A Two-Stage DEA Model to Evaluate the Technical Eco-Efficiency Indicator in the EU Countries
Abstract
:1. Introduction
2. Brief and Recent Literature Review
2.1. Framework
2.2. Hypothesis, Motivation and Contribution Details
3. Data and Methodology
3.1. Data
3.2. Methodology
3.2.1. Data Envelopment Analysis (DEA)
3.2.2. Fractional Regression Model (FRM)
4. Results
4.1. First Stage: DEA Method
4.2. Second Stage: Fractional Regression Model
5. Results Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
GDP pc/GHG/Area | GFCF per Capita | Labor per Capita | Energy Use/Area | Electricity/Area | Deviations Temp | |
---|---|---|---|---|---|---|
GDP pc/GHG/area | 1.0000 | |||||
GFCF per capita | 0.3190 | 1.0000 | ||||
Labor per capita | −0.2070 | 0.5952 | 1.0000 | |||
Energy use/area | −0.1753 | 0.1049 | 0.2268 | 1.0000 | ||
Electricity/area | −0.4173 | 0.5803 | 0.7482 | 0.5269 | 1.0000 | |
Deviations temp | 0.4637 | 0.8552 | 0.5441 | 0.1974 | 0.5608 | 1.0000 |
References
- European Commission. EUR-Lex—32016L2284—EN—EUR-Lex. 2016. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.344.01.0001.01.ENG&toc=OJ:L:2016:344:TOC (accessed on 18 January 2021).
- European Parliament. COP 21—PARIS AGREEMENT | Legislative Train Schedule | European Parliament. 2015. Available online: http://www.europarl.europa.eu/legislative-train/theme-resilient-energy-union-with-a-climate-change-policy/file-cop-21-paris-agreement (accessed on 15 January 2021).
- European Commission. A Clean Planet for All—A European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Ichimura, M.; Nam, S.; Bonjour, S.; Rankine, H.; Carisma, B.; Qiu, Y.; Khrueachotikul, R. Eco-Efficiency Indicators: Measuring Resource-Use Efficiency and the Impact of Economic Activities on the Environment; “Greening of Economic Growth” Series; ESCAP: Bangkok, Thailand, 2009; p. 25. Available online: https://sustainabledevelopment.un.org/content/documents/785eco.pdf (accessed on 18 January 2021).
- Camarero, M.; Castillo-Giménez, J.; Picazo-Tadeo, A.J.; Tamarit, C. Is eco-efficiency in greenhouse gas emissions converging among European Union countries? Empir. Econ. 2014, 47, 143–168. [Google Scholar] [CrossRef] [Green Version]
- Brodny, J.; Tutak, M. Analyzing Similarities between the European Union Countries in Terms of the Structure and Volume of Energy Production from Renewable Energy Sources. Energies 2020, 13, 913. [Google Scholar] [CrossRef] [Green Version]
- UNFCCC. Kyoto Protocol Reference Manual. In United Nations Framework Convention on Climate Change; 2008; p. 130. Available online: https://doi.org/10.5213/jkcs.1998.2.2.62 (accessed on 18 January 2021).
- Council of the European Union; European Parliament. Regulation (EU) 2015/757 of the European Parliament and of the Council of 29 April 2015 on the Monitoring, Reporting and Verification of Carbon Dioxide Emissions from Maritime Transport, and Amending Directive 2009/16/EC. Off. J. Eur. Union 2015, 58, 55–76. [Google Scholar]
- European Commission. Commission Implementing Decision (EU) 2015/495 of 20 March 2015 Establishing a Watch List of Substances for Union-Wide Monitoring in the Feld of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council, OJ L78. Off. J. Eur. Union 2015, 78, 40–42. [Google Scholar]
- Comunidade Europeia. Diretiva (UE) 2016/2284 do Parlamento Europeu e do Conselho de 14 de Dezembro de Relativa à Redução das Emissões Nacionais de Certos Poluentes Atmosféricos, Que Altera a Diretiva 2003/35/CE e Revoga a Diretiva 2001/81/CE. Off. J. 2016, 2015, 48–53. Available online: http://eur-lex.europa.eu/legal-content/PT/TXT/PDF/?uri=CELEX:32016L2284&from=PT (accessed on 18 January 2021).
- Caiado, R.G.G.; de Freitas Dias, R.; Mattos, L.V.; Quelhas, O.L.G.; Leal Filho, W. Towards sustainable development through the perspective of eco-efficiency—A systematic literature review. J. Clean. Prod. 2017, 165, 890–904. [Google Scholar] [CrossRef] [Green Version]
- International Institute for Sustainable Development (IISD); Deloitte & Touche; World Business Council for Sustainable Development (WBCSD). Business Strategy for the 90s; IISD: Winnipeg, MB, Canada, 1992. [Google Scholar]
- Kuosmanen, T.; Kortelainen, M. Measuring eco-efficiency of production with data envelopment analysis. J. Ind. Ecol. 2005, 9, 59–72. [Google Scholar] [CrossRef]
- Kortelainen, M. Dynamic environmental performance analysis: A Malmquist index approach. Ecol. Econ. 2008, 64, 701–715. [Google Scholar] [CrossRef]
- Gómez-Calvet, R.; Conesa, D.; Gómez-Calvet, A.R.; Tortosa-Ausina, E. On the dynamics of eco-efficiency performance in the European Union. Comp. Oper. Res. 2016, 66, 336–350. [Google Scholar] [CrossRef]
- Kounetas, K. Heterogeneous technologies, strategic groups and environmental efficiency technology gaps for European countries. Energy Pol. 2015, 83, 277–287. [Google Scholar] [CrossRef]
- Callens, I.; Tyteca, D. Towards indicators of sustainable development for firms A productive efficiency perspective. Ecol. Econ. 1999, 28, 41–53. [Google Scholar] [CrossRef]
- Tyteca, D. On the measurement of the environmental performance of firms—A literature review and a productive efficiency perspective. J. Environ. Manag. 1996, 46, 281–308. [Google Scholar] [CrossRef]
- Lauwers, L. Justifying the incorporation of the materials balance principle into frontier-based eco-efficiency models. Ecol. Econ. 2009, 68, 1605–1614. [Google Scholar] [CrossRef]
- Wursthorn, S.; Poganietz, W.; Schebek, L. Economic environmental monitoring indicators for European countries: A disaggregated sector-based approach for monitoring eco-efficiency. Ecol. Econ. 2011, 70, 487–496. [Google Scholar] [CrossRef]
- Picazo-Tadeo, A.J.; Gómez-Limón, J.A.; Reig-Martínez, E. Assessing farming eco-efficiency: A data envelopment analysis approach. J. Environ. Manag. 2011, 92, 1154–1164. [Google Scholar] [CrossRef]
- Picazo-Tadeo, A.J.; Beltrán-Esteve, M.; Gómez-Limón, J.A. Assessing ecoefficiency with directional distance functions. Eur. J. Oper. Res. 2012, 220, 798–809. [Google Scholar] [CrossRef]
- Campbell, R.; Rogers, K.; Rezek, J. Efficient frontier estimation: A maximum entropy approach. J. Prod. Anal. 2008, 30, 213–221. [Google Scholar] [CrossRef]
- Rezek, J.P.; Campbell, R.C.; Rogers, K.E. Assessing total factor productivity growth in Sub-Saharan African agriculture. J. Agric. Econ. 2011, 62, 357–374. [Google Scholar] [CrossRef]
- Macedo, P.; Silva, E.; Scotto, M. Technical efficiency with state-contingent production frontiers using maximum entropy estimators. J. Prod. Anal. 2014, 41, 131–140. [Google Scholar] [CrossRef]
- Macedo, P.; Scotto, M. Cross-entropy estimation in technical efficiency analysis. J. Math. Econ. 2014, 54, 124–130. [Google Scholar] [CrossRef]
- Robaina-Alves, M.; Moutinho, V.; Macedo, P. A new frontier approach to model the eco-efficiency in European countries. J. Clean. Prod. 2015, 103, 562–573. [Google Scholar] [CrossRef] [Green Version]
- Halkos, G.; Petrou, K.N. Analysing the Energy Efficiency of EU Member States: The Potential of Energy Recovery from Waste in the Circular Economy. Energies 2019, 12, 3718. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-N.; Hsu, H.-P.; Wang, Y.-H.; Nguyen, T.-T. Eco-Efficiency Assessment for Some European Countries Using Slacks-Based Measure Data Envelopment Analysis. Appl. Sci. 2020, 10, 1760. [Google Scholar] [CrossRef] [Green Version]
- Moutinho, V.; Madaleno, M.; Robaina, M.; Villar, J. Advanced scoring method of eco-efficiency in European cities. Environ. Sci. Pollut. Res. 2018, 25, 1637–1654. [Google Scholar] [CrossRef]
- Moutinho, V.; Madaleno, M.; Macedo, P. The effect of urban air pollutants in Germany: Eco-efficiency analysis through fractional regression models applied after DEA and SFA efficiency predictions. Sustain. Cities Soc. 2020, 59, 102204. [Google Scholar] [CrossRef]
- Colombo, L.A.; Pansera, M.; Owen, R. The discourse of eco-innovation in the European Union: An analysis of the Eco-Innovation Action Plan and Horizon 2020. J. Clean. Prod. 2019, 214, 653–665. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, M.; del Valle, I.; Tapia, C. Measuring eco-efficiency in European regions: Evidence from a territorial perspective. J. Clean. Prod. 2020, 276, 123246. [Google Scholar] [CrossRef]
- Mavi, R.K.; Saen, R.F.; Goh, M. Joint analysis of eco-efficiency and eco-innovation with common weights in two-stage network DEA: A big data approach. Technol. For. Soc. Chang. 2019, 144, 553–562. [Google Scholar] [CrossRef]
- Zurano-Cervelló, P.; Pozo, C.; Mateo-Sanz, J.M.; Jiménez, L.; Guillén-Gosálbez, G. Eco-efficiency assessment of EU manufacturing sectors combining input-output tables and data envelopment analysis following production and consumption-based accounting approaches. J. Clean. Prod. 2018, 174, 1161–1189. [Google Scholar] [CrossRef]
- Stergio, E.; Kouneta, K.E. Eco-efficiency convergence and technology spillovers of European industries. J. Environ. Manag. 2021, 283, 111972. [Google Scholar] [CrossRef]
- Tenente, M.; Henriques, C.; Pereira da Silva, P. Eco-efficiency assessment of the electricity sector: Evidence from 28 European Union countries. Econ. Anal. Pol. 2020, 66, 293–314. [Google Scholar] [CrossRef]
- Belucio, M.; Rodrigues, C.; Antunes, C.H.; Freire, F.; Dias, L.C. Eco-efficiency in early design decisions: A multimethodology approach. J. Clean. Prod. 2021, 283, 124630. [Google Scholar] [CrossRef]
- Pais-Magalhães, V.; Moutinho, V.; Marques, A.C. Scoring method of eco-efficiency using the DEA approach: Evidence from European waste sectors. Environ. Dev. Sustain. 2020, 1–23. [Google Scholar] [CrossRef]
- Beck, N.; Katz, J.N.; Tucker, R. Taking time seriously: Time-series-cross-section analysis with a binary dependent variable. Am. J. Political Sci. 1998, 42, 1260–1288. [Google Scholar] [CrossRef]
- Guo, X.D.; Zhu, L.; Fan, Y.; Xie, B.C. Evaluation of potential reductions in carbon emissions in Chinese provinces based on environmental DEA. Energy Policy 2011, 39, 2352–2360. [Google Scholar] [CrossRef]
- Iftikhar, Y.; Wang, Z.; Zhang, B.; Wang, B. Energy and CO2 emissions efficiency of major economies: A network DEA approach. Energy 2018, 147, 197–207. [Google Scholar] [CrossRef]
- Kwon, D.S.; Cho, J.H.; Sohn, S.Y. Comparison of technology efficiency for CO2 emissions reduction among European countries based on DEA with decomposed factors. J. Clean. Prod. 2017, 151, 109–120. [Google Scholar] [CrossRef]
- Li, H.; Chen, C.; Cook, W.D.; Zhang, J.; Zhu, J. Two-stage network DEA: Who is the leader? Omega 2018, 74, 15–19. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, Q.; Zhou, Z. A two-stage DEA model for resource allocation in industrial pollution treatment and its application in China. J. Clean. Prod. 2019, 228, 29–39. [Google Scholar] [CrossRef]
- Matsumoto, K.I.; Makridou, G.; Doumpos, M. Evaluating environmental performance using data envelopment analysis: The case of European countries. J. Clean. Prod. 2020, 272, 122637. [Google Scholar] [CrossRef]
- Hadad, Y.; Keren, B.; Hanani, M.Z. Combining data envelopment analysis and Malmquist Index for evaluating police station efficiency and effectiveness. Pol. Pract. Res. 2015, 16, 5–21. [Google Scholar] [CrossRef]
- Jové-Llopis, E.; Segarra-Blasco, A. Eco-Efficiency Actions and Firm Growth in European SMEs. Sustainability 2018, 10, 281. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.T.; Nielsen, R.; Khan, M.A.; Asmild, M. Efficiency and production environmental heterogeneity in aquaculture: A meta-frontier DEA approach. Aquaculture 2019, 509, 140–148. [Google Scholar] [CrossRef]
- Zhang, B.; Lu, D.; He, Y.; Chiu, Y.H. The efficiencies of resource-saving and environment: A case study based on Chinese cities. Energy 2018, 150, 493–507. [Google Scholar] [CrossRef]
- Almeida Neves, S.; Cardoso Marques, A.; Moutinho, V. Two-stage DEA model to evaluate technical efficiency on the deployment of battery electric vehicles in the EU countries. Transp. Res. Part D 2020, 86, 102489. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. The analysis of similarities between the European Union countries in terms of the level and structure of the emissions of selected gases and air pollutants into the atmosphere. J. Clean. Prod. 2021, 279, 123641. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Emissions of the Main Air Pollutants in Europe. 2018. Available online: https://www.eea.europa.eu/data-and-maps/indicators/main-anthropogenic-air-pollutant-emissions/assessment-5 (accessed on 18 January 2021).
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Cooper, W.; Seiford, L.; Tone, K. Introduction to Data Envelopment Analysis and Its Uses: With DEA-Solver Software and References; Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- Ramalho, E.A.; Ramalho, J.J.S.; Henriques, P.D. Fractional regression models for second stage DEA efficiency analyses. J. Product. Anal. 2010, 34, 239–255. [Google Scholar] [CrossRef]
- Papke, L.E. Econometric methods for fractional response variables with an application to 401 (k) plan participation rates. J. Appl. Econom. 1996, 11, 619–632. [Google Scholar] [CrossRef] [Green Version]
- McDonald, J. Using least squares and Tobit in second stage DEA efficiency analyses. Eur. J. Oper. Res. 2009, 197, 792–798. [Google Scholar] [CrossRef]
- Raheli, H.; Rezaei, R.M.; Jadidi, M.R.; Mobtaker, H.G. A two-stage DEA model to evaluate sustainability and energy efficiency of tomato production. Inf. Process. Agric. 2017, 4, 342–350. [Google Scholar] [CrossRef]
- Ramalho, E.A.; Ramalho, J.J.S.; Murteira, J.M.R. A generalized goodness-of-functional form test for binary and fractional regression models. Manch. Sch. 2014, 82, 488–507. [Google Scholar] [CrossRef] [Green Version]
(a) 1st Stage: DEA Method | |||||||
---|---|---|---|---|---|---|---|
Variable | Description | Obs. | Mean | Std. Dev. | Min | Max | Source |
Output | |||||||
GDP pc/(GHG/area) | The ratio of the value of gross domestic product per capita and the value of the volume of the GHG emissions by area of a given European country | 297 | 23.43479 | 1.329979 | 20.45615 | 25.86164 | Eurostat |
Inputs | |||||||
GFCF per capita | Gross fixed capital formation (formerly gross domestic fixed investment) | 297 | −0.41147 | 0.47855 | −1.6464 | 0.57486 | World Bank |
Labor per capita | The Labor force comprises people aged 15 and older, who supply labor for production during a specified period | 297 | −0.71090 | 0.072017 | −0.88623 | −0.61744 | World Bank |
Energy use/area | Energy use refers to the use of primary energy before transformation to other end-use fuels | 297 | 0.37417 | 1.22472 | 0.004871 | 6.53248 | World Bank |
Electricity/area | The inputs used to generate electricity included oil, gas, coal, and derived fuels. Peat is also included in this category | 297 | −8.08690 | 2.08304 | −12.9726 | −3.35616 | World Bank |
Deviations temp | The indicator measures the development of deviations in average near-surface temperature for Europe | 297 | 1.62 | 0.30451 | 1.06 | 2.11 | Eurostat |
(b) 2nd Stage: Fractional Regression Models (FRM) | |||||||
Variable | Description | Obs. | Mean | Std. Dev. | Min | Max | Source |
CO2/area | Volume of CO2 emissions by area | 297 | −13.215 | 1.4682 | −15.448 | −9.3560 | Eurostat |
CH4/area | Volume of methane emissions by area | 297 | −18.4165 | 1.39757 | −20.7865 | −15.1238 | Eurostat |
N2O/area | Volume of nitrous oxide emissions by area | 297 | −21.4825 | 1.34095 | −23.144 | −18.2737 | Eurostat |
NH3/area | Volume of ammonia air pollutant emissions by area | 297 | −19.9800 | 1.36434 | −22.0392 | −16.5997 | Eurostat |
NMVOCs/area | Volume of nonmethane volatile organic compounds air pollutant emissions by area | 297 | −19.5869 | 1.35265 | −21.3546 | −16.0401 | Eurostat |
PM2.5/area | Volume of PM2.5 air pollutant by area | 297 | −21.5477 | 1.47132 | −23.3426 | −17.9860 | Eurostat |
PM10/area | Volume of PM10 air pollutant emissions by area | 297 | −20.8983 | 1.396479 | −22.6495 | −17.7629 | Eurostat |
SOx/area | Volume of total emissions of sulfur oxides (SOx) by area | 297 | −20.2309 | 1.529419 | −22.6495 | −16.2307 | Eurostat |
2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | Average | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Austria | 0.6471 | 0.6625 | 0.9212 | 0.6226 | 0.7327 | 0.7396 | 0.4675 | 0.5401 | 0.5359 | 0.5637 | 0.4986 | 0.5848 |
Belgium | 0.6164 | 0.6460 | 0.8973 | 0.6093 | 0.7163 | 0.7236 | 0.4577 | 0.5286 | 0.5244 | 0.5531 | 0.4878 | 0.5702 |
Bulgaria | 0.6518 | 0.6722 | 0.9320 | 0.6323 | 0.7455 | 0.7552 | 0.4763 | 0.5511 | 0.5501 | 0.5814 | 0.5171 | 0.5953 |
Cyprus | 0.6638 | 0.6770 | 0.9434 | 0.6401 | 0.7512 | 0.7549 | 0.4729 | 0.5474 | 0.5428 | 0.5723 | 0.5066 | 0.5969 |
Czech Republic | 0.7051 | 0.7163 | 0.9974 | 0.6770 | 0.7933 | 0.7992 | 0.5036 | 0.5847 | 0.5802 | 0.6152 | 0.5453 | 0.6338 |
Denmark | 0.6402 | 0.6527 | 0.9100 | 0.6159 | 0.7255 | 0.7328 | 0.4642 | 0.5363 | 0.5311 | 0.4936 | 0.6997 | 0.5729 |
Estonia | 0.6641 | 0.6726 | 0.9258 | 0.6339 | 0.7491 | 0.7558 | 0.4802 | 0.5602 | 0.5539 | 0.5859 | 0.5210 | 0.5983 |
Finland | 0.6756 | 0.6879 | 0.9538 | 0.6472 | 0.7623 | 0.7694 | 0.4860 | 0.5634 | 0.5562 | 0.5874 | 0.5178 | 0.6081 |
France | 0.7020 | 0.7180 | 1.0000 | 0.6748 | 0.7925 | 0.7995 | 0.5040 | 0.5825 | 0.5767 | 0.6068 | 0.5353 | 0.6324 |
Germany | 0.6997 | 0.7142 | 0.9931 | 0.6736 | 0.7901 | 0.7972 | 0.5047 | 0.5833 | 0.5784 | 0.6100 | 0.5389 | 0.6313 |
Greece | 0.6506 | 0.6652 | 0.9191 | 0.6162 | 0.7172 | 0.7222 | 0.4556 | 0.5264 | 0.5212 | 0.5472 | 0.4824 | 0.5764 |
Hungary | 0.7093 | 0.7180 | 1.0000 | 0.6771 | 0.7941 | 0.8033 | 0.5077 | 0.5873 | 0.5832 | 0.6171 | 0.5467 | 0.6361 |
Ireland | 0.6659 | 0.6764 | 0.9311 | 0.6310 | 0.7398 | 0.7482 | 0.4744 | 0.5603 | 0.5542 | 0.5863 | 0.5196 | 0.5971 |
Italy | 0.6764 | 0.6978 | 1.0000 | 0.6530 | 0.7816 | 0.7979 | 0.4892 | 0.5687 | 0.5621 | 0.5919 | 0.5171 | 0.6199 |
Latvia | 0.6853 | 0.6867 | 0.9646 | 0.6467 | 0.7657 | 0.7747 | 0.4902 | 0.5665 | 0.5622 | 0.5945 | 0.5258 | 0.6125 |
Lithuania | 0.6859 | 0.6949 | 0.9659 | 0.6581 | 0.7765 | 0.7876 | 0.4973 | 0.5746 | 0.5696 | 0.6015 | 0.5331 | 0.6193 |
Luxembourg | 0.5737 | 0.5831 | 0.8193 | 0.5556 | 0.6514 | 0.6588 | 0.4173 | 0.4807 | 0.4778 | 0.5033 | 0.4449 | 0.5201 |
Malta | 0.5149 | 0.5252 | 1.0000 | 0.4956 | 0.5840 | 0.5963 | 0.3796 | 0.4470 | 0.4463 | 0.4685 | 0.4185 | 0.4961 |
Netherlands | 0.6243 | 0.6367 | 0.8861 | 0.5985 | 0.7040 | 0.7105 | 0.4473 | 0.5147 | 0.5105 | 0.5386 | 0.4762 | 0.5610 |
Poland | 0.7069 | 0.7139 | 1.0000 | 0.6778 | 0.7969 | 0.8043 | 0.5095 | 0.5898 | 0.5823 | 0.6157 | 0.5445 | 0.6361 |
Portugal | 0.6424 | 0.6648 | 1.0000 | 0.6319 | 0.8403 | 1.0000 | 0.4630 | 0.5417 | 0.5357 | 0.5606 | 0.4878 | 0.6255 |
Romania | 0.6919 | 0.7022 | 1.0000 | 0.6594 | 0.7749 | 0.7897 | 0.5000 | 0.5796 | 0.5776 | 0.6132 | 0.5439 | 0.6262 |
Slovakia | 0.6690 | 0.6841 | 0.9541 | 0.6469 | 0.7632 | 0.7700 | 0.4874 | 0.5639 | 0.5583 | 0.5884 | 0.5203 | 0.6078 |
Slovenia | 0.6646 | 0.6778 | 0.9401 | 0.6356 | 0.7443 | 0.7520 | 0.4777 | 0.5520 | 0.5471 | 0.5779 | 0.5113 | 0.5972 |
Spain | 0.7042 | 0.7201 | 1.0000 | 0.6741 | 0.7879 | 0.7962 | 0.5020 | 0.5800 | 0.5766 | 0.6068 | 0.5361 | 0.6316 |
Sweden | 0.7046 | 0.7142 | 1.0000 | 0.6819 | 0.8028 | 0.8114 | 0.5113 | 0.5911 | 0.5852 | 0.6157 | 0.5406 | 0.6380 |
United Kingdom | 0.6786 | 0.6978 | 1.0000 | 0.6564 | 0.7832 | 0.7878 | 0.4878 | 0.5699 | 0.5610 | 0.5890 | 0.5193 | 0.6192 |
Average (27 EU) | 0.6635 | 0.6770 | 0.9576 | 0.6379 | 0.7543 | 0.7681 | 0.4783 | 0.5545 | 0.5497 | 0.5772 | 0.5199 | 0.6016 |
2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | Average | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Austria | 0.9025 | 0.9090 | 0.9212 | 0.9101 | 0.9149 | 0.9162 | 0.9187 | 0.9204 | 0.9222 | 0.9212 | 0.9248 | 0.9165 |
Belgium | 0.8912 | 0.9818 | 0.8973 | 0.9967 | 1.0000 | 0.9973 | 0.9886 | 0.9922 | 1.0000 | 1.0000 | 0.9968 | 0.9765 |
Bulgaria | 0.9275 | 0.9774 | 0.9320 | 0.9826 | 0.9930 | 1.0000 | 0.9752 | 0.9824 | 1.0000 | 1.0000 | 1.0000 | 0.9791 |
Cyprus | 0.9250 | 0.9255 | 0.9434 | 0.9314 | 0.9404 | 0.9394 | 0.9350 | 0.9385 | 0.9223 | 0.9273 | 0.9267 | 0.9323 |
Czech Republic | 0.9826 | 0.9792 | 0.9974 | 0.9850 | 0.9930 | 0.9933 | 0.9719 | 0.9833 | 0.9858 | 0.9969 | 0.9975 | 0.9878 |
Denmark | 0.8987 | 0.8984 | 0.9100 | 0.9037 | 0.9124 | 0.9149 | 0.9101 | 0.9142 | 0.9138 | 0.9166 | 0.9831 | 0.9160 |
Estonia | 0.9254 | 0.9195 | 0.9258 | 0.9223 | 0.9378 | 0.9394 | 0.9266 | 0.9420 | 0.9411 | 0.9493 | 0.9530 | 0.9347 |
Finland | 0.9409 | 0.9438 | 0.9538 | 0.9463 | 0.9527 | 0.9573 | 0.9592 | 0.9641 | 0.9588 | 0.9617 | 0.9622 | 0.9546 |
France | 0.9892 | 0.9937 | 1.0000 | 0.9945 | 0.9989 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9978 |
Germany | 0.9831 | 0.9836 | 0.9931 | 0.6736 | 0.9937 | 0.9952 | 0.9892 | 0.9936 | 0.9954 | 1.0000 | 1.0000 | 0.9637 |
Greece | 0.9957 | 0.9918 | 0.9191 | 0.9973 | 0.9970 | 1.0000 | 1.0000 | 1.0000 | 0.9969 | 0.9960 | 1.0000 | 0.9903 |
Hungary | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9959 | 0.9960 | 1.0000 | 1.0000 | 1.0000 | 0.9993 |
Ireland | 0.9347 | 0.9319 | 0.9311 | 0.9374 | 0.9508 | 0.9528 | 0.9436 | 0.9721 | 0.9674 | 0.9771 | 0.9738 | 0.9521 |
Italy | 0.9847 | 0.9944 | 1.0000 | 1.0000 | 0.9931 | 1.0000 | 1.0000 | 1.0000 | 0.9993 | 0.9983 | 0.9963 | 0.9969 |
Latvia | 0.9560 | 0.9398 | 0.9649 | 0.9423 | 0.9588 | 0.9631 | 0.9496 | 0.9552 | 0.9580 | 0.9655 | 0.9655 | 0.9562 |
Lithuania | 0.9558 | 1.0000 | 0.9659 | 0.9740 | 0.9852 | 0.9834 | 0.9765 | 0.9744 | 0.9743 | 0.9767 | 0.9805 | 0.9770 |
Luxembourg | 0.8135 | 0.8047 | 0.8193 | 0.8176 | 0.8195 | 0.8219 | 0.8178 | 0.8166 | 0.8219 | 0.8236 | 0.8255 | 0.8184 |
Malta | 1.0000 | 0.9768 | 1.0000 | 0.8573 | 0.8183 | 0.7623 | 0.7362 | 0.7553 | 0.7612 | 0.7617 | 0.7685 | 0.8361 |
Netherlands | 0.8691 | 0.8719 | 0.8861 | 0.8763 | 0.8850 | 0.8877 | 0.8860 | 0.8748 | 0.8804 | 0.8826 | 0.8859 | 0.8805 |
Poland | 0.9994 | 0.9812 | 1.0000 | 0.9886 | 0.9982 | 1.0000 | 0.9875 | 0.9946 | 0.9925 | 1.0000 | 1.0000 | 0.9947 |
Portugal | 0.9201 | 0.9362 | 1.0000 | 0.9583 | 0.9855 | 1.0000 | 0.9959 | 0.9874 | 0.9886 | 0.9709 | 0.9654 | 0.9735 |
Romania | 0.9938 | 1.0000 | 1.0000 | 0.9842 | 0.9875 | 1.0000 | 0.9702 | 0.9863 | 1.0000 | 1.0000 | 1.0000 | 0.9929 |
Slovakia | 0.9333 | 0.9361 | 0.9541 | 0.9425 | 0.9557 | 0.9573 | 0.9443 | 0.9509 | 0.9512 | 0.9556 | 0.9554 | 0.9488 |
Slovenia | 0.9271 | 0.9275 | 0.9401 | 0.9260 | 0.9320 | 0.9349 | 0.9255 | 0.9309 | 0.9324 | 0.9385 | 0.9389 | 0.9322 |
Spain | 0.9907 | 0.9930 | 1.0000 | 0.9933 | 0.9957 | 1.0000 | 1.0000 | 0.9967 | 1.0000 | 1.0000 | 1.0000 | 0.9972 |
Sweden | 0.9778 | 0.9757 | 1.0000 | 0.9913 | 0.9972 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9977 | 0.9945 |
United Kingdom | 0.9677 | 0.9736 | 1.0000 | 0.9819 | 0.9904 | 0.9887 | 0.9872 | 0.9955 | 0.9887 | 0.9870 | 0.9899 | 0.9864 |
Average (27 EU) | 0.9476 | 0.9536 | 0.9576 | 0.9413 | 0.9588 | 0.9594 | 0.9515 | 0.9562 | 0.9575 | 0.9595 | 0.9625 | 0.9550 |
One-Part Models | Two-Part Models | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
First Component | Second Component | |||||||||||
Logit | Probit | Loglog | Cloglog | Logit | Probit | Loglog | Cloglog | Logit | Probit | Loglog | Cloglog | |
RESET test | 17.59 *** | 12.74 *** | 19.09 *** | 3.87 | 3.53 * | 2.506 | 1.546 | 2.64 | 6.340 ** | 4.076 ** | 6.93 *** | 1.760 |
GOFF-I test | 14.86 *** | 12.68 *** | 2.82 | 1.939 | 1.547 | 0.678 | 6.279 ** | 4.056 ** | 1.744 | |||
GOFF-II test | 16.76 *** | 12.64 *** | 17.79 *** | 0.475 | 2.686 * | 1.640 | 6.340 ** | 4.136 ** | 7.01 *** | |||
GGOFF | 17.82 *** | 12.68 *** | 17.79 *** | 2.82 | 10.29 *** | 8.75 ** | 1.640 | 0.678 | 6.349 ** | 4.241 | 7.01 *** | 1.744 |
P-test | ||||||||||||
H1: FRM II–logit | 11.76 *** | 15.92 *** | 3.85 | 9.37 *** | 8.06 *** | 0.035 | 3.490 ** | 7.12 *** | 1.307 | |||
H1: FRM II–probit | 19.00 *** | 20.49 *** | 3.48 | 3.368 * | 4.135 ** | 0.500 | 6.98 *** | 8.00 *** | 1.580 | |||
H1: FRM II-loglog | 14.40 *** | 11.67 *** | 3.89 | 0.000 | 0.273 | 0.038 | 6.102 ** | 3.543 ** | 1.338 | |||
H1: FRM II-cloglog | 20.06 *** | 13.46 *** | 21.82 *** | 0.547 | 4.623 ** | 6.49 *** | 7.66 *** | 4.459 ** | 8.69 *** |
One-Part Models | Two-Part Models | |||||
---|---|---|---|---|---|---|
First Component | Second Component | |||||
Logit | Probit | Logit | Probit | Logit | Probit | |
DEA-VRS | DEA-VRS | DEA-VRS | DEA-VRS | DEA-VRS | DEA-VRS | |
CO2/area | −0.64088 *** | −0.33261 *** | −0.95707 ** | −0.40055 | −0.66960 *** | −0.34815 *** |
CH4/area | −0.34683* | −0.14423 | −0.82603 | −0.52906 * | −0.62155 *** | −0.26387 *** |
N20/area | −0.44305 *** | −0.19295 *** | −0.99340 ** | −0.62872 ** | −0.27661 ** | −0.11634 ** |
NH3/area | −0.09582 | −0.02787 | −1.86841 *** | 1.21054 *** | −0.40126 * | −0.18192 * |
NMVOC/area | −0.06458 | −0.02407 | −0.23026 | −0.23663 | −0.10471 | −0.08939 |
PM2.5/area | −0.96719 *** | −0.42848 *** | −1.46954 *** | −0.80893 *** | −0.64478 *** | −0.29285 *** |
PM10/area | −1.08304 *** | −0.46655 *** | −1.75844 *** | −0.93809 ** | −0.76547 *** | −0.33144 *** |
SOx/area | −0.25321 *** | −0.12536 *** | −0.33874 | −0.19504 * | −0.20275 *** | −0.10602 *** |
Cons | −0.51518 | −0.10730 | −5.82937 | −3.68620 | 0.18205 | 0.44460 |
Obs | 297 | 297 | 297 | 297 | 235 | 235 |
R2 | 0.5673 | 0.5737 | 0.1766 | 0.1660 | 0.6566 | 0.6627 |
One-Part Models | Two-Part Models | |||||
First Component | Second Component | |||||
Loglog | Cloglog | Loglog | Cloglog | Loglog | Cloglog | |
DEA-VRS | DEA-VRS | DEA-VRS | DEA-VRS | DEA-VRS | DEA-VRS | |
CO2/area | −0.59078 *** | −0.25523 *** | −0.22788 | −0.91315 ** | −0.61980 *** | −0.26839 *** |
CH4/area | −0.34912* | −0.08725 | −0.51877 * | −0.65527 | −0.61959 *** | −0.16357 *** |
N20/area | −0.44391 *** | −0.12184 *** | −0.63246 ** | −0.71592 * | −0.27993 ** | −0.06893 ** |
NH3/area | −0.09551 | −0.00817 | −1.20376 *** | −1.45851 *** | −0.39595 * | −0.12218 ** |
NMVOC/area | −0.09565 | −0.05323 | −0.30238 | −0.19500 | −0.07657 | −0.09140 ** |
PM2.5/area | −0.94199 *** | −0.28483 *** | −0.73603 *** | −1.19409 *** | −0.62996 *** | −0.19917 *** |
PM10/area | 1.06996 *** | −0.30091 *** | −0.82145 ** | −1.50290 *** | −0.75967 *** | −0.21238 *** |
SOx/area | −0.23543 *** | −0.09063 *** | −0.17962 * | 0.26956 | −0.18646 *** | −0.08114 *** |
Cons | −0.51518 | −0.08614 | −3.50904 | −4.59116 | −0.16780 | −0.33439 |
Obs | 297 | 297 | 297 | 297 | 235 | 235 |
R2 | 0.5634 | 0.5788 | 0.1530 | 0.1785 | 0.6527 | 0.6674 |
One-Part Model | Two-Part Model | |||
---|---|---|---|---|
Logit (1st Component) | ||||
logit | cloglog | loglog | cloglog | |
CO2/area | −0.02582 | −0.03118 | −0.15070 | −0.15251 |
CH4/area | −0.01397 | −0.01066 | −0.10093 | −0.10179 |
N20/area | −0.01785 | −0.01488 | −0.11675 | −0.11653 |
NH3/area | −0.00386 | −0.00100 | −0.23131 | −0.23177 |
NMVOC/area | −0.00260 | −0.00650 | −0.03076 | −0.02938 |
PM2.5/area | −0.03897 | −0.03479 | −0.19584 | −0.19617 |
PM10/area | −0.04364 | −0.03676 | −0.24626 | −0.24609 |
SOx/area | −0.01020 | −0.01107 | −0.04451 | −0.04506 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moutinho, V.; Madaleno, M. A Two-Stage DEA Model to Evaluate the Technical Eco-Efficiency Indicator in the EU Countries. Int. J. Environ. Res. Public Health 2021, 18, 3038. https://doi.org/10.3390/ijerph18063038
Moutinho V, Madaleno M. A Two-Stage DEA Model to Evaluate the Technical Eco-Efficiency Indicator in the EU Countries. International Journal of Environmental Research and Public Health. 2021; 18(6):3038. https://doi.org/10.3390/ijerph18063038
Chicago/Turabian StyleMoutinho, Victor, and Mara Madaleno. 2021. "A Two-Stage DEA Model to Evaluate the Technical Eco-Efficiency Indicator in the EU Countries" International Journal of Environmental Research and Public Health 18, no. 6: 3038. https://doi.org/10.3390/ijerph18063038
APA StyleMoutinho, V., & Madaleno, M. (2021). A Two-Stage DEA Model to Evaluate the Technical Eco-Efficiency Indicator in the EU Countries. International Journal of Environmental Research and Public Health, 18(6), 3038. https://doi.org/10.3390/ijerph18063038