Characteristics of the Electrophysiological Properties of Neuromuscular Motor Units and Its Adaptive Strategy Response in Lower Extremity Muscles for Seniors with Pre-Sarcopenia: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Ageing; United Nations: New York, NY, USA, 2017. [Google Scholar]
- Moon, S.-S. Low skeletal muscle mass is associated with insulin resistance, diabetes, and metabolic syndrome in the Korean population: The Korea National Health and Nutrition Examination Survey (KNHANES) 2009–2010. Endocr. J. 2013, 61, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Working Group on Functional Outcome Measures for Clinical Trials. Functional outcomes for clinical trials in frail older persons: Time to be moving. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2008, 63, 160.
- Shafiee, G.; Keshtkar, A.; Soltani, A.; Ahadi, Z.; Larijani, B.; Heshmat, R. Prevalence of sarcopenia in the world: A systematic review and meta-analysis of general population studies. J. Diabetes Metab. Disord. 2017, 16, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lexell, J.; Taylor, C.C.; Sjöström, M. What is the cause of the ageing atrophy?: Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15-to 83-year-old men. J. Neurol. Sci. 1988, 84, 275–294. [Google Scholar] [CrossRef]
- Doherty, T.J. Invited review: Aging and sarcopenia. J. Appl. Physiol. 2003, 95, 1717–1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brook, M.; Wilkinson, D.; Phillips, B.; Perez-Schindler, J.; Philp, A.; Smith, K.; Atherton, P. Skeletal muscle homeostasis and plasticity in youth and ageing: Impact of nutrition and exercise. Acta Physiol. 2016, 216, 15–41. [Google Scholar] [CrossRef] [Green Version]
- Ho, S.-Y.; Chen, H.-T.; Chung, Y.-C.; Wang, Z.-Y.; Liu, Y.-C.; Wu, H.-J. Effect of short-term high-intensity circuit training on body composition, metabolic syndrome, lower limb muscular strength and blood parameters in middle-aged women. Phys. Educ. J. 2018, 51, 155–168. [Google Scholar] [CrossRef]
- Sun, W.-H.; Tsai, S.-H.; Cheng, H.-C.; Liu, H.-W. Effects of 12 weeks of resistance training on body fat and adipose-related inflammatory cytokines in healthy older adults. Phys. Educ. J. 2020, 53, 407–418. [Google Scholar] [CrossRef]
- McNeil, C.J.; Doherty, T.J.; Stashuk, D.W.; Rice, C.L. Motor unit number estimates in the tibialis anterior muscle of young, old, and very old men. Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med. 2005, 31, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, B.; Irving, D. The numbers of limb motor neurons in the human lumbosacral cord throughout life. J. Neurol. Sci. 1977, 34, 213–219. [Google Scholar] [CrossRef]
- Feinstein, B.; Lindegård, B.; Nyman, E.; Wohlfart, G. Morphologic studies of motor units in normal human muscles. Cells Tissues Organs 1955, 23, 127–142. [Google Scholar] [CrossRef]
- Gath, I.; Stålberg, E. In situ measurement of the innervation ratio of motor units in human muscles. Exp. Brain Res. 1981, 43, 377–382. [Google Scholar] [PubMed]
- Piasecki, M.; Ireland, A.; Jones, D.A.; McPhee, J.S. Age-dependent motor unit remodelling in human limb muscles. Biogerontology 2016, 17, 485–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verdijk, L.B.; Snijders, T.; Beelen, M.; Savelberg, H.H.; Meijer, K.; Kuipers, H.; Van Loon, L.J. Characteristics of muscle fiber type are predictive of skeletal muscle mass and strength in elderly men. J. Am. Geriatr. Soc. 2010, 58, 2069–2075. [Google Scholar] [CrossRef]
- Kawamura, Y.; Okazaki, H.; O’Brien, P.C.; Dyck, P.J. Lumbar motoneurons of man: I) number and diameter histogram of alpha and gamma axons of ventral root. J. Neuropathol. Exp. Neurol. 1977, 36, 853–860. [Google Scholar] [CrossRef] [PubMed]
- McKinnon, N.B.; Montero-Odasso, M.; Doherty, T.J. Motor unit loss is accompanied by decreased peak muscle power in the lower limb of older adults. Exp. Gerontol. 2015, 70, 111–118. [Google Scholar] [CrossRef] [PubMed]
- McComas, A.; Fawcett, P.R.W.; Campbell, M.; Sica, R. Electrophysiological estimation of the number of motor units within a human muscle. J. Neurol. Neurosurg. Psychiatry 1971, 34, 121–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNeil, C.J.; Rice, C.L. Neuromuscular adaptations to healthy aging. Appl. Physiol. Nutr. Metab. 2018, 43, 1158–1165. [Google Scholar] [CrossRef]
- Essén-Gustavsson, B.; Borges, O. Histochemical and metabolic characteristics of human skeletal muscle in relation to age. Acta Physiol. Scand. 1986, 126, 107–114. [Google Scholar] [CrossRef]
- Gerdle, B.; Karlsson, S.; Crenshaw, A.G.; Elert, J.; Fridén, J. The influences of muscle fibre proportions and areas upon EMG during maximal dynamic knee extensions. Eur. J. Appl. Physiol. 2000, 81, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Liu, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Bahyah, K.S.; Chou, M.Y.; Chen, L.Y.; Hsu, P.S.; Krairit, O.; et al. Sarcopenia in Asia: Consensus report of the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2014, 15, 95–101. [Google Scholar] [CrossRef]
- Rantanen, T.; Masaki, K.; Foley, D.; Izmirlian, G.; White, L.; Guralnik, J. Grip strength changes over 27 yr in Japanese-American men. J. Appl. Physiol. 1998, 85, 2047–2053. [Google Scholar] [CrossRef] [Green Version]
- Adam, A.; De Luca, C.J. Firing rates of motor units in human vastus lateralis muscle during fatiguing isometric contractions. J. Appl. Physiol. 2005, 99, 268–280. [Google Scholar] [CrossRef]
- De Luca, C.J.; Erim, Z. Common drive of motor units in regulation of muscle force. Trends Neurosci. 1994, 17, 299–305. [Google Scholar] [CrossRef]
- Luca, C.J.D.; Adam, A.; Wotiz, R.; Gilmore, L.D.; Nawab, S.H. Decomposition of Surface EMG Signals. J. Neurophysiol. 2006, 96, 1646–1657. [Google Scholar] [CrossRef] [PubMed]
- Nawab, S.H.; Chang, S.-S.; De Luca, C.J. High-yield decomposition of surface EMG signals. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2010, 121, 1602–1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Luca, C.J.; Contessa, P. Hierarchical control of motor units in voluntary contractions. J. Neurophysiol. 2012, 107, 178–195. [Google Scholar] [CrossRef] [Green Version]
- Kline, J.C.; Luca, C.J.D. Error reduction in EMG signal decomposition. J. Neurophysiol. 2014, 112, 2718–2728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gobbo, M.; Maffiuletti, N.; Orizio, C.; Minetto, M. Muscle motor point identification is essential for optimizing neuromuscular electrical stimulation use. J. Neuroeng. Rehabil. 2014, 11, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Potvin, J.R.; Fuglevand, A.J. A motor unit-based model of muscle fatigue. PLoS Comput. Biol. 2017, 13, e1005581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Luca, C.J.; LeFever, R.S.; McCue, M.P.; Xenakis, A.P. Control scheme governing concurrently active human motor units during voluntary contractions. J. Physiol. 1982, 329, 129–142. [Google Scholar] [CrossRef] [PubMed]
- De Luca, C.J.; LeFever, R.S.; McCue, M.P.; Xenakis, A.P. Behaviour of human motor units in different muscles during linearly varying contractions. J. Physiol. 1982, 329, 113–128. [Google Scholar] [CrossRef]
- Stock, M.S.; Beck, T.W.; Defreitas, J.M. Effects of fatigue on motor unit firing rate versus recruitment threshold relationships. Muscle Nerve 2012, 45, 100–109. [Google Scholar] [CrossRef]
- Ling, S.M.; Conwit, R.A.; Ferrucci, L.; Metter, E.J. Age-associated changes in motor unit physiology: Observations from the Baltimore Longitudinal Study of Aging. Arch. Phys. Med. Rehabil. 2009, 90, 1237–1240. [Google Scholar] [CrossRef] [Green Version]
- Tudoraşcu, I.; Sfredel, V.; Riza, A.L.; Dănciulescu Miulescu, R.; Ianoşi, S.L.; Dănoiu, S. Motor unit changes in normal aging: A brief review. Rom. J. Morphol. Embryol. 2014, 55, 1295–1301. [Google Scholar] [PubMed]
- Barnouin, Y.; McPhee, J.S.; Butler-Browne, G.; Bosutti, A.; De Vito, G.; Jones, D.A.; Narici, M.; Behin, A.; Hogrel, J.Y.; Degens, H. Coupling between skeletal muscle fiber size and capillarization is maintained during healthy aging. J. Cachexia Sarcopenia Muscle 2017, 8, 647–659. [Google Scholar] [CrossRef]
- Roos, M.R.; Rice, C.L.; Connelly, D.M.; Vandervoort, A.A. Quadriceps muscle strength, contractile properties, and motor unit firing rates in young and old men. Muscle Nerve 1999, 22, 1094–1103. [Google Scholar] [CrossRef]
- Mendell, L.M. The size principle: A rule describing the recruitment of motoneurons. J. Neurophysiol. 2005, 93, 3024–3026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karp, J.R. Muscle fiber types and training. Strength Cond. J. 2001, 23, 21–26. [Google Scholar] [CrossRef]
- Miller, J.D.; Herda, T.J.; Trevino, M.A.; Sterczala, A.J.; Ciccone, A.B. Time-related changes in firing rates are influenced by recruitment threshold and twitch force potentiation in the first dorsal interosseous. Exp. Physiol. 2017, 102, 950–961. [Google Scholar] [CrossRef] [PubMed]
- Colquhoun, R.J.; Tomko, P.M.; Magrini, M.A.; Muddle, T.W.; Jenkins, N.D. The influence of input excitation on the inter-and intra-day reliability of the motor unit firing rate versus recruitment threshold relationship. J. Neurophysiol. 2018, 120, 3131–3139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vito, G.; Bernardi, M.; Forte, R.; Pulejo, C.; Macaluso, A.; Figura, F. Determinants of maximal instantaneous muscle power in women aged 50–75 years. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 78, 59–64. [Google Scholar] [CrossRef]
- Kung, T.A.; Cederna, P.S.; van der Meulen, J.H.; Urbanchek, M.G.; Kuzon Jr, W.M.; Faulkner, J.A. Motor unit changes seen with skeletal muscle sarcopenia in oldest old rats. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 657–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kryger, A.; Andersen, J. Resistance training in the oldest old: Consequences for muscle strength, fiber types, fiber size, and MHC isoforms. Scand. J. Med. Sci. Sports 2007, 17, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Deutz, N.E.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznariç, Z.; Nair, K.S. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef] [Green Version]
- Deschenes, M.R. Motor unit and neuromuscular junction remodeling with aging. Curr. Aging Sci. 2011, 4, 209–220. [Google Scholar] [CrossRef]
- Trevino, M.A.; Herda, T.J.; Fry, A.C.; Gallagher, P.M.; Vardiman, J.P.; Mosier, E.M.; Miller, J.D. Influence of the contractile properties of muscle on motor unit firing rates during a moderate-intensity contraction in vivo. J. Neurophysiol. 2016, 116, 552–562. [Google Scholar] [CrossRef] [Green Version]
RS Group (n = 5) | NS Group (n = 5) | YG (n = 12) | |
---|---|---|---|
Age (yr) | 66.20 ± 4.44 | 69.00 ± 2.35 | 21.33 ± 1.15 *,a,b |
Gender | 5 females | 3 males, 2 females | 9 males, 3 females |
Height (m) | 1.54 ± 0.03 | 1.59 ± 0.08 | 1.70 ± 0.10 *,a,b |
Weight (kg) | 50.00 ± 2.71 | 60.20 ± 13.85 | 65.59 ± 11.24 *,a,b |
MVC (N) | 161.26 ± 46.11 | 258.47 ± 69.25 | 491.93 ± 155.26 *,a,b |
ASM(kg/m2) | 5.28 ± 0.44 | 7.20 ± 1.40 | 7.81 ± 1.30 *,a,b |
Gait speed (m/s) | 0.83 ± 0.15 | 1.07 ± 0.11 | - |
Grip strength (kg) | 20.00 ± 3.74 | 29.60 ± 8.88 | - |
PASE (score) | 144.2± 3.44 | 183.40 ± 101.80 | - |
IPAQ (score) | - | - | 315.17 ± 235.26 |
RS Group (n = 5) | NS Group (n = 5) | YG Group (n = 12) | |
---|---|---|---|
Number of MUs (#) | 23.40 ± 7.37 | 26.60 ± 6.80 | 20.33 ± 5.53 |
Slope (pps/%MVC) | −0.39 ± 0.06 | −0.20 ± 0.25 | −0.48 ± 0.17 *,a |
Y-intercept (pps) | 25.04 ± 2.65 | 21.02 ± 3.90 | 26.17 ± 5.62 |
Recruitment threshold (%) | 23.32 ± 13.91 | 20.84 ± 12.42 | 22.97 ± 10.17 |
Mean firing rate (pps) | 17.70 ± 3.18 | 15.92 ± 2.39 | 14.66 ± 1.83 |
Firing rate per unit force (pps/MVC (N)) | 0.24 ± 0.09 a | 0.14 ± 0.06 | 0.07 ± 0.03 *,a,b |
Muscle fiber discrimination (pps) | 19.16 ± 1.55 | 17.14 ± 3.20 | 15.89 ± 2.45 |
Force variance | 5.4 ± 2.8 | 4.5 ± 0.8 | 1.4 ± 1.4 *,a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.-H.; Yang, C.-C.; Tu, S.J.; Huang, I.-J.; Ganbat, D.; Guo, L.-Y. Characteristics of the Electrophysiological Properties of Neuromuscular Motor Units and Its Adaptive Strategy Response in Lower Extremity Muscles for Seniors with Pre-Sarcopenia: A Preliminary Study. Int. J. Environ. Res. Public Health 2021, 18, 3063. https://doi.org/10.3390/ijerph18063063
Hu C-H, Yang C-C, Tu SJ, Huang I-J, Ganbat D, Guo L-Y. Characteristics of the Electrophysiological Properties of Neuromuscular Motor Units and Its Adaptive Strategy Response in Lower Extremity Muscles for Seniors with Pre-Sarcopenia: A Preliminary Study. International Journal of Environmental Research and Public Health. 2021; 18(6):3063. https://doi.org/10.3390/ijerph18063063
Chicago/Turabian StyleHu, Chia-Han, Chia-Chi Yang, Shihfan Jack Tu, Ing-Jer Huang, Danaa Ganbat, and Lan-Yuen Guo. 2021. "Characteristics of the Electrophysiological Properties of Neuromuscular Motor Units and Its Adaptive Strategy Response in Lower Extremity Muscles for Seniors with Pre-Sarcopenia: A Preliminary Study" International Journal of Environmental Research and Public Health 18, no. 6: 3063. https://doi.org/10.3390/ijerph18063063
APA StyleHu, C. -H., Yang, C. -C., Tu, S. J., Huang, I. -J., Ganbat, D., & Guo, L. -Y. (2021). Characteristics of the Electrophysiological Properties of Neuromuscular Motor Units and Its Adaptive Strategy Response in Lower Extremity Muscles for Seniors with Pre-Sarcopenia: A Preliminary Study. International Journal of Environmental Research and Public Health, 18(6), 3063. https://doi.org/10.3390/ijerph18063063