |||
Lymph node status | |||||||||
Negative | 48 (25.7%) | 103 (28.7%) | 0.454 | 20 (24.7%) | 41 (28.9%) | 0.500 | 28 (26.4%) | 62 (28.6%) | 0.685 |
Positive | 139 (74.3%) | 256 (71.3%) | 61 (75.3%) | 101 (71.1%) | 78 (73.6%) | 155 (71.4%) | |||
Distant metastasis | |||||||||
Negative | 86 (46.0%) | 142 (39.6%) | 0.148 | 41 (50.6%) | 58 (40.8%) | 0.158 | 45 (42.5%) | 84 (38.7%) | 0.519 |
Positive | 101 (54.0%) | 217 (60.4%) | 40 (49.4%) | 84 (59.2%) | 61 (57.5%) | 133 (61.3%) | |||
Cell differentiation | |||||||||
Well/Moderately | 153 (81.8%) | 288 (80.2%) | 0.654 | 61 (75.3%) | 94 (66.2%) | 0.155 | 92 (86.8%) | 194 (89.4%) | 0.489 |
Poorly | 34 (18.2%) | 71 (19.8%) | 20 (24.7%) | 48 (33.8%) | 14 (13.2%) | 23 (10.6%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-C.; Tsao, S.-M.; Li, Y.-T.; Lee, C.-Y.; Tsao, T.C.-Y.; Hsieh, M.-J.; Yang, S.-F. The Relationship between Long Noncoding RNA H19 Polymorphism and the Epidermal Growth Factor Receptor Phenotypes on the Clinicopathological Characteristics of Lung Adenocarcinoma. Int. J. Environ. Res. Public Health 2021, 18, 2862. https://doi.org/10.3390/ijerph18062862
Wang Y-C, Tsao S-M, Li Y-T, Lee C-Y, Tsao TC-Y, Hsieh M-J, Yang S-F. The Relationship between Long Noncoding RNA H19 Polymorphism and the Epidermal Growth Factor Receptor Phenotypes on the Clinicopathological Characteristics of Lung Adenocarcinoma. International Journal of Environmental Research and Public Health. 2021; 18(6):2862. https://doi.org/10.3390/ijerph18062862
Chicago/Turabian StyleWang, Yao-Chen, Shih-Ming Tsao, Yia-Ting Li, Chia-Yi Lee, Thomas Chang-Yao Tsao, Ming-Ju Hsieh, and Shun-Fa Yang. 2021. "The Relationship between Long Noncoding RNA H19 Polymorphism and the Epidermal Growth Factor Receptor Phenotypes on the Clinicopathological Characteristics of Lung Adenocarcinoma" International Journal of Environmental Research and Public Health 18, no. 6: 2862. https://doi.org/10.3390/ijerph18062862
APA StyleWang, Y. -C., Tsao, S. -M., Li, Y. -T., Lee, C. -Y., Tsao, T. C. -Y., Hsieh, M. -J., & Yang, S. -F. (2021). The Relationship between Long Noncoding RNA H19 Polymorphism and the Epidermal Growth Factor Receptor Phenotypes on the Clinicopathological Characteristics of Lung Adenocarcinoma. International Journal of Environmental Research and Public Health, 18(6), 2862. https://doi.org/10.3390/ijerph18062862