Simultaneous Kinetics of Selenite Oxidation and Sorption on δ-MnO2 in Stirred-Flow Reactors
Abstract
:1. Introduction
2. Materials and methods
2.1. Materials
2.2. Kinetics Experiments
2.2.1. Batch Experiments
2.2.2. Stirred-Flow Experiments
2.3. Analysis Methods
2.3.1. Chemical Analysis
2.3.2. XPS Determination
2.3.3. ATR-FTIR Spectra Determination
2.4. Data Statistic Methods
2.4.1. Model Fitting for Adsorption/Desorption Kinetics
2.4.2. Data Statistics
3. Results
3.1. Kinetics of Sorption and Oxidation in the Batch Experiment
3.2. Adsorption and Oxidation Kinetics in the Stirred-Flow Experiment
3.2.1. Effects of Flow Rate
3.2.2. Effect of Initial Se(IV) Concentrations
3.2.3. Effect of Solution pH
3.2.4. Effect of δ-MnO2 Injection
3.3. Desorption Kinetics of Se(IV) and Se(VI) in the Stirred-Flow Experiment
3.4. Analysis of XPS Spectra
3.5. Analysis of ATR-FTIR Spectra
4. Discussion
4.1. Adsorption Performance
4.1.1. Se(VI) Adsorption
4.1.2. Se(IV) Adsorption
4.2. Se(IV) Oxidation on δ-MnO2
4.2.1. Effects of Se(IV) Oxidation
4.2.2. Comparison of Batch Experiments and Stirred-Flow Experiments
4.3. Reaction Mechanisms
4.3.1. Adsorption Mechanisms
4.3.2. Oxidation Mechanisms
4.4. Environmental Implication
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Q.; Ding, S.; Chen, M.; Gao, S.; Lu, G.; Wu, Y.; Gong, M.; Wang, D.; Wang, Y. Long-term effectiveness of sediment dredging on controlling the contamination of arsenic, selenium, and antimony. Environ. Pollut. 2019, 245, 725–734. [Google Scholar] [CrossRef]
- Supriatin, S.; Weng, L.; Comans, R.N.J. Selenium speciation and extractability in Dutch agricultural soils. Sci. Total Environ. 2015, 532, 368–382. [Google Scholar] [CrossRef]
- Shahid, M.; Niazi, N.K.; Khalid, S.; Murtaza, B.; Bibi, I.; Rashid, M.I. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ. Pollut. 2018, 234, 915–934. [Google Scholar] [CrossRef]
- Fordyce, F.M. Selenium Deficiency and Toxicity in the Environment. In Essentials of Medical Geology: Revised Edition; Selinus, O., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 375–416. [Google Scholar] [CrossRef] [Green Version]
- Paul, T.; Saha, N.C. Environmental Arsenic and Selenium Contamination and Approaches Towards Its Bioremediation Through the Exploration of Microbial Adaptations: A Review. Pedosphere 2019, 29, 554–568. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, R.; Wang, B.; Yao, S. The Effect of Gypsum on the Fixation of Selenium in the Iron/Calcium-Selenium Coprecipitation Process. Bull. Environ. Contam. Toxicol. 2020. [Google Scholar] [CrossRef]
- Nakamaru, Y.M.; Altansuvd, J. Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: A review. Chemosphere 2014, 111, 366–371. [Google Scholar] [CrossRef]
- Awual, M.R.; Hasan, M.M.; Khaleque, M.A. Efficient selenium(IV) detection and removal from water by tailor-made novel conjugate adsorbent. Sens. Actuators B Chem. 2015, 209, 194–202. [Google Scholar] [CrossRef]
- Fernández-Martínez, A.; Charlet, L. Selenium environmental cycling and bioavailability: A structural chemist point of view. Rev. Environ. Sci. Bio Technol. 2009, 8, 81–110. [Google Scholar] [CrossRef]
- He, Y.; Xiang, Y.; Zhou, Y.; Yang, Y.; Zhang, J.; Huang, H.; Shang, C.; Luo, L.; Gao, J.; Tang, L. Selenium contamination, consequences and remediation techniques in water and soils: A review. Environ. Res. 2018, 164, 288–301. [Google Scholar] [CrossRef]
- Jordan, N.; Franzen, C.; Lützenkirchen, J.; Foerstendorf, H.; Hering, D.; Weiss, S.; Heim, K.; Brendler, V. Adsorption of selenium(vi) onto nano transition alumina. Environ. Sci. Nano 2018, 5, 1661–1669. [Google Scholar] [CrossRef]
- Jordan, N.; Foerstendorf, H.; Weiß, S.; Heim, K.; Schild, D.; Brendler, V. Sorption of selenium(VI) onto anatase: Macroscopic and microscopic characterization. Geochim. Cosmochim. Acta 2011, 75, 1519–1530. [Google Scholar] [CrossRef]
- Sun, W.; Pan, W.; Wang, F.; Xu, N. Removal of Se(IV) and Se(VI) by MFe2O4 nanoparticles from aqueous solution. Chem. Eng. J. 2015, 273, 353–362. [Google Scholar] [CrossRef]
- Balistrieri, L.S.; Chao, T.T. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide. Geochim. Cosmochim. Acta 1990, 54, 739–751. [Google Scholar] [CrossRef]
- Jordan, N.; Lomenech, C.; Marmier, N.; Giffaut, E.; Ehrhardt, J.-J. Sorption of selenium(IV) onto magnetite in the presence of silicic acid. J. Colloid Interface Sci. 2009, 329, 17–23. [Google Scholar] [CrossRef]
- Goldberg, S. Modeling Selenate Adsorption Behavior on Oxides, Clay Minerals, and Soils Using the Triple Layer Model. Soil Sci. 2014, 179, 568–576. [Google Scholar] [CrossRef]
- Rovira, M.; Giménez, J.; Martínez, M.; Martínez-Lladó, X.; Pablo, J.d.; Martí, V.; Duro, L. Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: Goethite and hematite. J. Hazard. Mater. 2008, 150, 279–284. [Google Scholar] [CrossRef]
- Elzinga, E.J.; Tang, Y.; McDonald, J.; DeSisto, S.; Reeder, R.J. Macroscopic and spectroscopic characterization of selenate, selenite, and chromate adsorption at the solid–water interface of γ-Al2O3. J. Colloid Interface Sci. 2009, 340, 153–159. [Google Scholar] [CrossRef]
- Szlachta, M.; Gerda, V.; Chubar, N. Adsorption of arsenite and selenite using an inorganic ion exchanger based on Fe–Mn hydrous oxide. J. Colloid Interface Sci. 2012, 365, 213–221. [Google Scholar] [CrossRef]
- Scott, M.J.; Morgan, J.J. Reactions at Oxide Surfaces. 2. Oxidation of Se(IV) by Synthetic Birnessite. Environ. Sci. Technol. 1996, 30, 1990–1996. [Google Scholar] [CrossRef]
- Banerjee, D.; Nesbitt, H.W. XPS study of reductive dissolution of birnessite by H2SeO3 with constraints on reaction mechanism. Am. Mineral. 2000, 85, 817–825. [Google Scholar] [CrossRef]
- Foster, A.L.; Brown, G.E.; Parks, G.A. X-ray absorption fine structure study of As(V) and Se(IV) sorption complexes on hydrous Mn oxides. Geochim. Cosmochim. Acta 2003, 67, 1937–1953. [Google Scholar] [CrossRef]
- Ergül, B.; Bektaş, N.; Öncel, M.S. The Use of Manganese Oxide Minerals for the Removal Arsenic and Selenium Anions from Aqueous Solutions. Energy Environ. Eng. 2014, 2, 103–112. [Google Scholar] [CrossRef]
- Gonzalez, C.M.; Hernandez, J.; Parsons, J.G.; Gardea-Torresdey, J.L. Adsorption of selenite and selenate by a high- and low-pressure aged manganese oxide nanomaterial. Instrum. Sci. Technol. 2011, 39, 1–19. [Google Scholar] [CrossRef]
- Scott, M.J. Kinetics of Adsorption and Redox Processes on Iron and Manganese Oxides: Reactions of As(III) and Se(IV) at Goethite and Birnessite Surfaces; California Institute of Technology: Pasadena, CA, USA, 1991. [Google Scholar]
- Wu, Y.; Li, W.; Sparks, D.L. The effects of iron(II) on the kinetics of arsenic oxidation and sorption on manganese oxides. J. Colloid Interface Sci. 2015, 457, 319–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balgooyen, S.; Alaimo, P.J.; Remucal, C.K.; Ginder-Vogel, M. Structural Transformation of MnO2 during the Oxidation of Bisphenol A. Environ. Sci. Technol. 2017, 51, 6053–6062. [Google Scholar] [CrossRef] [PubMed]
- Balgooyen, S.; Campagnola, G.; Remucal, C.K.; Ginder-Vogel, M. Impact of bisphenol A influent concentration and reaction time on MnO2 transformation in a stirred flow reactor. Environ. Sci. Process. Impacts 2019, 21, 19–27. [Google Scholar] [CrossRef]
- Lafferty, B.J.; Ginder-Vogel, M.; Sparks, D.L. Arsenite oxidation by a poorly crystalline manganese-oxide 1. Stirred-flow experiments. Environ. Sci. Technol. 2010, 44, 8460–8466. [Google Scholar] [CrossRef]
- Lafferty, B.J.; Ginder-Vogel, M.; Sparks, D.L. Arsenite oxidation by a poorly-crystalline manganese oxide. 3. Arsenic and manganese desorption. Environ. Sci. Technol. 2011, 45, 9218–9223. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Liu, C.; Alves, M.E.; Ata-Ul-Karim, S.T.; Zhou, D.-M.; He, J.-Z.; Cui, P.-X.; Wang, Y.-J. The oxidation and sorption mechanism of Sb on δ-MnO2. Chem. Eng. J. 2018, 342, 429–437. [Google Scholar] [CrossRef]
- Remucal, C.K.; Ginder-Vogel, M. A critical review of the reactivity of manganese oxides with organic contaminants. Environ. Sci. Process. Impacts 2014, 16, 1247–1266. [Google Scholar] [CrossRef] [PubMed]
- Bar-Tal, A.; Feigenbaum, S.; Sparks, D.L.; Pesek, J.D. Analyses of adsorption kinetics using a stirred-flow chamber: I. Theory and critical tests. Soil Sci. Soc. Am. J. 1990, 54, 1273–1278. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Rodas, D.; Mellano, F.; Martínez, F.; Palencia, P.; Giráldez, I.; Morales, E. Speciation analysis of Se-enriched strawberries (Fragaria ananassa Duch) cultivated on hydroponics by HPLC-TR-HG-AFS. Microchem. J. 2016, 127, 120–124. [Google Scholar] [CrossRef]
- Constantino, L.V.; Quirino, J.N.; Monteiro, A.M.; Abrão, T.; Parreira, P.S.; Urbano, A.; Santos, M.J. Sorption-desorption of selenite and selenate on Mg-Al layered double hydroxide in competition with nitrate, sulfate and phosphate. Chemosphere 2017, 181, 627–634. [Google Scholar] [CrossRef]
- Wang K, Xia P, Liu F, Tan W, Qiu G, Feng X, Kinetic characteristics of As (III) oxidation by δ-MnO2 in the simulated environment: A stirred flow study. China Environ. Sci. 2014, 34, 966–975.
- Ilton, E.S.; Post, J.E.; Heaney, P.J.; Ling, F.T.; Kerisit, S.N. XPS determination of Mn oxidation states in Mn (hydr)oxides. Appl. Surf. Sci. 2016, 366, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Su, C.; Suarez, D.L. Selenate and selenite sorption on iron oxides: An infrared and electrophoretic study. Soil Sci. Soc. Am. J. 2000, 64, 101–111. [Google Scholar] [CrossRef]
- Saeki, K.; Matsumoto, S.; Tatsukawa, R. Selenite adsorption by manganese oxides. Soil Sci. 1995, 160, 265–272. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.-n.; Sun, Y.; Pan, X.; Zhang, D.; Tsang, Y.F. Differences in Sb(V) and As(V) adsorption onto a poorly crystalline phyllomanganate (δ-MnO₂): Adsorption kinetics, isotherms, and mechanisms. Process. Saf. Environ. Prot. 2018, 113, 40–47. [Google Scholar] [CrossRef]
- Sheha, R.R.; El-Shazly, E.A. Kinetics and equilibrium modeling of Se(IV) removal from aqueous solutions using metal oxides. Chem. Eng. J. 2010, 160, 63–71. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, D.; Mou, S.; Song, W.; Al-Misned, F.A.; Golam Mortuza, M.; Pan, X. Simultaneous removal of tetracycline hydrochloride and As(III) using poorly-crystalline manganese dioxide. Chemosphere 2015, 136, 102–110. [Google Scholar] [CrossRef]
- Feng, X.; Wang, P.; Shi, Z.; Kwon, K.D.; Zhao, H.; Yin, H.; Lin, Z.; Zhu, M.; Liang, X.; Liu, F.; et al. A Quantitative Model for the Coupled Kinetics of Arsenic Adsorption/Desorption and Oxidation on Manganese Oxides. Environ. Sci. Technol. Lett. 2018, 5, 175–180. [Google Scholar] [CrossRef]
- Villalobos, M.; Escobar-Quiroz, I.N.; Salazar-Camacho, C. The influence of particle size and structure on the sorption and oxidation behavior of birnessite: I. Adsorption of As(V) and oxidation of As(III). Geochim. Cosmochim. Acta 2014, 125, 564–581. [Google Scholar] [CrossRef]
- Yin, Y.; Allen, H.E.; Huang, C.P.; Sparks, D.L.; Sanders, P.F. Kinetics of Mercury(II) Adsorption and Desorption on Soil. Environ. Sci. Technol. 1997, 31, 496–503. [Google Scholar] [CrossRef]
- Elzinga, E.J.; Kustka, A.B. A Mn-54 radiotracer study of Mn isotope solid-liquid exchange during reductive transformation of vernadite (δ-MnO2) by aqueous Mn(II). Environ. Sci. Technol. 2015, 49, 4310–4316. [Google Scholar] [CrossRef] [PubMed]
- Santelli, C.M.; Webb, S.M.; Dohnalkova, A.C.; Hansel, C.M. Diversity of Mn oxides produced by Mn(II)-oxidizing fungi. Geochim. Cosmochim. Acta 2011, 75, 2762–2776. [Google Scholar] [CrossRef]
- Schacht, L.; Ginder-Vogel, M. Arsenite Depletion by Manganese Oxides: A Case Study on the Limitations of Observed First Order Rate Constants. Soil Syst. 2018, 2, 39. [Google Scholar] [CrossRef] [Green Version]
- Fendorf, S.E.; Zasoski, R.J. Chromium(III) oxidation by .delta.-manganese oxide (MnO2). 1. Characterization. Environ. Sci. Technol. 1992, 26, 79–85. [Google Scholar] [CrossRef]
- Wang, Z.; Lee, S.W.; Kapoor, P.; Tebo, B.M.; Giammar, D.E. Uraninite oxidation and dissolution induced by manganese oxide: A redox reaction between two insoluble minerals. Geochim. Cosmochim. Acta 2013, 100, 24–40. [Google Scholar] [CrossRef]
Category | Factors | Parameters | |||
---|---|---|---|---|---|
pH | Se(IV) Initial Concentration (μM) | Qmax a (μmol g−1) | k2 | R2 | |
Langmuir | 4 | 100 | 95.04 | 0.00328 | 0.996 |
Qe b | k1(h−1) | R2 | |||
Adsorption in different solution pH | 4 | 100 | 43.1 | 0.926 | 0.982 |
5 | 100 | 25.1 | 0.765 | 0.970 | |
6 | 100 | 25.8 | 0.406 | 0.959 | |
7 | 100 | 22.1 | 0.330 | 0.958 | |
Oxidation in different solution pH | 4 | 100 | 61.6 | 0.0014 | 0.994 |
5 | 100 | 57.2 | 0.00083 | 0.997 | |
6 | 100 | 7.21 | 0.0017 | 0.984 | |
7 | 100 | 14.1 | 0.00042 | 0.993 | |
Adsorption in different Se(IV) initial concentrations | 4 | 50 | 50.7 | 1.325 | 0.903 |
4 | 100 | 43.1 | 0.926 | 0.982 | |
4 | 200 | 20.2 | 0.416 | 0.892 | |
Oxidation in different Se(IV) initial concentrations | 4 | 50 | 25.8 | 0.0023 | 0.992 |
4 | 100 | 61.6 | 0.0014 | 0.994 | |
4 | 200 | 62.1 | 0.0024 | 0.994 |
Factors | Kinetic Parameters | ||||
---|---|---|---|---|---|
Flow Rate (mL min−1) | Initial Se(IV) (μM) | pH | δ-MnO2 Dosage (g L−1) | K a (h−1) | R2 |
0.5 | 100 | 4 | 10 | 0.011 | 0.937 |
1 | 100 | 4 | 10 | 0.032 | 0.940 |
2 | 100 | 4 | 10 | 0.035 | 0.947 |
1 | 50 | 4 | 10 | 0.029 | 0.940 |
1 | 100 | 4 | 10 | 0.032 | 0.940 |
1 | 200 | 4 | 10 | 0.025 | 0.943 |
1 | 100 | 4 | 10 | 0.032 | 0.940 |
1 | 100 | 5 | 10 | 0.012 | 0.822 |
1 | 100 | 6 | 10 | 0.00072 | 0.393 |
1 | 100 | 4 | 4 | 0.017 | 0.973 |
1 | 100 | 4 | 10 | 0.032 | 0.940 |
1 | 100 | 4 | 20 | 0.024 | 0.432 |
Sample | Binding Energy/eV | Chemical Form | Area% a | |||
---|---|---|---|---|---|---|
0 h | 10 h | 200 h | 700 h | |||
Mn (2p3/2) | 641.4 | Mn(II) | 24.02 | 24.45 | 24.96 | 25.08 |
641.4 | Mn(III) | 21.76 | 23.56 | 36.76 | 47.33 | |
641.8 | Mn(IV) | 54.22 | 51.99 | 38.27 | 26.59 | |
Se (3p) | 164.5~164.7 | Se(IV) | 0 | 100 | 100 | 100 |
170.5~170.7 | Se(IV) | |||||
164.4 | Se(VI) | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Yuan, Y.; Ma, L.; Zhang, Y.; Jiang, H.; He, J.; Hu, Y.; Yuan, S.; Ginder-Vogel, M.; Tu, S. Simultaneous Kinetics of Selenite Oxidation and Sorption on δ-MnO2 in Stirred-Flow Reactors. Int. J. Environ. Res. Public Health 2021, 18, 2902. https://doi.org/10.3390/ijerph18062902
Li Z, Yuan Y, Ma L, Zhang Y, Jiang H, He J, Hu Y, Yuan S, Ginder-Vogel M, Tu S. Simultaneous Kinetics of Selenite Oxidation and Sorption on δ-MnO2 in Stirred-Flow Reactors. International Journal of Environmental Research and Public Health. 2021; 18(6):2902. https://doi.org/10.3390/ijerph18062902
Chicago/Turabian StyleLi, Zheyong, Yajun Yuan, Lin Ma, Yihui Zhang, Hongwei Jiang, Jiqiang He, Yifan Hu, Shoushu Yuan, Matthew Ginder-Vogel, and Shuxin Tu. 2021. "Simultaneous Kinetics of Selenite Oxidation and Sorption on δ-MnO2 in Stirred-Flow Reactors" International Journal of Environmental Research and Public Health 18, no. 6: 2902. https://doi.org/10.3390/ijerph18062902
APA StyleLi, Z., Yuan, Y., Ma, L., Zhang, Y., Jiang, H., He, J., Hu, Y., Yuan, S., Ginder-Vogel, M., & Tu, S. (2021). Simultaneous Kinetics of Selenite Oxidation and Sorption on δ-MnO2 in Stirred-Flow Reactors. International Journal of Environmental Research and Public Health, 18(6), 2902. https://doi.org/10.3390/ijerph18062902