Evaluating the Relationships between Riparian Land Cover Characteristics and Biological Integrity of Streams Using Random Forest Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Monitoring Program and Biological Indicators
2.3. Land Cover Characteristics of Riparian Buffer Zones
2.4. Statistical Approach
3. Results
3.1. Descriptive Statistics
3.2. Random Forest Models for Biological Indicators
3.3. The Partial Dependence Plots Analysis
4. Discussion
4.1. Influences of Riparian Land Cover Proportions and Patterns on the Biological Integrity of Streams
4.2. Threshold Effects of Land Cover Characteristics on the Biological Integrity of Streams
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Giri, S.; Qiu, Z. Understanding the Relationship of Land Uses and Water Quality in Twenty First Century: A Review. J. Environ. Manag. 2016, 173, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooper, L.; Hubbart, J.A. A Rapid Physical Habitat Assessment of Wadeable Streams for Mixed-Land-Use Watersheds. Hydrology 2016, 3, 37. [Google Scholar] [CrossRef] [Green Version]
- Meyer, J.L.; Strayer, D.L.; Wallace, J.B.; Eggert, S.L.; Helfman, G.S.; Leonard, N.E. The Contribution of Headwater Streams to Biodiversity in River Networks 1. JAWRA J. Am. Water Resour. Assoc. 2007, 43, 86–103. [Google Scholar] [CrossRef] [Green Version]
- Whitehead, P.G.; Wilby, R.L.; Battarbee, R.W.; Kernan, M.; Wade, A.J. A Review of the Potential Impacts of Climate Change on Surface Water Quality. Hydrol. Sci. J. 2009, 54, 101–123. [Google Scholar] [CrossRef]
- Ngoye, E.; Machiwa, J.F. The Influence of Land-use Patterns in the Ruvu River Watershed on Water Quality in the River System. Phys. Chem. Earth Parts A/B/C 2004, 29, 1161–1166. [Google Scholar] [CrossRef]
- Yu, D.; Shi, P.; Liu, Y.; Xun, B. Detecting Land Use-Water Quality Relationships from the Viewpoint of Ecological Restoration in an Urban Area. Ecol. Eng. 2013, 53, 205–216. [Google Scholar] [CrossRef]
- Zhou, T.; Wu, J.; Peng, S. Assessing the Effects of Landscape Pattern on River Water Quality at Multiple Scales: A Case Study of the Dongjiang River Watershed, China. Ecol. Indic. 2012, 23, 166–175. [Google Scholar] [CrossRef]
- Mitsova, D.; Shuster, W.; Wang, X. A Cellular Automata Model of Land Cover Change to Integrate Urban Growth with Open Space Conservation. Landsc. Urban Plan. 2011, 99, 141–153. [Google Scholar] [CrossRef]
- Clerici, N.; Vogt, P. Ranking European Regions as Providers of Structural Riparian Corridors for Conservation and Management Purposes. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 477–483. [Google Scholar] [CrossRef]
- Whitaker, D.M.; Carroll, A.L.; Montevecchi, W.A. Elevated Numbers of Flying Insects and Insectivorous Birds in Riparian Buffer Strips. Can. J. Zool. 2000, 78, 740–747. [Google Scholar] [CrossRef]
- Weber, T.; Sloan, A.; Wolf, J. Maryland’s Green Infrastructure Assessment: Development of a Comprehensive Approach to Land Conservation. Landsc. Urban Plan. 2006, 77, 94–110. [Google Scholar] [CrossRef]
- Liao, K.; Deng, S.; Tan, P.Y. Blue-Green Infrastructure: New Frontier for Sustainable Urban Stormwater Management. Autom. Cities 2017, 203–226. [Google Scholar] [CrossRef]
- Yirigui, Y.; Lee, S.; Nejadhashemi, A.P.; Herman, M.R.; Lee, J. Relationships between Riparian Forest Fragmentation and Biological Indicators of Streams. Sustainability 2019, 11, 2870. [Google Scholar] [CrossRef] [Green Version]
- de Souza, A.L.; Fonseca, D.G.; Liborio, R.A.; Tanaka, M.O. Influence of Riparian Vegetation and Forest Structure on the Water Quality of Rural Low-Order Streams in SE Brazil. For. Ecol. Manag. 2013, 298, 12–18. [Google Scholar] [CrossRef]
- Li, K.; Chi, G.; Wang, L.; Xie, Y.; Wang, X.; Fan, Z. Identifying the Critical Riparian Buffer Zone with the Strongest Linkage between Landscape Characteristics and Surface Water Quality. Ecol. Ind. 2018, 93, 741–752. [Google Scholar] [CrossRef]
- Shen, Z.; Hou, X.; Li, W.; Aini, G.; Chen, L.; Gong, Y. Impact of Landscape Pattern at Multiple Spatial Scales on Water Quality: A Case Study in a Typical Urbanised Watershed in China. Ecol. Ind. 2015, 48, 417–427. [Google Scholar] [CrossRef]
- Clément, F.; Ruiz, J.; Rodríguez, M.A.; Blais, D.; Campeau, S. Landscape Diversity and Forest Edge Density Regulate Stream Water Quality in Agricultural Catchments. Ecol. Ind. 2017, 72, 627–639. [Google Scholar] [CrossRef]
- Liu, J.; Shen, Z.; Chen, L. Assessing how Spatial Variations of Land use Pattern Affect Water Quality Across a Typical Urbanized Watershed in Beijing, China. Landsc. Urban Plann. 2018, 176, 51–63. [Google Scholar] [CrossRef]
- Yirigui, Y.; Lee, S.; Nejadhashemi, A.P. Multi-Scale Assessment of Relationships between Fragmentation of Riparian Forests and Biological Conditions in Streams. Sustainability 2019, 11, 5060. [Google Scholar] [CrossRef] [Green Version]
- Ouedraogo, I.; Defourny, P.; Vanclooster, M. Application of Random Forest Regression and Comparison of its Performance to Multiple Linear Regression in Modeling Groundwater Nitrate Concentration at the African Continent Scale. Hydrogeol. J. 2019, 27, 1081–1098. [Google Scholar] [CrossRef]
- Park, S.; Lee, S. Spatially Varying and Scale-Dependent Relationships of Land use Types with Stream Water Quality. Int. J. Environ. Res. Public Health 2020, 17, 1673. [Google Scholar] [CrossRef] [Green Version]
- Maloney, K.O.; Schmid, M.; Weller, D.E. Applying Additive Modelling and Gradient Boosting to Assess the Effects of Watershed and Reach Characteristics on Riverine Assemblages. Methods Ecol. Evol. 2012, 3, 116–128. [Google Scholar] [CrossRef]
- Smucker, N.J.; Detenbeck, N.E.; Morrison, A.C. Diatom Responses to Watershed Development and Potential Moderating Effects of Near-Stream Forest and Wetland Cover. Freshw. Sci. 2013, 32, 230–249. [Google Scholar] [CrossRef]
- Liao, H.; Sarver, E.; Krometis, L.H. Interactive Effects of Water Quality, Physical Habitat, and Watershed Anthropogenic Activities on Stream Ecosystem Health. Water Res. 2018, 130, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Brokamp, C.; Jandarov, R.; Rao, M.B.; LeMasters, G.; Ryan, P. Exposure Assessment Models for Elemental Components of Particulate Matter in an Urban Environment: A Comparison of Regression and Random Forest Approaches. Atmos. Environ. 2017, 151, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Giri, S.; Zhang, Z.; Krasnuk, D.; Lathrop, R.G. Evaluating the Impact of Land Uses on Stream Integrity using Machine Learning Algorithms. Sci. Total Environ. 2019, 696, 133858. [Google Scholar] [CrossRef]
- Gergel, S.E.; Turner, M.G.; Miller, J.R.; Melack, J.M.; Stanley, E.H. Landscape Indicators of Human Impacts to Riverine Systems. Aquat. Sci. 2002, 64, 118–128. [Google Scholar] [CrossRef]
- Dodds, W.K.; Clements, W.H.; Gido, K.; Hilderbrand, R.H.; King, R.S. Thresholds, Breakpoints, and Nonlinearity in Freshwaters as Related to Management. J. N. Am. Benthol. Soc. 2010, 29, 988–997. [Google Scholar] [CrossRef]
- Wu, J.; Lu, J. Landscape Patterns Regulate Non-Point Source Nutrient Pollution in an Agricultural Watershed. Sci. Total Environ. 2019, 669, 377–388. [Google Scholar] [CrossRef]
- Utz, R.M.; Hilderbrand, R.H.; Boward, D.M. Identifying Regional Differences in Threshold Responses of Aquatic Invertebrates to Land Cover Gradients. Ecol. Ind. 2009, 9, 556–567. [Google Scholar] [CrossRef]
- Chen, K.; Olden, J.D. Threshold Responses of Riverine Fish Communities to Land use Conversion Across Regions of the World. Glob. Chang. Biol. 2020, 26, 4952–4965. [Google Scholar] [CrossRef] [PubMed]
- Chang, H. Spatial Analysis of Water Quality Trends in the Han River Basin, South Korea. Water Res. 2008, 42, 3285–3304. [Google Scholar] [CrossRef] [PubMed]
- Korea Meteorological Administration. Available online: www.kma.go.kr (accessed on 18 February 2021).
- Lee, S.; Hwang, S.; Lee, J.; Jung, D.; Park, Y.; Kim, J. Overview and Application of the National Aquatic Ecological Monitoring Program (NAEMP) in Korea. In Annales De Limnologie-International Journal of Limnology; EDP Sciences: Les Ulis, France, 2011; pp. 3–14. [Google Scholar]
- Kelly, M.G.; Whitton, B.A. The Trophic Diatom Index: A New Index for Monitoring Eutrophication in Rivers. J. Appl. Phycol. 1995, 7, 433–444. [Google Scholar] [CrossRef]
- Karr, J.R. Defining and Measuring River Health. Freshw. Biol. 1999, 41, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Environment and National Institute of Environmental Research (MOE and NIER). Waterwide Aquatic Ecological Monitoring Program (V); Korean Literature; Ministry of Environment and National Institute of Environmental Research: Incheon, Korea, 2012. [Google Scholar]
- McGarigal, K.; Cushman, S.A.; Neel, M.C.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Computer Software Program Produced by the Authors at the University of Massachusetts, Amherst. 2002. Available online: www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 18 March 2021).
- Jaeger, J.A. Landscape Division, Splitting Index, and Effective Mesh Size: New Measures of Landscape Fragmentation. Landsc. Ecol. 2000, 15, 115–130. [Google Scholar] [CrossRef]
- Wang, X.; Blanchet, F.G.; Koper, N. Measuring Habitat Fragmentation: An Evaluation of Landscape Pattern Metrics. Methods Ecol. Evol. 2014, 5, 634–646. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, G.; Liu, F.; Lu, Y.; Yang, F.; Yang, F.; Yang, M.; Zhao, Y.; Li, D. Comparison of Boosted Regression Tree and Random Forest Models for Mapping Topsoil Organic Carbon Concentration in an Alpine Ecosystem. Ecol. Ind. 2016, 60, 870–878. [Google Scholar] [CrossRef]
- Álvarez-Cabria, M.; González-Ferreras, A.M.; Peñas, F.J.; Barquín, J. Modelling Macroinvertebrate and Fish Biotic Indices: From Reaches to Entire River Networks. Sci. Total Environ. 2017, 577, 308–318. [Google Scholar] [CrossRef]
- Carlisle, D.M.; Falcone, J.; Meador, M.R. Predicting the Biological Condition of Streams: Use of Geospatial Indicators of Natural and Anthropogenic Characteristics of Watersheds. Environ. Monit. Assess. 2009, 151, 143–160. [Google Scholar] [CrossRef]
- Bolker, B.; Team R. D., C. Bbmle: Tools for General Maximum Likelihood Estimation. R Package Version 1.0.20. R Foundation for Statistical Computing. 2017. Available online: https://CRAN.R-project.org/package=bbmle (accessed on 18 March 2021).
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. Asabe 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Luo, K.; Hu, X.; He, Q.; Wu, Z.; Cheng, H.; Hu, Z.; Mazumder, A. Impacts of Rapid Urbanization on the Water Quality and Macroinvertebrate Communities of Streams: A Case Study in Liangjiang New Area, China. Sci. Total Environ. 2018, 621, 1601–1614. [Google Scholar] [CrossRef] [PubMed]
- Pillsbury, R.; Stevenson, R.J.; Munn, M.D.; Waite, I. Relationships between Diatom Metrics Based on Species Nutrient Traits and Agricultural Land Use. Environ. Monit. Assess. 2019, 191, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lyons, J.; Kanehl, P.; Bannerman, R. Impacts of Urbanization on Stream Habitat and Fish Across Multiple Spatial Scales. Environ. Manag. 2001, 28, 255–266. [Google Scholar] [CrossRef]
- Moreno-Mateos, D.; Mander, Ü.; Comín, F.A.; Pedrocchi, C.; Uuemaa, E. Relationships between Landscape Pattern, Wetland Characteristics, and Water Quality in Agricultural Catchments. J. Environ. Qual. 2008, 37, 2170–2180. [Google Scholar] [CrossRef] [PubMed]
- Uuemaa, E.; Roosaare, J.; Mander, Ü. Landscape Metrics as Indicators of River Water Quality at Catchment Scale. Hydrol. Res. 2007, 38, 125–138. [Google Scholar] [CrossRef]
- Fierro, P.; Valdovinos, C.; Arismendi, I.; Díaz, G.; Jara-Flores, A.; Habit, E.; Vargas-Chacoff, L. Examining the Influence of Human Stressors on Benthic Algae, Macroinvertebrate, and Fish Assemblages in Mediterranean Streams of Chile. Sci. Total Environ. 2019, 686, 26–37. [Google Scholar] [CrossRef]
- Walters, D.M.; Roy, A.H.; Leigh, D.S. Environmental Indicators of Macroinvertebrate and Fish Assemblage Integrity in Urbanizing Watersheds. Ecol. Ind. 2009, 9, 1222–1233. [Google Scholar] [CrossRef]
- Flinders, C.A.; Horwitz, R.J.; Belton, T. Relationship of Fish and Macroinvertebrate Communities in the Mid-Atlantic Uplands: Implications for Integrated Assessments. Ecol. Ind. 2008, 8, 588–598. [Google Scholar] [CrossRef]
- Liu, L.; Xu, Z.; Yang, F.; Yin, X.; Wu, W.; Li, J. Comparison of Fish, Macroinvertebrates and Diatom Communities in Response to Environmental Variation in the Wei River Basin, China. Water 2020, 12, 3422. [Google Scholar] [CrossRef]
- Tabacchi, E.; Lambs, L.; Guilloy, H.; Planty-Tabacchi, A.; Muller, E.; Decamps, H. Impacts of Riparian Vegetation on Hydrological Processes. Hydrol. Process. 2000, 14, 2959–2976. [Google Scholar] [CrossRef]
- Broadmeadow, S.; Nisbet, T.R. The Effects of Riparian Forest Management on the Freshwater Environment: A Literature Review of Best Management Practice. Hydrol. Earth Syst. Sci. 2004, 8, 286–305. [Google Scholar] [CrossRef]
- Stella, J.C.; Rodríguez-González, P.M.; Dufour, S.; Bendix, J. Riparian Vegetation Research in Mediterranean-Climate Regions: Common Patterns, Ecological Processes, and Considerations for Management. Hydrobiologia 2013, 719, 291–315. [Google Scholar] [CrossRef]
- Taniwaki, R.H.; Cassiano, C.C.; Filoso, S.; de Barros Ferraz, S.F.; de Camargo, P.B.; Martinelli, L.A. Impacts of Converting Low-Intensity Pastureland to High-Intensity Bioenergy Cropland on the Water Quality of Tropical Streams in Brazil. Sci. Total Environ. 2017, 584, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Grimstead, J.P.; Krynak, E.M.; Yates, A.G. Scale-Specific Land Cover Thresholds for Conservation of Stream Invertebrate Communities in Agricultural Landscapes. Landsc. Ecol. 2018, 33, 2239–2252. [Google Scholar] [CrossRef]
- Dalu, T.; Wasserman, R.J.; Tonkin, J.D.; Mwedzi, T.; Magoro, M.L.; Weyl, O.L. Water or Sediment? Partitioning the Role of Water Column and Sediment Chemistry as Drivers of Macroinvertebrate Communities in an Austral South African Stream. Sci. Total Environ. 2017, 607, 317–325. [Google Scholar] [CrossRef]
- Lorion, C.M.; Kennedy, B.P. Riparian Forest Buffers Mitigate the Effects of Deforestation on Fish Assemblages in Tropical Headwater Streams. Ecol. Appl. 2009, 19, 468–479. [Google Scholar] [CrossRef]
- Leite, G.F.; Silva, F.T.C.; Gonçalves, J.F.J.; Salles, P. Effects of Conservation Status of the Riparian Vegetation on Fish Assemblage Structure in Neotropical Headwater Streams. Hydrobiologia 2015, 762, 223–238. [Google Scholar] [CrossRef]
- Petty, J.T.; Fulton, J.B.; Strager, M.P.; Merovich, G.T., Jr.; Stiles, J.M.; Ziemkiewicz, P.F. Landscape Indicators and Thresholds of Stream Ecological Impairment in an Intensively Mined Appalachian Watershed. J. N. Am. Benthol. Soc. 2010, 29, 1292–1309. [Google Scholar] [CrossRef]
- King, R.S.; Baker, M.E.; Whigham, D.F.; Weller, D.E.; Jordan, T.E.; Kazyak, P.F.; Hurd, M.K. Spatial Considerations for Linking Watershed Land Cover to Ecological Indicators in Streams. Ecol. Appl. 2005, 15, 137–153. [Google Scholar] [CrossRef] [Green Version]
Biological Indicators | Equations |
---|---|
Trophic Diatom Index (TDI) | TDI = 100 − {(WMS × 25) − 25} WMS: weighted mean sensitivity where, j = species Aj = abundance (proportion) of species j in the sample (%) Sj = pollution sensitivity (1 ≤ S ≤ 5) of species j Vj = indicator value (1 ≤ V ≤ 3) |
Benthic Macroinvertebrate Index (BMI) | where, j = number assigned to species n = number of species Sj = unit saprobic value of species j Hj = frequency of species j Gj = indicators weight value of species j |
Fish Assessment Index (FAI) | FAI = sum of 8 metrics. Metric 1 (M1): number of Korean native species Metric 2 (M2): number of rifle benthic species Metric 3 (M3): number of sensitive species Metric 4 (M4): percentage of tolerant species Metric 5 (M5): percentage of omnivores Metric 6 (M6): percentage of insectivores Metric 7 (M7): the amount of collection native species Metric 8 (M8): percentage of fish abnormalities |
Metrics | Description |
---|---|
Large patch index (LPI) | The area of the largest patch divided by the total land cover area. |
Percentage of landscape (PLAND) | The sum of the areas of all patches divided by the total land cover area. |
Patch density (PD) | The number of patches divided by the total land cover area. |
Edge density (ED) | The sum of the lengths of the patches divided by the total land cover area. |
Classification | Variables | Mean | S.D. | Min | Max |
---|---|---|---|---|---|
Biological indicators | TDI (0–100) | 60.8 | 26.7 | 0.0 | 99.0 |
BMI (0–100) | 66.8 | 23.3 | 0.0 | 96.0 | |
FAI (0–100) | 63.0 | 26.1 | 0.0 | 100.0 | |
Proportions of land cover | Urban area (%) | 11.7 | 14.7 | 0.0 | 89.0 |
Agricultural area (%) | 19.3 | 16.2 | 0.0 | 84.0 | |
Forest area (%) | 50.0 | 25.8 | 0.0 | 96.0 | |
Land cover spatial patterns | Urban_LPI | 12.3 | 18.7 | 0.0 | 92.0 |
Urban_PLAND | 21.6 | 24.9 | 0.0 | 92.0 | |
Urban_PD | 52.4 | 36.9 | 0.0 | 224.0 | |
Urban_ED | 125.9 | 76.2 | 6.0 | 486.0 | |
Agricultural_LPI | 8.2 | 13.4 | 0.0 | 95.0 | |
Agricultural_PLAND | 23.3 | 21.3 | 0.0 | 95.0 | |
Agricultural_PD | 22.8 | 21.3 | 0.0 | 155.0 | |
Agricultural_ED | 112.4 | 65.2 | 1.0 | 395.0 | |
Forest_LPI | 15.4 | 18.6 | 0.0 | 96.0 | |
Forest_PLAND | 34.0 | 27.4 | 0.0 | 96.0 | |
Forest_PD | 18.8 | 28.3 | 0.0 | 168.0 | |
Forest_ED | 86.7 | 56.5 | 0.0 | 415.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-R.; Kim, S.; Lee, S.-W. Evaluating the Relationships between Riparian Land Cover Characteristics and Biological Integrity of Streams Using Random Forest Algorithms. Int. J. Environ. Res. Public Health 2021, 18, 3182. https://doi.org/10.3390/ijerph18063182
Park S-R, Kim S, Lee S-W. Evaluating the Relationships between Riparian Land Cover Characteristics and Biological Integrity of Streams Using Random Forest Algorithms. International Journal of Environmental Research and Public Health. 2021; 18(6):3182. https://doi.org/10.3390/ijerph18063182
Chicago/Turabian StylePark, Se-Rin, Suyeon Kim, and Sang-Woo Lee. 2021. "Evaluating the Relationships between Riparian Land Cover Characteristics and Biological Integrity of Streams Using Random Forest Algorithms" International Journal of Environmental Research and Public Health 18, no. 6: 3182. https://doi.org/10.3390/ijerph18063182
APA StylePark, S. -R., Kim, S., & Lee, S. -W. (2021). Evaluating the Relationships between Riparian Land Cover Characteristics and Biological Integrity of Streams Using Random Forest Algorithms. International Journal of Environmental Research and Public Health, 18(6), 3182. https://doi.org/10.3390/ijerph18063182