The Effect of Implementing Mechanical Cardiopulmonary Resuscitation Devices on Out-of-Hospital Cardiac Arrest Patients in an Urban City of Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Settings
2.2. EMS in Chiayi City
2.3. Device and Implementation Timeline
2.4. Data Collection, Exposure, and Outcome
2.5. Statistical Analysis
3. Results
3.1. Patient Population and Demographic Characteristics
3.2. Impacts of Mechanical CPR on Primary Outcome
3.3. Impacts of Mechanical CPR on Secondary Outcomes
3.4. Subgroup Analysis of the Effect of Mechanical CPR on Different Status of OHCA Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kudenchuk, P.J.P.; Sandroni, C.C.; Drinhaus, H.H.; Böttiger, B.W.; Cariou, A.A.; Sunde, K.K.; Dworschak, M.M.; Taccone, F.S.; Deye, N.N.; Friberg, H.; et al. Breakthrough in cardiac arrest: Reports from the 4th Paris International Conference. Ann. Intensive Care 2015, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- Berdowski, J.; Berg, R.A.; Tijssen, J.G.; Koster, R.W. Global incidences of out-of-hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies. Resuscitation 2010, 81, 1479–1487. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Y.; Wang, J.-Y.; Teng, N.-C.; Chao, T.-T.; Tsai, S.-L.; Chen, C.-L.; Hsu, J.-Y.; Wu, C.-P.; Lai, C.-C.; Chen, L. The Secular Trends in the Incidence Rate and Outcomes of Out-of-Hospital Cardiac Arrest in Taiwan—A Nationwide Population-Based Study. PLoS ONE 2015, 10, e0122675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merchant, R.M.; Topjian, A.A.; Panchal, A.R.; Cheng, A.; Aziz, K.; Berg, K.M.; Lavonas, E.J.; Magid, D.J. Part 1: Executive Summary: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020, 142, S337–S357. [Google Scholar] [CrossRef]
- Kim, H.T.; Kim, J.G.; Jang, Y.S.; Kang, G.H.; Kim, W.; Choi, H.Y.; Jun, G.S. Comparison of in-hospital use of mechanical chest compression devices for out-of-hospital cardiac arrest patients: AUTOPULSE vs. LUCAS. Medicine 2019, 98, e17881. [Google Scholar] [CrossRef]
- Hayashida, K.; Tagami, T.; Fukuda, T.; Suzuki, M.; Yonemoto, N.; Kondo, Y.; Ogasawara, T.; Sakurai, A.; Tahara, Y.; Nagao, K.; et al. Mechanical Cardiopulmonary Resuscitation and Hospital Survival Among Adult Patients with Nontraumatic Out-of-Hospital Cardiac Arrest Attending the Emergency Department: A Prospective, Multicenter, Observational Study in Japan (SOS-KANTO [Survey of Survivors after Out-of-Hospital Cardiac Arrest in Kanto Area] 2012 Study). J. Am. Heart Assoc. 2017, 6, 007420. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-K.; Huang, M.-C.; Feng, Y.-T.; Jeng, W.-H.; Chung, T.-C.; Lau, Y.-W.; Te-Cheng, C. Effectiveness of mechanical chest compression for out-of-hospital cardiac arrest patients in an emergency department. J. Chin. Med. Assoc. 2015, 78, 360–363. [Google Scholar] [CrossRef] [Green Version]
- Gates, S.; Lall, R.; Quinn, T.; Deakin, C.D.; Cooke, M.W.; Horton, J.; Lall, R.; Lamb, S.E.; McCabe, C.; Quinn, T.; et al. Prehospital randomised assessment of a mechanical compression device in out-of-hospital cardiac arrest (PARAMEDIC): A pragmatic, cluster randomised trial and economic evaluation. Health Technol. Assess 2017, 21. [Google Scholar] [CrossRef] [Green Version]
- Perkins, G.D.; Lall, R.; Quinn, T.; Deakin, C.D.; Cooke, M.W.; Horton, J.; Lamb, S.E.; Slowther, A.-M.; Woollard, M.; Carson, A.; et al. Mechanical versus manual chest compression for out-of-hospital cardiac arrest (PARAMEDIC): A pragmatic, cluster randomised controlled trial. Lancet 2015, 385, 947–955. [Google Scholar] [CrossRef] [Green Version]
- Wik, L.; Olsen, J.-A.; Persse, D.; Sterz, F.; Lozano, M.; Brouwer, M.A.; Westfall, M.; Souders, C.M.; Malzer, R.; van Grunsven, P.M.; et al. Manual vs. integrated automatic load-distributing band CPR with equal survival after out of hospital cardiac arrest. The randomized CIRC trial. Resuscitation 2014, 85, 741–748. [Google Scholar] [CrossRef]
- Rubertsson, S.; Lindgren, E.; Smekal, D.; Östlund, O.; Silfverstolpe, J.; Lichtveld, R.A.; Boomars, R.; Ahlstedt, B.; Skoog, G.; Kastberg, R.; et al. Mechanical Chest Compressions and Simultaneous Defibrillation vs Conventional Cardiopulmonary Resuscitation in Out-of-Hospital Cardiac Arrest: The LINC randomized trial. JAMA 2014, 311, 53–61. [Google Scholar] [CrossRef]
- Seewald, S.; Obermaier, M.; Lefering, R.; Bohn, A.; Georgieff, M.; Muth, C.-M.; Gräsner, J.-T.; Masterson, S.; Scholz, J.; Wnent, J. Application of mechanical cardiopulmonary resuscitation devices and their value in out-of-hospital cardiac arrest: A retrospective analysis of the German Resuscitation Registry. PLoS ONE 2019, 14, e0208113. [Google Scholar] [CrossRef]
- Bonnes, J.L.; Brouwer, M.A.; Navarese, E.P.; Verhaert, D.V.; Verheugt, F.W.; Smeets, J.L.; De Boer, M.-J. Manual Cardiopulmonary Resuscitation Versus CPR Including a Mechanical Chest Compression Device in Out-of-Hospital Cardiac Arrest: A Comprehensive Meta-Analysis from Randomized and Observational Studies. Ann. Emerg. Med. 2016, 67, 349–360.e3. [Google Scholar] [CrossRef]
- Gyory, R.A.; Buchle, S.E.; Rodgers, D.; Lubin, J.S. The Efficacy of LUCAS in Prehospital Cardiac Arrest Scenarios: A Crossover Mannequin Study. West. J. Emerg. Med. 2017, 18, 437–445. [Google Scholar] [CrossRef] [Green Version]
- Fox, J.; Fiechter, R.; Gerstl, P.; Url, A.; Wagner, H.; Lüscher, T.F.; Eriksson, U.; Wyss, C.A. Mechanical versus manual chest compression CPR under ground ambulance transport conditions. Acute Card. Care 2013, 15, 1–6. [Google Scholar] [CrossRef]
- Kahn, P.A.; Dhruva, S.S.; Rhee, T.G.; Ross, J.S. Use of Mechanical Cardiopulmonary Resuscitation Devices for Out-of-Hospital Cardiac Arrest, 2010–2016. JAMA Netw. Open 2019, 2, e1913298. [Google Scholar] [CrossRef]
- Kleinman, M.E.; Brennan, E.E.; Goldberger, Z.D.; Swor, R.A.; Terry, M.; Bobrow, B.J.; Gazmuri, R.J.; Travers, A.H.; Rea, T.D. Part 5: Adult Basic Life Support and Cardiopulmonary Resuscitation Quality: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2015, 132, S414–S435. [Google Scholar] [CrossRef] [Green Version]
- Travers, A.H.; Rea, T.D.; Bobrow, B.J.; Edelson, D.P.; Berg, R.A.; Sayre, M.R.; Berg, M.D.; Chameides, L.; O’Connor, R.E.; Swor, R.A. Part 4: CPR Overview: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010, 122, S676–S684. [Google Scholar] [CrossRef] [Green Version]
- Hagihara, A.; Onozuka, D.; Ono, J.; Nagata, T.; Hasegawa, M. Age × Gender Interaction Effect on Resuscitation Outcomes in Patients with Out-of-Hospital Cardiac Arrest. Am. J. Cardiol. 2017, 120, 387–392. [Google Scholar] [CrossRef]
- Andersen, L.W.; Bivens, M.J.; Giberson, T.; Giberson, B.; Mottley, J.L.; Gautam, S.; Salciccioli, J.D.; Cocchi, M.N.; McNally, B.; Donnino, M.W. The relationship between age and outcome in out-of-hospital cardiac arrest patients. Resuscitation 2015, 94, 49–54. [Google Scholar] [CrossRef]
- Nichol, G.; Cobb, L.A.; Yin, L.; Maynard, C.; Olsufka, M.; Larsen, J.; McCoy, A.M.; Sayre, M.R. Briefer activation time is associated with better outcomes after out-of-hospital cardiac arrest. Resuscitation 2016, 107, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Park, H.A.; Ahn, K.O.; Lee, E.J.; Park, J.O.; On Behalf of the Korean Cardiac Arrest Research Consortium (Ko CI). Association between Survival and Time of On-Scene Resuscitation in Refractory Out-of-Hospital Cardiac Arrest: A Cross-Sectional Retrospective Study. Int. J. Environ. Res. Public Health 2021, 18, 496. [Google Scholar] [CrossRef] [PubMed]
- Riva, G.; Jonsson, M.; Ringh, M.; Claesson, A.; Djärv, T.; Forsberg, S.; Nordberg, P.; Rubertsson, S.; Rawshani, A.; Nord, A.; et al. Survival after dispatcher-assisted cardiopulmonary resuscitation in out-of-hospital cardiac arrest. Resuscitation 2020, 157, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Song, K.J.; Shin, S.D.; Lee, S.C.; Lee, E.J.; Ro, Y.S.; Ahn, K.O. Dispatcher-Assisted Cardiopulmonary Resuscitation Program and Outcomes after Pediatric Out-of-Hospital Cardiac Arrest. Pediatr. Emerg. Care 2019, 35, 561–567. [Google Scholar] [CrossRef]
- Lee, S.Y.; Hong, K.J.; Shin, S.D.; Ro, Y.S.; Song, K.J.; Park, J.H.; Kong, S.Y.; Kim, T.H.; Lee, S.C. The effect of dispatcher-assisted cardiopulmonary resuscitation on early defibrillation and return of spontaneous circulation with survival. Resuscitation 2019, 135, 21–29. [Google Scholar] [CrossRef]
- Siman-Tov, M.; Strugo, R.; Podolsky, T.; Rosenblat, I.; Blushtein, O. Impact of dispatcher assisted CPR on ROSC rates: A National Cohort Study. Am. J. Emerg. Med. 2020. [Google Scholar] [CrossRef]
- Czapla, M.; Zielińska, M.; Kubica-Cielińska, A.; Diakowska, D.; Quinn, T.; Karniej, P. Factors associated with return of spontaneous circulation after out-of-hospital cardiac arrest in Poland: A one-year retrospective study. BMC Cardiovasc. Disord. 2020, 20, 288. [Google Scholar] [CrossRef]
- Kim, J.; Kim, Y.J.; Han, S.; Choi, H.J.; Moon, H.; Kim, G. Effect of Prehospital Epinephrine on Outcomes of Out-of-Hospital Cardiac Arrest: A Bayesian Network Approach. Emerg. Med. Int. 2020, 2020, 8057106. [Google Scholar] [CrossRef]
- Perkins, G.D.; Ji, C.; Deakin, C.D.; Quinn, T.; Nolan, J.P.; Scomparin, C.; Regan, S.; Long, J.; Slowther, A.; Pocock, H.; et al. A Randomized Trial of Epinephrine in Out-of-Hospital Cardiac Arrest. N. Engl. J. Med. 2018, 379, 711–721. [Google Scholar] [CrossRef]
- Hanuschak, T.A.; Peng, Y.; Day, A.; Morrison, L.J.; Zhan, C.C.; Brooks, S.C.; Rescu Investigators. Patient and hospital factors predict use of coronary angiography in out-of-hospital cardiac arrest patients. Resuscitation 2019, 138, 182–189. [Google Scholar] [CrossRef]
- Zhu, N.; Chen, Q.; Jiang, Z.; Liao, F.; Kou, B.; Tang, H.; Zhou, M. A meta-analysis of the resuscitative effects of mechanical and manual chest compression in out-of-hospital cardiac arrest patients. Crit. Care 2019, 23, 100. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, Y.; Shiozaki, T.; Hirose, T.; Ohnishi, M.; Nakamori, Y.; Ogura, H.; Shimazu, T. Load-distributing-band cardiopulmonary resuscitation for out-of-hospital cardiac arrest increases regional cerebral oxygenation: A single-center prospective pilot study. Scand. J. Trauma Resusc. Emerg. Med. 2015, 23, 99. [Google Scholar] [CrossRef] [Green Version]
- Axelsson, C.; Herrera, M.J.; Fredriksson, M.; Lindqvist, J.; Herlitz, J. Implementation of mechanical chest compression in out-of-hospital cardiac arrest in an emergency medical service system. Am. J. Emerg. Med. 2013, 31, 1196–1200. [Google Scholar] [CrossRef]
- Huang, J.-B.; Lee, K.-H.; Ho, Y.-N.; Tsai, M.-T.; Wu, W.-T.; Cheng, F.-J. Association between prehospital prognostic factors on out-of-hospital cardiac arrest in different age groups. BMC Emerg. Med. 2021, 21, 3. [Google Scholar] [CrossRef]
Manual (n = 273) | Mechanical (LUCAS-2) (n = 279) | p Value | ||||
---|---|---|---|---|---|---|
Demographic characteristics | ||||||
Age | 77.5 | (63–85) | 77.0 | (65–86) | 0.619 | |
Older adults (≥65 years) | 193.0 | (70.96) | 208.0 | (70.09) | 0.275 | |
Male gender | 152 | (55.68) | 154 | (55.20) | 0.910 | |
EMS time interval | ||||||
Response time (min) | 4 | (3–5) | 4 | (2.5–5) | 0.075 | |
Scene time (min) | 9 | (7–12) | 10 | (7–12) | 0.061 | |
Transport time (min) | 3 | (2–4) | 3 | (2–4) | 0.194 | |
Total EMS time (min) | 17 | (14–20) | 17 | (14.5–20) | 0.085 | |
EMS Dispatcher | ||||||
DACPR or BSCPR | 131 | (47.99) | 197 | (70.61) | <0.001 | |
Identification time of OHCA by dispatcher (sec) | 63.5 | (28–116.5) (n = 168) | 58 | (30–110) (n = 238) | 0.380 | |
Start time of DACPR (sec) | 199 | (145–249) (n = 115) | 167 | (126–229) (n = 177) | 0.030 | |
Number of dispatched EMT (Mean ± SD) | 2.78 | (0.45) | 2.95 | (0.33) | <0.001 | |
Number of dispatched EMT (Median (IQR)) | 3 | (3–3) | 3 | (3–3) | ||
Characteristics of arrest | ||||||
Witnessed cardiac arrest | 146 | (53.48) | 135 | (48.39) | 0.231 | |
Shockable rhythm (defibrillation) | 58 | (21.25) | 73 | (26.17) | 0.174 | |
Location of arrest | ||||||
Home | 198 | (72.53) | 227 | (81.36) | <0.001 | |
Public area | 24 | (8.79) | 17 | (6.09) | ||
Medical institution | 24 | (8.79) | 34 | (12.19) | ||
Others | 14 | (5.13) | 1 | (0.36) | ||
During ambulance transport | 13 | (4.76) | 0 | (0.00) | ||
Pre-hospital treatment | ||||||
Laryngeal mask airway | 218 | (79.85) | 236 | (84.59) | 0.146 | |
Intravenous fluid injection | 10 | (3.66) | 17 | (6.09) | 0.186 | |
Intravenous epinephrine | 10 | (3.66) | 15 | (5.38) | 0.333 | |
Total number of AED shocks | 0 | (0–0) | 0 | (0–1) | 0.145 | |
Different batches of EMS stations with LUCAS-2 implementation | ||||||
The first batch (2 EMS stations) | 63 | (23.08) | 110 | (39.43) | <0.001 | |
The second batch (3 EMS stations) | 124 | (45.42) | 114 | (40.86) | ||
The final batch (2 EMS stations) | 86 | (31.50) | 55 | (19.71) | ||
Level of transferred hospital | ||||||
Primary | 35 | (12.82) | 48 | (17.27) | 0.079 | |
Secondary | 151 | (55.31) | 128 | (46.04) | ||
Tertiary | 87 | (31.87) | 102 | (36.69) | ||
Outcomes | ||||||
Any ROSC | 58 | (21.25) | 80 | (28.67) | 0.044 | |
Sustained (≥24 h) ROSC | 40 | (14.65) | 62 | (22.22) | 0.022 | |
Favorable neurologic status at discharge (GCS ≥ 13) | 12 | (4.40) | 15 | (5.38) | 0.593 |
Parameters | OR | (95% CI) | p Value | aOR | (95% CI) | p Value |
---|---|---|---|---|---|---|
Age (per year) | 0.978 | (0.967–0.990) | <0.001 | 0.979 | (0.966–0.992) | 0.001 |
Male gender | 1.103 | (0.748–1.627) | 0.621 | - | ||
EMS response time (per minute) | 0.912 | (0.822–1.013) | 0.085 | - | ||
EMS scene time (per minute) | 0.952 | (0.909–0.998) | 0.04 | - | ||
Number of dispatched EMT | 1.259 | (0.770–2.060) | 0.359 | - | ||
DACPR or BSCPR | 0.758 | (0.513–1.118) | 0.162 | - | ||
Witnessed cardiac arrest | 2.957 | (1.956–4.471) | <0.001 | 3.067 | (1.966–4.786) | <0.001 |
Shockable rhythm | 1.598 | (1.037–2.460) | 0.033 | - | ||
Location of arrest | ||||||
Home | reference | reference | ||||
Public area | 4.25 | (2.205–8.191) | <0.001 | 2.786 | (1.319–5.886) | 0.007 |
Medical institution | 0.957 | (0.487–1.883) | 0.9 | 0.989 | (0.487–2.007) | 0.976 |
Others | 1.835 | (0.612–5.503) | 0.279 | 1.805 | (0.556–5.866) | 0.326 |
During ambulance transport | 5.873 | (1.876–18.383) | 0.002 | 4.837 | (1.459–16.039) | 0.01 |
Pre-hospital epinephrine injection | 1.735 | (0.749–4.022) | 0.199 | - | ||
Different batches of EMS stations with LUCAS-2 implementation | ||||||
The first batch (2 EMS stations) | reference | reference | ||||
The second batch (3 EMS stations) | 0.694 | (0.448–1.076) | 0.102 | 0.794 | (0.492–1.281) | 0.345 |
The final batch (2 EMS stations) | 0.522 | (0.308–0.885) | 0.016 | 0.57 | (0.318–1.020) | 0.058 |
Level of transferred hospital | ||||||
Primary | reference | - | ||||
Secondary | 0.962 | (0.536–1.727) | 0.898 | - | ||
Tertiary | 1.455 | (0.799–2.647) | 0.22 | - | ||
Mechanical CPR | 1.49 | (1.010–2.199) | 0.045 | 1.871 | (1.195–2.930) | 0.006 |
Parameters | OR | (95% CI) | p Value | aOR | (95% CI) | p Value |
---|---|---|---|---|---|---|
Age (per year) | 0.982 | (0.969–0.994) | 0.004 | 0.984 | (0.970–0.998) | 0.023 |
Male gender | 0.884 | (0.574–1.360) | 0.575 | - | ||
EMS response time (per minute) | 0.853 | (0.753–0.965) | 0.012 | - | ||
EMS scene time (per minute) | 0.928 | (0.877–0.981) | 0.008 | 0.939 | (0.887–0.994) | 0.029 |
Number of dispatched EMT | 1.463 | (0.833–2.568) | 0.185 | - | ||
DACPR or BSCPR | 1.128 | (0.725–1.753) | 0.593 | - | ||
Witnessed cardiac arrest | 2.347 | (1.490–3.697) | <0.001 | 2.069 | (1.276–3.352) | 0.003 |
Shockable rhythm | 1.82 | (1.138–2.908) | 0.012 | - | ||
Location of arrest | ||||||
Home | reference | reference | ||||
Public area | 4.497 | (2.296–8.808) | <0.001 | 3.187 | (1.492–6.808) | 0.003 |
Medical institution | 1.345 | (0.662–2.732) | 0.413 | 1.33 | (0.640–2.764) | 0.445 |
Others | 2.089 | (0.645–6.768) | 0.219 | 2.795 | (0.785–9.959) | 0.113 |
During ambulance transport | 4.925 | (1.603–15.137) | 0.005 | 5.527 | (1.666–18.333) | 0.005 |
Pre-hospital epinephrine injection | 1.418 | (0.552–3.644) | 0.469 | - | ||
EMS stations with different batches of LUCAS-2 implementation | ||||||
The first batch (2 EMS stations) | reference | - | ||||
The second batch (3 EMS stations) | 0.692 | (0.425–1.127) | 0.139 | - | ||
The final batch (2 EMS stations) | 0.582 | (0.325–1.042) | 0.069 | - | ||
Level of transferred hospital | ||||||
Primary | reference | - | ||||
Secondary | 0.848 | (0.452–1.591) | 0.608 | - | ||
Tertiary | 1.089 | (0.569–2.084) | 0.797 | - | ||
Mechanical CPR | 1.664 | (1.074–2.580) | 0.023 | 2.353 | (1.427–3.879) | <0.001 |
Parameters | OR | (95% CI) | p Value | aOR * | (95% CI) | p Value |
---|---|---|---|---|---|---|
Age (per year) | 0.964 | (0.944–0.984) | <0.001 | 0.967 | (0.945–0.989) | 0.004 |
Male gender | 1.388 | (0.624–3.089) | 0.421 | - | ||
EMS response time (per minute) | 0.963 | (0.787–1.180) | 0.719 | - | ||
EMS scene time (per minute) | 0.967 | (0.881–1.060) | 0.471 | - | ||
Number of dispatched EMT | 1.536 | (0.554–4.257) | 0.41 | - | ||
DACPR or BSCPR | 1.17 | (0.526–2.604) | 0.701 | - | ||
Witnessed cardiac arrest | 4.519 | (1.686–12.112) | 0.003 | 4.016 | (1.455–11.080) | 0.007 |
Shockable rhythm | 8.758 | (3.736–20.531) | <0.001 | 6.881 | (2.844–16.653) | <0.001 |
Location of arrest | ||||||
Home | reference | |||||
Public area | 4.655 | (1.817–11.924) | 0.001 | - | ||
Medical institution | 0.397 | (0.052–3.028) | 0.373 | - | ||
Others | (N/A) | 0.989 | – | |||
During ambulance transport | 1.884 | (0.232–15.294) | 0.553 | - | ||
Pre-hospital epinephrine injection | 1.746 | (0.390–7.823) | 0.466 | - | ||
EMS stations with different batches of LUCAS-2 implementation | ||||||
The first batch (2 EMS stations) | reference | - | ||||
The second batch (3 EMS stations) | 0.968 | (0.398–2.350) | 0.942 | - | ||
The final batch (2 EMS stations) | 0.81 | (0.281–2.332) | 0.696 | - | ||
Level of transferred hospital | - | |||||
Primary | reference | - | ||||
Secondary | 2.14 | (0.476–9.612) | 0.321 | - | ||
Tertiary | 2.503 | (0.542–11.551) | 0.24 | - | ||
Mechanical CPR | 1.236 | (0.568–2.691) | 0.594 | 1.066 | (0.459–2.475) | 0.881 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-R.; Liao, C.-J.; Huang, H.-C.; Tsai, C.-H.; Su, Y.-S.; Liu, C.-H.; Hsu, C.-F.; Tsai, M.-J. The Effect of Implementing Mechanical Cardiopulmonary Resuscitation Devices on Out-of-Hospital Cardiac Arrest Patients in an Urban City of Taiwan. Int. J. Environ. Res. Public Health 2021, 18, 3636. https://doi.org/10.3390/ijerph18073636
Chen Y-R, Liao C-J, Huang H-C, Tsai C-H, Su Y-S, Liu C-H, Hsu C-F, Tsai M-J. The Effect of Implementing Mechanical Cardiopulmonary Resuscitation Devices on Out-of-Hospital Cardiac Arrest Patients in an Urban City of Taiwan. International Journal of Environmental Research and Public Health. 2021; 18(7):3636. https://doi.org/10.3390/ijerph18073636
Chicago/Turabian StyleChen, Yi-Rong, Chi-Jiang Liao, Han-Chun Huang, Cheng-Han Tsai, Yao-Sing Su, Chung-Hsien Liu, Chi-Feng Hsu, and Ming-Jen Tsai. 2021. "The Effect of Implementing Mechanical Cardiopulmonary Resuscitation Devices on Out-of-Hospital Cardiac Arrest Patients in an Urban City of Taiwan" International Journal of Environmental Research and Public Health 18, no. 7: 3636. https://doi.org/10.3390/ijerph18073636
APA StyleChen, Y. -R., Liao, C. -J., Huang, H. -C., Tsai, C. -H., Su, Y. -S., Liu, C. -H., Hsu, C. -F., & Tsai, M. -J. (2021). The Effect of Implementing Mechanical Cardiopulmonary Resuscitation Devices on Out-of-Hospital Cardiac Arrest Patients in an Urban City of Taiwan. International Journal of Environmental Research and Public Health, 18(7), 3636. https://doi.org/10.3390/ijerph18073636