Arterial Stiffness and Hemodynamics in Young Women: The Effects of Oral Contraceptive Intake and Physical Habits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Design
2.3. Anthropometric Measurements
2.4. Physical Activity Assessment
2.5. Hemodynamic and Arterial Stiffness Measurements
2.5.1. Brachial Blood Pressure
2.5.2. Pulse Wave Analysis (Central Blood Pressure and AIx Measurements)
2.5.3. Pulse Wave Velocity (PWV)
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Hemodynamic Parameters
4. Discussion
4.1. Effect of Oral Contraceptives
4.2. Effect of Physical Activity
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIx75 | Augmentation Index adjusted at a heart rate of 75 bpm |
AP | Augmented Pressure |
BP | Blood Pressure |
MAP | Mean Arterial Pressure |
MET | Metabolic Equivalent Task |
MVPA | Moderate-to-Vigorous-Intensity Physical Activity |
OC | Oral Contraceptive |
PP | Pulse Pressure |
PWA | Pulse Wave Analysis |
PWV | Pulse Wave Velocity |
References
- United Nations, Department of Economic and Social Affairs. Contraceptive Use by Method 2019: Data Booklet. Population Division 2019 (ST/ESA/SER.A/435). Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/files/documents/2020/Jan/un_2019_contraceptiveusebymethod_databooklet.pdf (accessed on 22 February 2021).
- Harvey, R.E.; Coffman, K.E.; Miller, V.M. Women-specific factors to consider in risk, diagnosis and treatment of cardiovascular disease. Women’s Health 2015, 11, 239–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lalude, O.O. Risk of cardiovascular events with hormonal contraception: Insights from the Danish cohort study. Curr. Cardiol. Rep. 2013, 15, 374. [Google Scholar] [CrossRef]
- Sitruk-Ware, R. Hormonal contraception and thrombosis. Fertil. Steril. 2016, 106, 1289–1294. [Google Scholar] [CrossRef] [Green Version]
- Serfaty, D. Update on the contraceptive contraindications. J. Gynecol. Obstet. Hum. Reprod. 2019, 48, 297–307. [Google Scholar] [CrossRef]
- Liu, H.; Yao, J.; Wang, W.; Zhang, D. Association between duration of oral contraceptive use and risk of hypertension: A meta-analysis. J. Clin. Hypertens. 2017, 19, 1032–1041. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.T.; Kotani, K. Oral contraceptive therapy increases oxidative stress in pre-menopausal women. Int. J. Prev. Med. 2012, 3, 893–896. [Google Scholar] [CrossRef] [PubMed]
- Olatunji, L.A.; Seok, Y.M.; Igunnu, A.; Kang, S.H.; Kim, I.K. Combined oral contraceptive-induced hypertension is accompanied by endothelial dysfunction and upregulated intrarenal angiotensin II type 1 receptor gene expression. Naunyn. Schmiedeberg’s Arch. Pharmacol. 2016, 389, 1147–1157. [Google Scholar] [CrossRef]
- Hickson, S.S.; Miles, K.L.; McDonnell, B.J.; Cockcroft, J.R.; Wilkinson, I.B.; McEniery, C.M.; ENIGMA Study Investigators. Use of the oral contraceptive pill is associated with increased large artery stiffness in young women: The ENIGMA study. J. Hypertens. 2011, 29, 1155–1159. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, G.F.; Hwang, S.J.; Vasan, R.S.; Larson, M.G.; Pencina, M.J.; Hamburg, N.M.; Vita, J.A.; Levy, D.; Benjamin, E.J. Arterial stiffness and cardiovascular events: The Framingham Heart Study. Circulation 2010, 121, 505–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavalcante, J.L.; Lima, J.A.; Redheuil, A.; Al-Mallah, M.H. Aortic stiffness: Current understanding and future directions. J. Am. Coll. Cardiol. 2011, 57, 1511–1522. [Google Scholar] [CrossRef] [Green Version]
- Van Bortel, L.M.; Laurent, S.; Boutouyrie, P.; Chowienczyk, P.; Cruickshank, J.K.; De Backer, T.; Filipovsky, J.; Huybrechts, S.; Mattace-Raso, F.U.; Protogerou, A.D.; et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J. Hypertens. 2012, 30, 445–448. [Google Scholar] [CrossRef] [Green Version]
- Ahimastos, A.A.; Formosa, M.; Dart, A.M.; Kingwell, B.A. Gender differences in large artery stiffness pre- and post puberty. J. Clin. Endocrinol. Metab. 2003, 88, 5375–5380. [Google Scholar] [CrossRef]
- DuPont, J.J.; Kenney, R.M.; Patel, A.R.; Jaffe, I.Z. Sex differences in mechanisms of arterial stiffness. Br. J. Pharmacol. 2019, 176, 4208–4225. [Google Scholar] [CrossRef] [PubMed]
- Priest, S.E.; Shenouda, N.; MacDonald, M.J. Effect of sex, menstrual cycle phase, and monophasic oral contraceptive pill use on local and central arterial stiffness in young adults. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H357–H365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, A.; Giannone, T.; Scheffler, P.; Doonan, R.J.; Egiziano, G.; Gomez, Y.H.; Papaioannou, T.G.; Daskalopoulou, S.S. The effect of oral contraceptive pills and the natural menstrual cYCLe on arterial stiffness and hemodynamICs (CYCLIC). J. Hypertens. 2014, 32, 100–107. [Google Scholar] [CrossRef]
- Buttar, H.S.; Li, T.; Ravi, N. Prevention of cardiovascular diseases: Role of exercise, dietary interventions, obesity and smoking cessation. Exp. Clin. Cardiol. 2005, 10, 229–249. [Google Scholar]
- Korsager Larsen, M.; Matchkov, V.V. Hypertension and physical exercise: The role of oxidative stress. Medicina 2016, 52, 19–27. [Google Scholar] [CrossRef]
- Cornelissen, V.A.; Fagard, R.H. Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension 2005, 46, 667–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozakova, M.; Palombo, C.; Mhamdi, L.; Konrad, T.; Nilsson, P.; Staehr, P.B.; Paterni, M.; Balkau, B. Habitual physical activity and vascular aging in a young to middle-age population at low cardiovascular risk. Stroke 2007, 38, 2549–2555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, R.; Iwanuma, S.; Ohashi, N.; Hashiguchi, T. New indices of arterial stiffness measured with an upper-arm oscillometric device in active versus inactive women. Physiol. Rep. 2018, 6, e13574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Germano-Soares, A.H.; Andrade-Lima, A.; Menêses, A.L.; Correia, M.A.; Parmenter, B.J.; Tassitano, R.M.; Cucato, G.G.; Ritti-Dias, R.M. Association of time spent in physical activities and sedentary behaviors with carotid-femoral pulse wave velocity: A systematic review and meta-analysis. Atherosclerosis 2018, 269, 211–218. [Google Scholar] [CrossRef]
- Horta, B.L.; Schaan, B.D.; Bielemann, R.M.; Vianna, C.A.; Gigante, D.P.; Barros, F.C.; Ekelund, U.; Hallal, P.C. Objectively measured physical activity and sedentary-time are associated with arterial stiffness in Brazilian young adults. Atherosclerosis 2015, 243, 148–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamoto, T.; Masuhara, M.; Ikuta, K. Home-based resistance training improves arterial stiffness in healthy premenopausal women. Eur. J. Appl. Physiol. 2009, 107, 113–117. [Google Scholar] [CrossRef]
- Cleland, C.L.; Hunter, R.F.; Kee, F.; Cupples, M.E.; Sallis, J.F.; Tully, M.A. Validity of the global physical activity questionnaire (GPAQ) in assessing levels and change in moderate-vigorous physical activity and sedentary behaviour. BMC Public Health 2014, 14, 1255. [Google Scholar] [CrossRef] [Green Version]
- Rivière, F.; Widad, F.Z.; Speyer, E.; Erpelding, M.L.; Escalon, H.; Vuillemin, A. Reliability and validity of the French version of the global physical activity questionnaire. J. Sport Health Sci. 2018, 7, 339–345. [Google Scholar] [CrossRef] [Green Version]
- WHO. Available online: https://www.who.int/ncds/surveillance/steps/resources/GPAQ_Analysis_Guide.pdf (accessed on 19 January 2021).
- Townsend, R.R.; Wilkinson, I.B.; Schiffrin, E.L.; Avolio, A.P.; Chirinos, J.A.; Cockcroft, J.R.; Heffernan, K.S.; Lakatta, E.G.; McEniery, C.M.; Mitchell, G.F.; et al. Recommendations for Improving and Standardizing Vascular Research on Arterial Stiffness: A Scientific Statement From the American Heart Association. Hypertension 2015, 66, 698–722. [Google Scholar] [CrossRef] [Green Version]
- Huybrechts, S.A.; Devos, D.G.; Vermeersch, S.J.; Mahieu, D.; Achten, E.; de Backer, T.L.; Segers, P.; van Bortel, L.M. Carotid to femoral pulse wave velocity: A comparison of real travelled aortic path lengths determined by MRI and superficial measurements. J. Hypertens. 2011, 29, 1577–1582. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: Cambridge, MA, USA, 2013; p. 567. [Google Scholar]
- Chasan-Taber, L.; Willett, W.C.; Manson, J.E.; Spiegelman, D.; Hunter, D.J.; Curhan, G.; Colditz, G.A.; Stampfer, M.J. Prospective study of oral contraceptives and hypertension among women in the United States. Circulation 1996, 94, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Igho Pemu, P.; Ofili, E. Hypertension in women: Part I. J. Clin. Hypertens. 2008, 10, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Kim, K. Associations between oral contraceptive use and risks of hypertension and prehypertension in a cross-sectional study of Korean women. BMC Women’s Health 2013, 13, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McEniery, C.M.; Cockcroft, J.R.; Roman, M.J.; Franklin, S.S.; Wilkinson, I.B. Central blood pressure: Current evidence and clinical importance. Eur. Heart J. 2014, 35, 1719–1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohte, N.; Saeki, T.; Miyabe, H.; Sakata, S.; Mukai, S.; Hayano, J.; Niki, K.; Sugawara, M.; Kimura, G. Relationship between blood pressure obtained from the upper arm with a cuff-type sphygmomanometer and central blood pressure measured with a catheter-tipped micromanometer. Heart Vessels 2007, 22, 410–415. [Google Scholar] [CrossRef]
- Mansia, G.; De Backer, G.; Dominiczak, A.; Cifkova, R.; Fagard, R.; Germano, G.; Grassi, G.; Heagerty, A.M.; Kjeldsen, S.E.; Laurent, S.; et al. 2007 ESH-ESC Guidelines for the management of arterial hypertension: The task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Blood Press 2007, 16, 135–232. [Google Scholar] [CrossRef]
- Seeland, U.; Demuth, I.; Regitz-Zagrosek, V.; Steinhagen-Thiessen, E.; König, M. Sex differences in arterial wave reflection and the role of exogenous and endogenous sex hormones: Results of the Berlin Aging Study II. J. Hypertens. 2020, 38, 1040–1046. [Google Scholar] [CrossRef]
- Dubey, R.K.; Oparil, S.; Imthurn, B.; Jackson, E.K. Sex hormones and hypertension. Cardiovasc. Res. 2002, 53, 688–708. [Google Scholar] [CrossRef] [Green Version]
- Kasal, D.A.; De Lorenzo, A. Oral Contraceptives and Cardiovascular Risk: Adding Clinical Evidence to the Pathophysiology. IJCS 2020, 33, 215–216. [Google Scholar] [CrossRef]
- Hayashi, K.; Miyachi, M.; Seno, N.; Takahashi, K.; Yamazaki, K.; Sugawara, J.; Yokoi, T.; Onodera, S.; Mesaki, N. Variations in carotid arterial compliance during the menstrual cycle in young women. Exp. Physiol. 2006, 91, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, T.G.; Stefanadis, C. Central hemodynamics and arterial stiffness: Methodological, clinical and pharmaceutical considerations. Curr. Pharm. Des. 2009, 15, 243–244. [Google Scholar] [CrossRef]
- Reference Values for Arterial Stiffness’ Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur. Heart J. 2010, 31, 2338–2350. [Google Scholar] [CrossRef]
- Heusinkveld, M.H.G.; Delhaas, T.; Lumens, J.; Huberts, W.; Spronck, B.; Hughes, A.D.; Reesink, K.D. Augmentation index is not a proxy for wave reflection magnitude: Mechanistic analysis using a computational model. J. Appl. Physiol. 2019, 127, 491–500. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Pikilidou, M.; Georgianos, P.; Yavropoulou, M.; Tsivgoulis, G.; Hadjistavri, L.; Nanoudis, S.; Liakopoulos, V.; Lasaridis, A.; Zebekakis, P. Wave reflections and systemic vascular resistance are stronger determinants of pulse pressure amplification than aortic stiffness in drug-naïve hypertensives. Clin. Exp. Hypertens. 2020, 42, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.H.; Gordon, R.D.; Taylor, P.J.; Ward, G.; Pimenta, E.; Stowasser, M. Effect of contraceptives on aldosterone/renin ratio may vary according to the components of contraceptive, renin assay method, and possibly route of administration. J. Clin. Endocrinol. Metab. 2011, 96, 1797–1804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sitruk-Ware, R. Pharmacological profile of progestins. Maturitas 2004, 47, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Giribela, C.R.; Consolim-Colombo, F.M.; Nisenbaum, M.G.; Moraes, T.L.; Giribela, A.H.; Baracat, E.C.; Melo, N.R. Effects of a combined oral contraceptive containing 20 mcg of ethinylestradiol and 3 mg of drospirenone on the blood pressure, renin-angiotensin-aldosterone system, insulin resistance, and androgenic profile of healthy young women. Gynecol. Endocrinol. 2015, 31, 912–915. [Google Scholar] [CrossRef]
- Heidarzadeh, Z.; Asadi, B.; Saadatnia, M.; Ghorbani, A.; Fatehi, F. The effect of low-dose combined oral contraceptive pills on brachial artery endothelial function and common carotid artery intima-media thickness. J. Stroke Cerebrovasc. Dis. 2014, 23, 675–680. [Google Scholar] [CrossRef]
- Lizarelli, P.M.; Martins, W.P.; Vieira, C.S.; Soares, G.M.; Franceschini, S.A.; Ferriani, R.A.; Patta, M.C. Both a combined oral contraceptive and depot medroxyprogesterone acetate impair endothelial function in young women. Contraception 2009, 79, 35–40. [Google Scholar] [CrossRef]
- Franceschini, S.A.; Vieira, C.S.; Martins, W.P.; Franca, J.B.; Ferriani, R.A. Effects of combined oral contraceptives containing levonorgestrel or chlormadinone on the endothelium. Contraception 2013, 87, 766–772. [Google Scholar] [CrossRef]
- Quan, H.L.; Blizzard, C.L.; Sharman, J.E.; Magnussen, C.G.; Dwyer, T.; Raitakari, O.; Cheung, M.; Venn, A.J. Resting heart rate and the association of physical fitness with carotid artery stiffness. Am. J. Hypertens. 2014, 27, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Beck, D.T.; Casey, D.P.; Martin, J.S.; Emerson, B.D.; Braith, R.W. Exercise training improves endothelial function in young prehypertensives. Exp. Biol. Med. 2013, 238, 433–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, P.J. Exercise training and sympathetic nervous system activity: Evidence for physical activity dependent neural plasticity. Clin. Exp. Pharmacol. Physiol. 2007, 34, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Harvey, R.E.; Barnes, J.N.; Hart, E.C.; Nicholson, W.T.; Joyner, M.J.; Casey, D.P. Influence of sympathetic nerve activity on aortic hemodynamics and pulse wave velocity in women. Am. J. Physiol. Heart Circ. Physiol. 2017, 312, H340–H346. [Google Scholar] [CrossRef] [Green Version]
- Casey, D.P.; Curry, T.B.; Charkoudian, N.; Joyner, M.J.; Hart, E.C. The effects of acute beta-adrenergic blockade on aortic wave reflection in postmenopausal women. Am. J. Hypertens. 2013, 26, 503–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maki-Petaja, K.M.; Barrett, S.M.; Evans, S.V.; Cheriyan, J.; McEniery, C.M.; Wilkinson, I.B. The Role of the Autonomic Nervous System in the Regulation of Aortic Stiffness. Hypertension 2016, 68, 1290–1297. [Google Scholar] [CrossRef]
- Casey, D.P.; Curry, T.B.; Joyner, M.J.; Charkoudian, N.; Hart, E.C. Relationship between muscle sympathetic nerve activity and aortic wave reflection characteristics in young men and women. Hypertension 2011, 57, 421–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haskell, W.L.; Lee, I.M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A. Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 2007, 39, 1423–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Participant Characteristics | OC− Inactive (n = 11) | OC− Active (n = 13) | OC+ Inactive (n = 13) | OC+ Active (n = 12) | p | Differences |
---|---|---|---|---|---|---|
Age (years) | 22.0 ± 2.9 | 20.5 ± 1.6 | 22.3 ± 2.4 | 21.5 ± 1.5 | 0.19 | - |
Weight (kg) | 57.4 ± 6.2 | 59.4 ± 5.7 | 60.8 ± 6.6 | 58.2 ± 4.6 | 0.51 | - |
Height (m) | 1.67 ± 0.1 | 1.67 ± 0.1 | 1.62 ± 0.1 | 1.66 ± 0.1 | 0.06 | - |
BMI (kg/m2) | 20.5 ± 1.6 | 21.2 ± 1.4 | 23.1 ± 1.9 | 21.1 ± 1.7 | p < 0.05 | OC+I > OC−A, OC−I, OC+A |
Fat mass (%) | 23.6 ± 3.5 | 23.4 ± 4.4 | 26.2 ± 4.4 | 20.9 ± 5.0 | p < 0.05 | OC+I > OC+A |
Total MVPA (MET-min/week) | 281 ± 106 | 1816.2 ± 1175 | 293 ± 179 | 1340 ± 789 | p < 0.05 | OC−A > OC−I, OC+I OC+A > OC−I, OC+I |
Cycle length, days | 28.2 ± 2 | 29.3 ± 2 | - |
OC− | OC+ | Main Statistical Effects | ||||
---|---|---|---|---|---|---|
Hemodynamic Parameters | Inactive (n = 11) | Active (n = 13) | Inactive (n = 13) | Active (n = 12) | Hormonal Status | Physical Activity |
bSBP (mmHg) | 107.5 ± 5.0 | 106.5± 3.3 | 115.1 ± 5.0 | 117.8 ± 7.0 | p < 0.000001 | 0.64 |
bDBP(mmHg) | 66.1 ± 3.8 | 63.2 ± 3.1 | 70.4 ± 4.5 | 71.1 ± 6.9 | p < 0.00005 | 0.66 |
bMBP(mmHg) | 85.3 ± 6.1 | 81.5 ± 6.1 | 92.7 ± 4.1 | 94.5 ± 6.6 | p < 0.000001 | 0.54 |
bPP(mmHg) | 41.5 ± 5.4 | 43.3 ± 2.7 | 44.7 ± 4.8 | 46.8 ± 4.5 | p < 0.02 | 0.30 |
cSBP(mmHg) | 91.9 ± 3.6 | 89.6± 3.5 | 97.7 ± 6.3 | 99.5 ± 6.1 | p < 0.000001 | 0.90 |
cDBP(mmHg) | 67.2 ± 3.9 | 64.3 ± 3.2 | 70.8 ± 4.8 | 71.3 ± 6.7 | p < 0.001 | 0.62 |
cMBP(mmHg) | 79.4 ± 3.5 | 76.5 ± 3.6 | 84.2 ± 5.2 | 85.4 ± 6.2 | p < 0.0001 | 0.65 |
cPP(mmHg) | 24.7 ± 3.3 | 25.3 ± 1.5 | 26.9 ± 4.1 | 28.2 ± 3.6 | p < 0.001 | 0.58 |
HR (bpm) | 68.5 ± 8.4 | 57.1 ± 8.9 | 64.5 ± 9.0 | 57.8 ± 8.3 | 0.50 | p < 0.00001 |
AIx75 | 1.7 ± 7.8 | −9.5 ± 12.0 | −13.2 ± 13.0 | −8.5 ± 9.8 | p < 0.05 | 0.17 |
PWV (m/s) | 6.4 ± 0.9 | 5.2 ± 0.6 | 6.2 ± 0.7 | 5.6 ± 0.5 | 0.49 | p < 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enea, C.; Laffetas, P.; Pichon, A.; Delpech, N. Arterial Stiffness and Hemodynamics in Young Women: The Effects of Oral Contraceptive Intake and Physical Habits. Int. J. Environ. Res. Public Health 2021, 18, 3393. https://doi.org/10.3390/ijerph18073393
Enea C, Laffetas P, Pichon A, Delpech N. Arterial Stiffness and Hemodynamics in Young Women: The Effects of Oral Contraceptive Intake and Physical Habits. International Journal of Environmental Research and Public Health. 2021; 18(7):3393. https://doi.org/10.3390/ijerph18073393
Chicago/Turabian StyleEnea, Carina, Pernelle Laffetas, Aurélien Pichon, and Nathalie Delpech. 2021. "Arterial Stiffness and Hemodynamics in Young Women: The Effects of Oral Contraceptive Intake and Physical Habits" International Journal of Environmental Research and Public Health 18, no. 7: 3393. https://doi.org/10.3390/ijerph18073393
APA StyleEnea, C., Laffetas, P., Pichon, A., & Delpech, N. (2021). Arterial Stiffness and Hemodynamics in Young Women: The Effects of Oral Contraceptive Intake and Physical Habits. International Journal of Environmental Research and Public Health, 18(7), 3393. https://doi.org/10.3390/ijerph18073393