Are Historical Buildings More Adaptive to Minimize the Risks of Airborne Transmission of Viruses and Public Health? A Study of the Hazzazi House in Jeddah (Saudi Arabia)
Abstract
:1. Introduction
Overview of the Selected Historical Building
2. Materials and Methods
- A whole building energy model is created to simulate natural ventilation in the selected building. The effect of wind speed on average ventilation rates is presented. Cross ventilation inflow and outflow are discussed as well.
- Air change rates for several zones in different building orientations are analyzed and the impact of wind direction on the ventilation rate in the selected building is presented.
- Parametric analysis of the effect of the windows opening fraction on the ventilation rate is performed.
- Correlation between air change rates and probability of infection in the selected historical residential building is conducted and the Wells-Riley equation is used to predict the risk of airborne disease transmission according to the estimated ventilation rates of the building.
- Sensitivity analysis is implemented to examine the impact of the number of patients on the probability of infection for the naturally ventilated historical house.
- Correlations and stepwise regression analysis is performed to develop a regression model that is able to predict air change rates for the selected historical house in Jeddah using three independent variables: opening fraction of the windows, wind speed and wind direction.
- Finally, CFD analysis is conducted to investigate the airflow distribution inside the building in addition to estimating the age of air inside the building zones to guarantee the presence of fresh air.
3. Results and Discussion
CFD Analysis
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morawska, L. Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air 2006, 16, 335–347. [Google Scholar] [CrossRef] [Green Version]
- Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Perrone, M.G.; Borelli, M.; Palmisani, J.; Di Gilio, A.; Piscitelli, P.; Miani, A. Airborne transmission route of covid-19: Why 2 meters/6 feet of inter-personal distance could not be enough. Int. J. Environ. Res. Public Health 2020, 17. [Google Scholar] [CrossRef] [Green Version]
- Domingo, J.L.; Marquès, M.; Rovira, J. Influence of airborne transmission of SARS-CoV-2 on COVID-19 pandemic. A review. Environ. Res. 2020, 188, 17–20. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Infection Prevention and Control during Health Care When COVID-19 Is Suspected; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Coil, D.A.; Fretz, M. 2019 Novel Coronavirus (Covid-19) Pandemic: Built environment considerations to reduce transmission. Msystems 2020, 5, 1–13. [Google Scholar]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and surface stability of SARS-CoV-2 as Compared with SARS-CoV. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Critical Preparedness, Readiness and Response Actions for COVID-19; World Health Organization: Geneva, Switzerland, 2020; Volume 2. [Google Scholar]
- Sun, C.; Zhai, Z. The efficacy of social distance and ventilation effectiveness in preventing COVID-19 transmission. Sustain. Cities Soc. 2020, 62, 102390. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Zhou, D.; He, R.; Li, J.; Zou, S.; Mallery, K.; Kumar, S.; Yang, S.; Hong, J. Risk assessment of airborne transmission of COVID-19 by asymptomatic individuals under different practical settings. J. Aerosol Sci. 2021, 151, 105661. [Google Scholar] [CrossRef]
- Yu, I.T.S.; Li, Y.; Wong, T.W.; Tam, W.; Chan, A.T.; Lee, J.H.W.; Leung, D.Y.C.; Ho, T. Evidence of airborne transmission of the severe acute respiratory syndrome virus. N. Engl. J. Med. 2004, 350, 1731–1739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phair, J.J. Airborne Contagion and Air Hygiene. Am. J. Public Health Nations Health 1955, 45, 1495–1496. [Google Scholar] [CrossRef] [Green Version]
- Bhagat, R.K.; Davies Wykes, M.S.; Dalziel, S.B.; Linden, P.F. Effects of ventilation on the indoor spread of COVID-19. J. Fluid Mech. 2020, 903. [Google Scholar] [CrossRef]
- Ng, K.; Poon, B.H.; Kiat Puar, T.H.; Shan Quah, J.L.; Loh, W.J.; Wong, Y.J.; Tan, T.Y.; Raghuram, J. COVID-19 and the Risk to Health Care Workers: A Case Report. Ann. Intern. Med. 2020, 172, 766–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amoatey, P.; Omidvarborna, H.; Baawain, M.S.; Al-Mamun, A. Impact of building ventilation systems and habitual indoor incense burning on SARS-CoV-2 virus transmissions in Middle Eastern countries. Sci. Total Environ. 2020, 733, 139356. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Zhang, L.; Ma, J.; Zhou, L. On airborne transmission and control of SARS-Cov-2. Sci. Total Environ. 2020, 731, 139178. [Google Scholar] [CrossRef] [PubMed]
- Butt, D.K. Environment International. J. Arid Environ. 1979, 2, 183–184. [Google Scholar] [CrossRef]
- Atkinson, J.; Chartier, Y.; Pessoa-silva, C.L.; Jensen, P.; Li, Y. Natural Ventilation for Infection Control in Health-Care Settings; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Li, Y.; Leung, G.M.; Tang, J.W.; Yang, X.; Chao, C.Y.H.; Lin, J.Z.; Lu, J.W.; Nielsen, P.V.; Niu, J.; Qian, H.; et al. Role of ventilation in airborne transmission of infectious agents in the built environment—A multidisciplinary systematic review. Indoor Air 2007, 17, 2–18. [Google Scholar] [CrossRef]
- Carrer, P.; Wargocki, P.; Fanetti, A.; Bischof, W.; De Oliveira Fernandes, E.; Hartmann, T.; Kephalopoulos, S.; Palkonen, S.; Seppänen, O. What does the scientific literature tell us about the ventilation-health relationship in public and residential buildings? Build. Environ. 2015, 94, 273–286. [Google Scholar] [CrossRef]
- Jayaweera, M.; Perera, H.; Gunawardana, B.; Manatunge, J. Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environ. Res. 2020, 188, 109819. [Google Scholar] [CrossRef]
- Buonanno, G.; Stabile, L.; Morawska, L. Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment. Environ. Int. 2020, 141, 105794. [Google Scholar] [CrossRef]
- Dantas, G.; Siciliano, B.; França, B.B.; da Silva, C.M.; Arbilla, G. The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 729. [Google Scholar] [CrossRef]
- Gallego, I.; Font, X. Changes in air passenger demand as a result of the COVID-19 crisis: Using Big Data to inform tourism policy. J. Sustain. Tour. 2020, 1–20. [Google Scholar] [CrossRef]
- Xu, C.; Wei, X.; Liu, L.; Su, L.; Liu, W.; Wang, Y.; Nielsen, P.V. Effects of personalized ventilation interventions on airborne infection risk and transmission between occupants. Build. Environ. 2020, 180. [Google Scholar] [CrossRef]
- Morawska, L.; Tang, J.W.; Bahnfleth, W.; Bluyssen, P.M.; Boerstra, A.; Buonanno, G.; Cao, J.; Dancer, S.; Floto, A.; Franchimon, F.; et al. How can airborne transmission of COVID-19 indoors be minimised? Environ. Int. 2020, 142. [Google Scholar] [CrossRef]
- Melikov, A.K. Advanced air distribution: Improving health and comfort while reducing energy use. Indoor Air 2016, 26, 112–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raoofi, A.; Takian, A.; Sari, A.A.; Olyaeemanesh, A.; Haghighi, H.; Aarabi, M. COVID-19 pandemic and comparative health policy learning in Iran. Arch. Iran. Med. 2020, 23, 220–234. [Google Scholar] [CrossRef] [Green Version]
- Government of Bangladesh. COVID-19: Bangladesh Multi-Sectoral Anticipatory Impact and Needs Analysis; Government of Bangladesh: Dhaka, Bangladesh, 2020.
- Rahaman, K.R.; Mahmud, M.S.; Mallick, B. Challenges of Testing COVID-19 Cases in Bangladesh. Int. J. Environ. Res. Public Health 2020, 17. [Google Scholar] [CrossRef] [PubMed]
- Buheji, M.; da Costa Cunha, K.; Beka, G.; Mavrić, B.; Leandro do Carmo de Souza, Y.; Souza da Costa Silva, S.; Hanafi, M.; Chetia Yein, T. The Extent of COVID-19 Pandemic Socio-Economic Impact on Global Poverty. A Global Integrative Multidisciplinary Review. Am. J. Econ. 2020, 2020, 213–224. [Google Scholar] [CrossRef]
- Kwan, S.E.; Shaughnessy, R.; Haverinen-Shaughnessy, U.; Kwan, T.A.; Peccia, J. The impact of ventilation rate on the fungal and bacterial ecology of home indoor air. Build. Environ. 2020, 177, 106800. [Google Scholar] [CrossRef]
- Tang, J.W.; Noakes, C.J.; Nielsen, P.V.; Eames, I.; Nicolle, A.; Li, Y.; Settles, G.S. Observing and quantifying air flows in the infection control of aerosol- and airborne-transmitted diseases: An overview of approaches. J. Hosp. Infect. 2011, 77, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Pan, Y.; Wang, Q.; Miao, H.; Brown, A.N.; Rong, L. Modeling the viral dynamics of SARS-CoV-2 infection. Math. Biosci. 2020, 328, 108438. [Google Scholar] [CrossRef]
- Chow, T.T.; Yang, X.Y. Ventilation performance in operating theatres against airborne infection: Review of research activities and practical guidance. J. Hosp. Infect. 2004, 56, 85–92. [Google Scholar] [CrossRef]
- Wang, J.; Huo, Q.; Zhang, T.; Wang, S.; Battaglia, F. Numerical investigation of gaseous pollutant cross-transmission for single-sided natural ventilation driven by buoyancy and wind. Build. Environ. 2020, 172, 106705. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, T.; Ahmad, D.; Serey, N.; Jouhara, H. Review of ventilation strategies to reduce the risk of disease transmission in high occupancy buildings. Int. J. Thermofluids 2020, 7–8, 100045. [Google Scholar] [CrossRef]
- Vuorinen, V.; Aarnio, M.; Alava, M.; Alopaeus, V.; Atanasova, N.; Auvinen, M.; Balasubramanian, N.; Bordbar, H.; Erästö, P.; Grande, R.; et al. Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors. Saf. Sci. 2020, 130, 104866. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Niu, J. Assessment of mechanical exhaust in preventing vertical cross- household infections associated with single-sided ventilation. Build. Environ. 2016, 105, 307–316. [Google Scholar] [CrossRef]
- Peng, S.; Chen, Q.; Liu, E. The role of computational fluid dynamics tools on investigation of pathogen transmission: Prevention and control. Sci. Total Environ. 2020, 746, 142090. [Google Scholar] [CrossRef]
- Kang, Z.; Zhang, Y.; Fan, H.; Feng, G. Numerical Simulation of Coughed Droplets in the Air-Conditioning Room. In Proceedings of the Procedia Engineering—9th International Symposium on Heating, Ventilation and Air Conditioning (ISHVAC) and the 3rd International Conference on Building Energy and Environment (COBEE), Tianjin, China, 12–15 July 2015; Elsevier B.V.: Amsterdam, The Netherlands, 2015; Volume 121, pp. 114–121. [Google Scholar]
- Perazzo, B.; Barbosa, P.; De Carvalho, N.; Brum, L. Validation and assessment of the CFD-0 module of CONTAM software for airborne contaminant transport simulation in laboratory and hospital applications. Build. Environ. 2018, 142, 139–152. [Google Scholar] [CrossRef]
- Martins, N.R.; Carrilho, G. Simulation of the effect of fine particle pollution on the potential for natural ventilation of non-domestic buildings in European cities. Build. Environ. 2017, 115, 236–250. [Google Scholar] [CrossRef]
- Gilkeson, C.A.; Pickin, L.E.; Noakes, C.J. Measurement of ventilation and airborne infection risk in large naturally ventilated hospital wards. Build. Environ. 2013, 65, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Wang, Y.; Liu, Q.; Liu, Y. Numerical Study of Three Ventilation Strategies in a prefabricated COVID-19 inpatient ward. Build. Environ. 2021, 188, 107467. [Google Scholar] [CrossRef]
- Lin, G.; Zhang, S.; Zhong, Y.; Zhang, L.; Ai, S.; Li, K.; Su, W.; Cao, L.; Zhao, Y.; Tian, F.; et al. Community evidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission through air. Atmos. Environ. 2021, 246, 118083. [Google Scholar] [CrossRef]
- Zhao, F.; Cheng, J.; Liu, B.; Huang, Z.; Li, X. Indoor airflow and pollutant spread inside the cleanroom with micro-porous supplying panel and different ventilation schemes: Analytical, numerical and experimental investigations. J. Build. Eng. 2020, 31, 101405. [Google Scholar] [CrossRef]
- Baik, A.; Boehm, J.; Robson, S. Jeddah Historical Building Information Modeling JHBIM Old Jeddah-Saudi Arabia. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-5/W2, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Jeddah Chamber Jeddah Facts and Figures. Jeddah Annu. Rep. 2016–2017 2017, 1, 1–244.
- Baik, A. From point cloud to Jeddah Heritage BIM Nasif Historical House—Case study. Digit. Appl. Archaeol. Cult. Herit. 2017, 4, 1–18. [Google Scholar] [CrossRef]
- AlQahtany, A.M.; Abubakar, I.R. Public perception and attitudes to disaster risks in a coastal metropolis of Saudi Arabia. Int. J. Disaster Risk Reduct. 2020, 44, 101422. [Google Scholar] [CrossRef] [PubMed]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Azzam, A.; Belhaj Ali, A. Urban Sprawl in Wadi Goss Watershed (Jeddah City/Western Saudi Arabia) and Its Impact on Vulnerability and Flood Hazards. J. Geogr. Inf. Syst. 2019, 11, 371–388. [Google Scholar] [CrossRef] [Green Version]
- Aljoufiea, M.; Brussel, M.; Zuidgeest, M.; van Maarseveen, M. Urban growth and transport infrastructure interaction in Jeddah between 1980 and 2007. Int. J. Appl. Earth Obs. Geoinf. 2012, 21, 493–505. [Google Scholar] [CrossRef]
- Laurini, E.; Lombardi, A.; Rashed-Ali, H.; Berardinis, P.; Cirrana, S.; Murphy, J.; Carroll, M. Natural Ventilation in Historic Buildings: The Kalteyer House in San Antonio, Texas. Analysis and Simulations of Natural Ventilation. In Proceedings of the ARCC: Architecture of Compexity, Salt Lake City, UT, USA, 14–17 June 2017. [Google Scholar]
- Williams, C.C.; Kayaoglu, A. COVID-19 and undeclared work: Impacts and policy responses in Europe. Serv. Ind. J. 2020, 1–18. [Google Scholar] [CrossRef]
- Buonanno, G.; Morawska, L.; Stabile, L. Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: Prospective and retrospective applications. Environ. Int. 2020, 145, 106112. [Google Scholar] [CrossRef]
- Jones, B.; Sharpe, P.; Iddon, C.; Hathway, E.A.; Noakes, C.J.; Fitzgerald, S. Modelling uncertainty in the relative risk of exposure to the SARS-CoV-2 virus by airborne aerosol transmission in well mixed indoor air. Build. Environ. 2021, 191, 107617. [Google Scholar] [CrossRef]
- Energy Plus. Development Team Energy Plus Engineering Reference, The Reference to Energy Plus Calculations 2012. Available online: https://energyplus.net/sites/all/modules/custom/nrel_custom/pdfs/pdfs_v8.9.0/EngineeringReference.pdf (accessed on 23 March 2021).
- Gu, L. Airflow Network Modeling in EnergyPlus. In Proceedings of the 10th international Building Performance Simulation Association Conference and Exhibition, Beijing, China, 3–6 September 2007. [Google Scholar]
- UCLA, Energy Design Tools and Manual, Energy Design Tools Group Climate Consultant 5.1. 2011. Available online: http://www.energy-design-tools.aud.ucla.edu/climate-consultant/request-climate-consultant.php (accessed on 23 March 2021).
- American Society of Heating, Refrigerating, and Air conditioning Engineers. ANSI/ASHRAE Standard 62.2, Ventilation and Acceptable Indoor Air Quality in Residential Buildings; American Society of Heating, Refrigerating, and Air conditioning Engineers: Peachtree Corners, GA, USA, 2016. [Google Scholar]
- Riley, E.C.; Murphy, G.; Riley, R.L. Airborne spread of measles in a suburban elementary school. Am. J. Epidemiol 1978, 107, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Zhao, B. Association of infected probability of COVID-19 with ventilation rates in confined spaces: A Wells-Riley equation based investigation. MedRxiv 2020, 20072397. [Google Scholar] [CrossRef] [Green Version]
- Design Builder. Design Builder 2.1; Design Builder: Gloucestershire, UK, 2009. [Google Scholar]
- Baharvand, M.; Hamdan, M.; Ahmad, B.; Safikhani, T.; Binti, R.; Majid, A. DesignBuilder Verification and Validation for Indoor Natural Ventilation. J. Basic Appl. Sci. Res. 2013, 3, 182–189. [Google Scholar]
- Hornby, R.P. PHOENICS Modelling of a Self-Propelled Body in Stratified Water; The PHOENICS Journal CHAM: London, UK, 2020; Volume 44. [Google Scholar]
- Northumbria University School of Built and Natural Environment. An Inter-Program Analysis of Computational Fluid Dynamics Based on PHOENICS and DesignBuilder Software; Northumbria University School of Built and Natural Environment: London, UK, 2012. [Google Scholar]
- Design Builder Software Manual; DesignBuilder: Gloucestershire, UK, 2019.
- Bartzanas, T.; Boulard, T.; Kittas, C. Effect of vent arrangement on windward ventilation of a tunnel greenhouse. Biosyst. Eng. 2004, 88, 479–490. [Google Scholar] [CrossRef]
- Cheung, J.O.P.; Liu, C.H. CFD simulations of natural ventilation behaviour in high-rise buildings in regular and staggered arrangements at various spacings. Energy Build. 2011, 43, 1149–1158. [Google Scholar] [CrossRef]
- Mistriotis, A.; Arcidiacono, C.; Picuno, P.; Bot, G.P.A.; Scarascia-Mugnozza, G. Computational analysis of ventilation in greenhouses at zero- and low-wind-speeds. Agric. For. Meteorol. 1997, 88, 121–135. [Google Scholar] [CrossRef]
Parameter | Symbol | Value |
---|---|---|
Number of source patients | I | 1 |
Quanta generation rate | q | 48 quanta/h |
Pulmonary ventilation rate | p | 0.3 m3/h |
Duration of exposure | t | 24 h |
Space volume | V | 1080 m3 |
β0 | −21.81 |
β1 | 0.344 |
β2 | 1.53 |
β3 | 0.117 |
β4 | 0.0086 |
β5 | −0.0004 |
β6 | −0.00027 |
Building Surface | Orientation | Boundary Condition |
---|---|---|
Wall | North | 25.7 °C |
Window | Flow in = 1571 L/s Flow out = 0 L/s | |
Wall | South | 29.6 °C |
Window | Flow in = 75 L/s Flow out = 598 L/s | |
Wall | West | 28.2 °C |
Window | Flow in = 599 L/s Flow out = 186 L/s | |
Wall | East | 28.4 °C |
Window | Flow in = 0 L/s Flow out = 3778 L/s | |
Average indoor air temperature | - | 26.7 °C |
Outdoor air temperature | - | 26 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alaidroos, A.; Almaimani, A.; Baik, A.; Al-Amodi, M.; Rahaman, K.R. Are Historical Buildings More Adaptive to Minimize the Risks of Airborne Transmission of Viruses and Public Health? A Study of the Hazzazi House in Jeddah (Saudi Arabia). Int. J. Environ. Res. Public Health 2021, 18, 3601. https://doi.org/10.3390/ijerph18073601
Alaidroos A, Almaimani A, Baik A, Al-Amodi M, Rahaman KR. Are Historical Buildings More Adaptive to Minimize the Risks of Airborne Transmission of Viruses and Public Health? A Study of the Hazzazi House in Jeddah (Saudi Arabia). International Journal of Environmental Research and Public Health. 2021; 18(7):3601. https://doi.org/10.3390/ijerph18073601
Chicago/Turabian StyleAlaidroos, Alaa, Ayad Almaimani, Ahmed Baik, Mohamed Al-Amodi, and Khan Rubayet Rahaman. 2021. "Are Historical Buildings More Adaptive to Minimize the Risks of Airborne Transmission of Viruses and Public Health? A Study of the Hazzazi House in Jeddah (Saudi Arabia)" International Journal of Environmental Research and Public Health 18, no. 7: 3601. https://doi.org/10.3390/ijerph18073601
APA StyleAlaidroos, A., Almaimani, A., Baik, A., Al-Amodi, M., & Rahaman, K. R. (2021). Are Historical Buildings More Adaptive to Minimize the Risks of Airborne Transmission of Viruses and Public Health? A Study of the Hazzazi House in Jeddah (Saudi Arabia). International Journal of Environmental Research and Public Health, 18(7), 3601. https://doi.org/10.3390/ijerph18073601