Biomechanical Description of Zapateado Technique in Flamenco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Materials
2.3. Biomechanical Registration
2.4. Data Recording and Analysis
2.5. Analyzed Variables
- Time of each foot strike during ZAP-3 test—tGRF [s];
- Maximal value of the vertical component of ground reaction force (GRF) normalized to body weight (BW) for subsequent footwork steps—maxGRF [BW];
- Loading rate of the ground reaction force for subsequent footwork steps—LRGRF [BW]:
- Kinematics of pelvis and lower limb joints during ZAP-3: pelvic obliquity, pelvic tilt, pelvic rotation, hip abduction–adduction, hip flexion–extension, hip rotation, knee flexion–extension, dorsi–plantarflexion and inversion–eversion in ankle joint.
2.6. Statistical Analysis
3. Results
ZAP-3 Test Description
4. Discussion
4.1. Kinematics
4.1.1. Initial Body Position—How to Develop Flamenco Dance Posture
4.1.2. Body Alignment during Footwork
4.1.3. Detailed Description of the Locomotor Activity during ZAP-3
4.1.4. Feet during Zapateado
4.2. Kinetics
4.3. Direction for Future Research
5. Conclusions
Take Home Message
- Start with slow speed: slowly practice single elements before you join everything together to move your whole body.
- When increasing speed, practice footwork only at the maximum speed at which you can still perform each foot strike accurately and with an audible sound.
- Pay special attention to the alignment of your whole body. Due to the proper position of the body, the dynamic, smooth and rhythmic performance of footwork will be safe for the dancer.
- Follow the compás as the most important quality.
- Use your pelvic stabilizers (abdominal and hip muscles) consciously.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNESCO—What Is Intangible Cultural Heritage? Available online: https://ich.unesco.org/en/what-is-intangible-heritage-00003 (accessed on 15 January 2021).
- Goulet, I. Learning to Become Dancing Musicians: Flamenco Dancers Going Global. Master’s Thesis, Concordia University, Montreal, QC, Canada, 2007. [Google Scholar]
- Pedersen, M. Measures of Plantar Flexion and Dorsiflexion Strength in Flamenco Dancers. Med. Probl. Perform. Art. 1999, 14, 107–112. [Google Scholar]
- Parviainen, J. Bodily Knowledge: Epistemological Reflections on Dance. Danc. Res. J. 2003, 34, 11–26. [Google Scholar] [CrossRef]
- Hachimura, K.; Kato, H.; Tamura, H. A Prototype Dance Training Support System with Motion Capture and Mixed Reality Technologies. In Proceedings of the RO-MAN 2004 13th IEEE International Workshop on Robot and Human Interactive Communication (IEEE Catalog No.04TH8759), Kurashiki, Japan, 22 September 2004. [Google Scholar] [CrossRef]
- Echegoyen, S.; Aoyama, T.; Rodríguez, C. Zapateado Technique as an Injury Risk in Mexican Folkloric and Spanish Dance: An Analysis of Execution, Ground Reaction Force, and Muscle Strength. Med. Probl. Perform. Art. 2013, 28, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Bejjani, F.J.; Halpern, N.; Pio, A.; Dominguez, R.; Voloshin, A.; Frankel, V.H. Musculoskeletal Demands on Flamenco Dancers: A Clinical and Biomechanical Study. Foot Ankle 1988, 8, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Voloshin, A.S.; Bejjani, F.J.; Halpern, M.; Frankel, V.H. Dynamic Loading on Flamenco Dancers: A Biomechanical Study. Hum. Mov. Sci. 1989, 8, 503–513. [Google Scholar] [CrossRef]
- Micheli, L.J. Back Injuries in Dancers. Clin. Sports Med. 1983, 2, 473–484. [Google Scholar] [CrossRef]
- Baena-Chicón, I.; Gómez-Lozano, S.; Abenza-Cano, L.; Vicuña, O.; Fernández Falero, M.R.; Vargas-Macías, A. Algias as a Predisposing Factor of Injury in Flamenco Dance Students. Cult. Cienc. Deporte 2020, 15, 245–253. [Google Scholar] [CrossRef]
- LeVeau, B.F. Biomechanics of Human Motion, 1st ed.; Slack Incorporated: Thorofare, NJ, USA, 2010; ISBN 978-1-55642-905-7. [Google Scholar]
- Forczek, W.; Baena-Chicón, I.; Vargas-Macías, A. Movement Concepts Approach in Studies on Flamenco Dancing: A Systematic Review. Eur. J. Sport Sci. 2017, 17, 1161–1176. [Google Scholar] [CrossRef] [PubMed]
- Gorwa, J.; Michnik, R.A.; Nowakowska-Lipiec, K.; Jurkojć, J.; Jochymczyk-Woźniak, K. Is It Possible to Reduce Loads of the Locomotor System during the Landing Phase of Dance Figures? Biomechanical Analysis of the Landing Phase in Grand Jeté, Entrelacé and Ballonné. Acta Bioeng. Biomech. 2019, 21, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Gorwa, J.; Kabaciński, J.; Murawa, M.; Fryzowicz, A. On the Track of the Ideal Turnout: Electromyographic and Kinematic Analysis of the Five Classical Ballet Positions. PLoS ONE 2020, 15, e0230654. [Google Scholar] [CrossRef] [PubMed]
- Gorwa, J.; Kabaciński, J.; Murawa, M.; Fryzowicz, A. Which of the Five Classical Ballet Positions Is the Most Demanding for the Dancer’s Body? An Electromyography-Based Study to Determine Muscular Activity. Acta Bioeng. Biomech. 2020, 22, 3–14. [Google Scholar] [CrossRef]
- Gorwa, J.; Dworak, L.B.; Michnik, R.; Jurkojć, J. Kinematic Analysis of Modern Dance Movement “Stag Jump” within the Context of Impact Loads, Injury to the Locomotor System and Its Prevention. Med. Sci. Monit. 2014, 20, 1082–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorwa, J.; Fryzowicz, A.; Michnik, R.; Jurkojć, J.; Kabaciński, J.; Jochymczyk-Woźniak, K.; Dworak, L.B. Can We Learn from Professional Dancers Safe Landing? Kinematic and Dynamic Analysis of the ‘Grand Pas de Chat’ Performed by Female and Male Dancer. In Proceedings of the Innovations in Biomedical Engineering; Tkacz, E., Gzik, M., Paszenda, Z., Piętka, E., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 925, pp. 233–240. [Google Scholar]
- Lee, C.M.; Jeong, E.H.; Freivalds, A. Biomechanical Effects of Wearing High-Heeled Shoes. Int. J. Ind. Ergon. 2001, 28, 321–326. [Google Scholar] [CrossRef]
- Ground Reaction Forces for Irish Dance Landings in Hard and Soft Shoes. Master’s Thesis, Brigham Young University, Provo, UT, USA, 2017.
- Ribeiro, S.C.M.G.; Palhares, P.M.B.; Salinas, M.J.S. Ethnomathematical Study on Folk Dances: Focusing on the Choreography. Revemop 2020, 2, e202014. [Google Scholar] [CrossRef]
- Vargas-Macías, A. El Baile Flamenco: Estudio Descriptivo, Biomecánico y Condición Física. Universidad de Cádiz, 2009. Available online: http://purl.org/dc/dcmitype/Text (accessed on 1 June 2020).
- Elias, L.J.; Bryden, M.P.; Bulman-Fleming, M.B. Footedness Is a Better Predictor than Is Handedness of Emotional Lateralization. Neuropsychologia 1998, 36, 37–43. [Google Scholar] [CrossRef]
- Lukić, A.; Bijelic, S.; Zagorc, M.; Zuhrić-Šebić, L. The Importance of Strength in Sport Dance Performance Technique. Sportlogia 2011, 7, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Perry, J.; Burnfield, J. Gait Analysis: Normal and Pathological Function, 2nd ed.; Slack Incorporated: Thorofare, NJ, USA, 2010; ISBN 978-1-55642-766-4. [Google Scholar]
- Calvo, J.; Alonso, A.; Pasado Los, A.; Gómez-Pellico, L. Flamenco Dancing. In Biomechanical Analisis and Injuries Prevention; M.H. Ediçoes: Oeiras, Portugal, 1998; pp. 279–285. [Google Scholar]
- Kulas, A.S.; Schmitz, R.J.; Schultz, S.J.; Watson, M.A.; Perrin, D.H. Energy Absorption as a Predictor of Leg Impedance in Highly Trained Females. J. Appl. Biomech. 2006, 22, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Lin, C.-F.; Garrett, W.E. Lower Extremity Biomechanics during the Landing of a Stop-Jump Task. Clin. Biomech. 2006, 21, 297–305. [Google Scholar] [CrossRef]
- Haight, H. Morphologic, Physiologic, and Functional Interactions in Elite Female Ballet Dancers. Med. Probl. Perform. Art. 1998, 13, 4–13. [Google Scholar]
- Wilmerding, V.; Gurney, B.; Torres, V. The Effect of Positive Heel Inclination on Posture in Young Children in Flamenco Dance. J. Danc. Med. Sci. 2003, 7, 85–90. [Google Scholar]
- Farfan, H.F. Form and Function of the Musculoskeletal System as Revealed by Mathematical Analysis of the Lumbar Spine. An Essay. Spine 1995, 20, 1462–1474. [Google Scholar] [CrossRef] [PubMed]
- Bronner, S. Differences in Segmental Coordination and Postural Control in a Multi-Joint Dance Movement: Développé Arabesque. J. Danc. Med. Sci. 2012, 16, 26–35. [Google Scholar]
- Jarvis, D.N.; Smith, J.A.; Kulig, K. Trunk Coordination in Dancers and Nondancers. J. Appl. Biomech. 2014, 30, 547–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arndt, A.; Westblad, P.; Winson, I.; Hashimoto, T.; Lundberg, A. Ankle and Subtalar Kinematics Measured with Intracortical Pins during the Stance Phase of Walking. Foot Ankle Int. 2004, 25, 357–364. [Google Scholar] [CrossRef]
- Chan, C.W.; Rudins, A. Foot Biomechanics during Walking and Running. Mayo Clin. Proc. 1994, 69, 448–461. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.L.; Gupta, P.K.; Lichstein, E.; Chadda, K.D. The Heart of a Dancer: Noninvasive Cardiac Evaluation of Professional Ballet Dancers. Am. J. Cardiol. 1980, 45, 959–965. [Google Scholar] [CrossRef]
- Koutedakis, Y.; Jamurtas, A. The Dancer as a Performing Athlete: Physiological Considerations. Sports Med. 2004, 34, 651–661. [Google Scholar] [CrossRef]
- Dempster, W. Anthropometry of Body Action. Ann. N. Y. Acad. Sci. 1995, 63, 559–585. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Macías, A.; Lozano, S.; Macera, A.; González-Montesinos, J.; Jesús, P. El Esfuerzo Físico en el Baile Flamenco de Principios del S. XX y el Actual. Rev. Cent. Investig. Flamenco Telethusa 2008, 1, 7–9. [Google Scholar]
maxGRF [BW] | LRGRF [BW/s] | ||||||
---|---|---|---|---|---|---|---|
Mean ± std | min–max | Shapiro–Wilk Test (p) | Mean ± std | min–max | Shapiro–Wilk Test (p) | ||
RIGHT | P | 2.22 ± 0.60 | 0.84–2.98 | 0.48 | 115.11 ± 52.37 | 33.74–241.98 | 0.28 |
TP1 | 2.71 ± 0.23 | 2.32–3.11 | 0.97 | 260.94 ± 66.23 | 159.35–387.01 | 0.94 | |
TP2 | 1.91 ± 0.42 | 1.35–3.11 | 0.01 | 166.98 ± 102.70 | 36.21–319.03 | 0.17 | |
TP3 | 1.88 ± 0.47 | 0.91–2.30 | 0.02 | 152.39 ± 62.70 | 55.87–230.35 | 0.12 | |
T | 1.06 ± 0.30 | 0.34–1.38 | 0.09 | 113.88 ± 69.61 | 24.33–308.22 | 0.04 | |
PNT | 0.59 ± 0.23 | 0.19–0.94 | 0.86 | 78.69 ± 48.76 | 6.95–186.55 | 0.82 | |
LEFT | P | 2.35 ± 0.42 | 1.46–3.08 | 0.82 | 117.77 ± 34.11 | 69.53–205.48 | 0.17 |
TP1 | 2.71 ± 0.35 | 2.19–3.60 | 0.15 | 243.47 ± 87.74 | 95.09–414.82 | 0.53 | |
TP2 | 1.99 ± 0.14 | 1.69–2.20 | 0.95 | 96.78 ± 34.96 | 60.17–164.72 | 0.02 | |
TP3 | 2.42 ± 0.31 | 1.93–2.93 | 0.81 | 185.45 ± 37.15 | 137.88–253.65 | 0.25 | |
T | 0.62 ± 0.24 | 0.24–1.01 | 0.68 | 47.02 ± 22.15 | 22.3–87.60 | 0.04 | |
PNT | 0.65 ± 0.19 | 0.26–0.94 | 0.81 | 61.67 ± 21.95 | 19.96–111.24 | 0.87 |
maxGRF | ||||||
RIGHT | ||||||
P | TP1 | TP2 | TP3 | T | PNT | |
P | <0.05 * | 0.02 * | 0.09 | <0.05 * | <0.05 * | |
TP1 | <0.05 * | <0.05 * | <0.05 * | <0.05 * | <0.05 * | |
TP2 | 0.02 * | <0.05 * | 0.52 | <0.05 * | <0.05 * | |
TP3 | 0.09 | <0.05 * | 0.52 | <0.05 * | <0.05 * | |
T | <0.05 * | <0.05 * | <0.05 * | <0.05 * | 0.01 * | |
PNT | <0.05 * | <0.05 * | <0.05 * | <0.05 * | 0.01 * | |
LEFT | ||||||
P | TP1 | TP2 | TP3 | T | PNT | |
P | <0.05 * | <0.05 * | 0.19 | <0.05 * | <0.05 * | |
TP1 | <0.05 * | <0.05 * | <0.05 * | <0.05 * | <0.05 * | |
TP2 | <0.05 * | <0.05 * | <0.05 * | <0.05 * | <0.05 * | |
TP3 | 0.19 | <0.05 * | <0.05 * | <0.05 * | <0.05 * | |
T | <0.05 * | <0.05 * | <0.05 * | <0.05* | 0.6 | |
PNT | <0.05 * | <0.05 * | <0.05 * | <0.05* | 0.6 | |
LRGRF | ||||||
RIGHT | ||||||
P | TP1 | TP2 | TP3 | T | PNT | |
P | <0.05 * | 0.16 | 0.16 | 0.7 | 0.07 | |
TP1 | <0.05 * | <0.05 * | <0.05 * | <0.05 * | <0.05 * | |
TP2 | 0.16 | <0.05 * | 1 | 0.07 | <0.05 * | |
TP3 | 0.16 | <0.05 * | 1 | 0.07 | <0.05 * | |
T | 0.7 | <0.05 * | 0.07 | 0.07 | 0.16 | |
PNT | 0.07 | <0.05 * | <0.05 * | <0.05 * | 0.16 | |
LEFT | ||||||
P | TP1 | TP2 | TP3 | T | PNT | |
P | <0.05 * | <0.05 * | <0.05 * | <0.05 * | <0.05 * | |
TP1 | <0.05 * | <0.05 * | 0.31 | <0.05 * | <0.05 * | |
TP2 | <0.05 * | <0.05 * | <0.05 * | <0.05 * | <0.05 * | |
TP3 | <0.05 * | 0.31 | <0.05 * | <0.05 * | <0.05 * | |
T | <0.05 * | <0.05 * | <0.05 * | <0.05 * | 0.42 | |
PNT | <0.05 * | <0.05 * | <0.05 * | <0.05 * | 0.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forczek-Karkosz, W.; Michnik, R.; Nowakowska-Lipiec, K.; Vargas-Macias, A.; Baena-Chicón, I.; Gómez-Lozano, S.; Gorwa, J. Biomechanical Description of Zapateado Technique in Flamenco. Int. J. Environ. Res. Public Health 2021, 18, 2905. https://doi.org/10.3390/ijerph18062905
Forczek-Karkosz W, Michnik R, Nowakowska-Lipiec K, Vargas-Macias A, Baena-Chicón I, Gómez-Lozano S, Gorwa J. Biomechanical Description of Zapateado Technique in Flamenco. International Journal of Environmental Research and Public Health. 2021; 18(6):2905. https://doi.org/10.3390/ijerph18062905
Chicago/Turabian StyleForczek-Karkosz, Wanda, Robert Michnik, Katarzyna Nowakowska-Lipiec, Alfonso Vargas-Macias, Irene Baena-Chicón, Sebastián Gómez-Lozano, and Joanna Gorwa. 2021. "Biomechanical Description of Zapateado Technique in Flamenco" International Journal of Environmental Research and Public Health 18, no. 6: 2905. https://doi.org/10.3390/ijerph18062905
APA StyleForczek-Karkosz, W., Michnik, R., Nowakowska-Lipiec, K., Vargas-Macias, A., Baena-Chicón, I., Gómez-Lozano, S., & Gorwa, J. (2021). Biomechanical Description of Zapateado Technique in Flamenco. International Journal of Environmental Research and Public Health, 18(6), 2905. https://doi.org/10.3390/ijerph18062905