Effects of 4 Weeks of a Technique-Specific Protocol with High-Intensity Intervals on General and Specific Physical Fitness in Taekwondo Athletes: An Inter-Individual Analysis
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Approach to the Problem
2.2. Participants
2.3. Assessments
2.3.1. Jump Ability
2.3.2. Linear Sprint in 5 Metre (5M)
2.3.3. Taekwondo Specific Agility Test (TSAT)
2.3.4. Multiple Frequency Speed of Kick Test (FSKTMULT)
2.3.5. 20-Metre Shuttle Run Test (20MSR)
2.3.6. Anthropometric and Body Composition Assessments
2.3.7. Training Programme
2.4. Procedures
2.5. Statistical Analysis
3. Results
3.1. Normality of the Results Analysed
3.2. Differences between Athletes in Both Groups at Baseline Assessments
3.3. Interaction between the Factors Analysed
3.4. Magnitude of Change Based on Inference
3.5. Inter-Individual Variability in Response to the Intervention
4. Discussion
4.1. Changes in Jumping Performance
4.1.1. TSAT and 5M
4.1.2. FSKTMULT
4.1.3. 20MSR
4.1.4. Changes in Body Composition
4.2. Limitations
4.3. Highlights
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janowski, M.; Zieliński, J.; Ciekot-Sołtysiak, M.; Schneider, A.; Kusy, K. The Effect of Sports Rules Amendments on Exercise Intensity during Taekwondo-Specific Workouts. Int. J. Environ. Res. Public Health 2020, 17, 6779. [Google Scholar] [CrossRef]
- da Silva Santos, J.F.; Wilson, V.D.; Herrera-Valenzuela, T.; Machado, F.S.M. Time-Motion Analysis and Physiological Responses to Taekwondo Combat in Juvenile and Adult Athletes: A Systematic Review. Strength Cond. J. 2020, 42, 103–121. [Google Scholar] [CrossRef]
- Bridge, C.A.; da Silva Santos, J.F.; Chaabene, H.; Pieter, W.; Franchini, E. Physical and Physiological Profiles of Taekwondo Athletes. Sports Med. 2014, 44, 713–733. [Google Scholar] [CrossRef] [PubMed]
- Campos, F.A.D.; Bertuzzi, R.; Dourado, A.C.; Santos, V.G.F.; Franchini, E. Energy Demands in Taekwondo Athletes during Combat Simulation. Eur. J. Appl. Physiol. 2012, 112, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
- Ojeda-Aravena, A.; Azocar-Gallardo, J.; Galle, F.; García-García, J.M. Relación Entre Las Características de La Composición Corporal y El Rendimiento Físico General y Específico En Competidores de Taekwondo Chilenos de Nivel Nacional de Ambos Sexos: Un Estudio Observacional. Rev. Esp. Nutr. Hum. Diet. 2020, 24, 154–164. [Google Scholar] [CrossRef]
- Andreato, L.V. High-Intensity Interval Training: Methodological Considerations for Interpreting Results and Conducting Research. Trends Endocrinol. Metab. 2020. [Google Scholar] [CrossRef]
- Vasconcelos, B.B.; Protzen, G.V.; Galliano, L.M.; Kirk, C.; Del Vecchio, F.B. Effects of High-Intensity Interval Training in Combat Sports: A Systematic Review with Meta-Analysis. J. Strength Cond. Res. 2020, 34, 888–900. [Google Scholar] [CrossRef]
- Franchini, E.; Cormack, S.; Takito, M.Y. Effects of High-Intensity Interval Training on Olympic Combat Sports Athletes’ Performance and Physiological Adaptation: A Systematic Review. J. Strength Cond. Res. 2019, 33, 242–252. [Google Scholar] [CrossRef]
- Monks, L.; Seo, M.-W.; Kim, H.-B.; Jung, H.C.; Song, J.K. High-Intensity Interval Training and Athletic Performance in Taekwondo Athletes. J. Sports Med. Phys. Fit. 2017, 57, 1252–1260. [Google Scholar] [CrossRef]
- Seo, M.-W.; Lee, J.-M.; Jung, H.C.; Jung, S.W.; Song, J.K. Effects of Various Work-to-Rest Ratios during High-Intensity Interval Training on Athletic Performance in Adolescents. Int. J. Sports Med. 2019, 40, 503–510. [Google Scholar] [CrossRef]
- Aravena, D.E.A.; Barrera, V.R.; Santos, J.F.D.S.; Franchini, E.; Badilla, P.V.; Orihuela, P.; Valenzuela, T.H. High-Intensity Interval Training Improves Specific Performance in Taekwondo Athletes. Rev. Artes Marciales Asiát. 2020, 15, 4–13. [Google Scholar] [CrossRef]
- Ouergui, I.; Messaoudi, H.; Chtourou, H.; Wagner, M.O.; Bouassida, A.; Bouhlel, E.; Franchini, E.; Engel, F.A. Repeated Sprint Training vs. Repeated High-Intensity Technique Training in Adolescent Taekwondo Athletes—A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2020, 17, 4506. [Google Scholar] [CrossRef] [PubMed]
- Franchini, E. High-Intensity Interval Training Prescription for Combat-Sport Athletes. Int. J. Sports Physiol. Perform. 2020, 15, 767–776. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Alvarez, C.; Gentil, P.; Moran, J.; García-Pinillos, F.; Alonso-Martínez, A.M.; Izquierdo, M. Inter-Individual Variability in Responses to 7 Weeks of Plyometric Jump Training in Male Youth Soccer Players. Front. Physiol. 2018, 9, 1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonafiglia, J.T.; Nelms, M.W.; Preobrazenski, N.; LeBlanc, C.; Robins, L.; Lu, S.; Lithopoulos, A.; Walsh, J.J.; Gurd, B.J. Moving beyond Threshold-Based Dichotomous Classification to Improve the Accuracy in Classifying Non-Responders. Physiol. Rep. 2018, 6, e13928. [Google Scholar] [CrossRef] [PubMed]
- Bonafiglia, J.T.; Rotundo, M.P.; Whittall, J.P.; Scribbans, T.D.; Graham, R.B.; Gurd, B.J. Inter-Individual Variability in the Adaptive Responses to Endurance and Sprint Interval Training: A Randomized Crossover Study. PLoS ONE 2016, 11. [Google Scholar] [CrossRef]
- Dolci, F.; Kilding, A.E.; Chivers, P.; Piggott, B.; Hart, N.H. High-Intensity Interval Training Shock Microcycle for Enhancing Sport Performance: A Brief Review. J. Strength Cond. Res. 2020, 34, 1188–1196. [Google Scholar] [CrossRef]
- Laursen, P.B.; Buchheit, M. Science and Application of High-Intensity Interval Training; Human Kinetics: Champaign, IL, USA, 2018; ISBN 978-1-4925-5212-3. [Google Scholar]
- World Medical Association World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [CrossRef] [Green Version]
- Groeber, M.; Stafilidis, S.; Seiberl, W.; Baca, A. Contribution of Stretch-Induced Force Enhancement to Increased Performance in Maximal Voluntary and Submaximal Artificially Activated Stretch-Shortening Muscle Action. Front. Physiol. 2020, 11, 592183. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Campillo, R.; Andrade, D.C.; Izquierdo, M. Effects of Plyometric Training Volume and Training Surface on Explosive Strength. J. Strength Cond. Res. 2013, 27, 2714–2722. [Google Scholar] [CrossRef] [Green Version]
- Moran, J.; Sandercock, G.R.; Ramírez-Campillo, R.; Todd, O.; Collison, J.; Parry, D.A. Maturation-Related Effect of Low-Dose Plyometric Training on Performance in Youth Hockey Players. Pediatr. Exerc. Sci. 2017, 29, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Chaabene, H.; Negra, Y.; Capranica, L.; Bouguezzi, R.; Hachana, Y.; Rouahi, M.A.; Mkaouer, B. Validity and Reliability of a New Test of Planned Agility in Elite Taekwondo Athletes. J. Strength Cond. Res. 2018, 32, 2542–2547. [Google Scholar] [CrossRef]
- da Silva Santos, J.F.; Loturco, I.; Franchini, E. Relationship between Frequency Speed of Kick Test Performance, Optimal Load, and Anthropometric Variables in Black-Belt Taekwondo Athletes. Ido Mov. Cult. J. Martial Arts Anthropol. 2018, 18, 39–44. [Google Scholar] [CrossRef]
- Leger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The Multistage 20 Metre Shuttle Run Test for Aerobic Fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Caballero, P.G.; Díaz, J.C. Manual de Antropometría; Instituto Superior De Cultura Física: La Habana, Cuba, 2003. [Google Scholar]
- Lee, L.-W.; Liao, Y.-S.; Lu, H.-K.; Hsiao, P.-L.; Chen, Y.-Y.; Chi, C.-C.; Hsieh, K.-C. Validation of Two Portable Bioelectrical Impedance Analyses for the Assessment of Body Composition in School Age Children. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, M.M.; Marttinen, R.H.; Galpin, A.J. Comparison of Body Fat Results from 4 Bioelectrical Impedance Analysis Devices vs. Air Displacement Plethysmography in American Adolescent Wrestlers. Int. J. Kinesiol. Sports Sci. 2017, 5, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.M.; Chambers, T.L.; Burns, S.P.; Godard, M.P. Validating Inbody® 570 Multi-Frequency Bioelectrical Impedance Analyzer versus DXA for Body Fat Percentage Analysis. Med. Sci. Sports Exerc. 2016, 48, 991. [Google Scholar] [CrossRef] [Green Version]
- An, K.H.; Han, K.A.; Sohn, T.S.; Park, I.B.; Kim, H.J.; Moon, S.D.; Min, K.W. Body Fat Is Related to Sedentary Behavior and Light Physical Activity but Not to Moderate-Vigorous Physical Activity in Type 2 Diabetes Mellitus. Diabetes Metab. J. 2019, 44, 316–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marenco, R.G.; Escobedo, M.M.; Balam, M.G.; Zapata, J.E.; Barreiro, A.C.; Poot, P.V.; Martín, K.C. Concordancia entre la composición corporal medida con un inbody 120 y un skulpt chisel en atletas de combate adolescentes. Rev. Digit. Act. Fís. Deporte 2021, 7, 1–12. [Google Scholar] [CrossRef]
- Antonio, J.; Kenyon, M.; Ellerbroek, A.; Carson, C.; Burgess, V.; Tyler-Palmer, D.; Mike, J.; Roberts, J.; Angeli, G.; Peacock, C. Comparison of Dual-Energy X-Ray Absorptiometry (DXA) Versus a Multi-Frequency Bioelectrical Impedance (InBody 770) Device for Body Composition Assessment after a 4-Week Hypoenergetic Diet. J. Funct. Morphol. Kinesiol. 2019, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Research Randomizer. Available online: https://www.randomizer.org (accessed on 1 March 2019).
- Hopkins, W.G. Measures of Reliability in Sports Medicine and Science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Buchheit, M.; Laursen, P.B. High-Intensity Interval Training, Solutions to the Programming Puzzle. Part II: Anaerobic Energy, Neuromuscular Load and Practical Applications. Sports Med. 2013, 43, 927–954. [Google Scholar] [CrossRef]
- Kinnunen, J.-V.; Piitulainen, H.; Piirainen, J.M. Neuromuscular Adaptations to Short-Term High-Intensity Interval Training in Female Ice-Hockey Players. J. Strength Cond. Res. 2019, 33, 479–485. [Google Scholar] [CrossRef] [Green Version]
- de Quel, Ó.M.; Ara, I.; Izquierdo, M.; Ayán, C. Does Physical Fitness Predict Future Karate Success? A Study in Young Female Karatekas. Int. J. Sports Physiol. Perform. 2020, 15, 868–873. [Google Scholar] [CrossRef] [PubMed]
- da Silva Santos, J.F.; Franchini, E. Frequency Speed of Kick Test Performance Comparison between Female Taekwondo Athletes of Different Competitive Levels. J. Strength Cond. Res. 2018, 32, 2934–2938. [Google Scholar] [CrossRef] [PubMed]
- Ravier, G.; Dugué, B.; Grappe, F.; Rouillon, J.D. Impressive Anaerobic Adaptations in Elite Karate Athletes Due to Few Intensive Intermittent Sessions Added to Regular Karate Training. Scand. J. Med. Sci. Sports 2009, 19, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Farzad, B.; Gharakhanlou, R.; Agha-Alinejad, H.; Curby, D.G.; Bayati, M.; Bahraminejad, M.; Mäestu, J. Physiological and Performance Changes from the Addition of a Sprint Interval Program to Wrestling Training. J. Strength Cond. Res. 2011, 25, 2392–2399. [Google Scholar] [CrossRef] [Green Version]
- Wen, D.; Utesch, T.; Wu, J.; Robertson, S.; Liu, J.; Hu, G.; Chen, H. Effects of Different Protocols of High Intensity Interval Training for VO2max Improvements in Adults: A Meta-Analysis of Randomised Controlled Trials. J. Sci. Med. Sport 2019, 22, 941–947. [Google Scholar] [CrossRef]
- Franchini, E.; Julio, U.F.; Panissa, V.L.; Lira, F.S.; Gerosa-Neto, J.; Branco, B.H. High-Intensity Intermittent Training Positively Affects Aerobic and Anaerobic Performance in Judo Athletes Independently of Exercise Mode. Front. Physiol. 2016, 7, 268. [Google Scholar] [CrossRef] [Green Version]
- Kamandulis, S.; Bruzas, V.; Mockus, P.; Stasiulis, A.; Snieckus, A.; Venckunas, T. Sport-Specific Repeated Sprint Training Improves Punching Ability and Upper-Body Aerobic Power in Experienced Amateur Boxers. J. Strength Cond. Res. 2018, 32, 1214–1221. [Google Scholar] [CrossRef] [PubMed]
- Keating, S.E.; Johnson, N.A.; Mielke, G.I.; Coombes, J.S. A Systematic Review and Meta-Analysis of Interval Training versus Moderate-Intensity Continuous Training on Body Adiposity. Obes. Rev. 2017, 18, 943–964. [Google Scholar] [CrossRef] [PubMed]
- Maillard, F.; Pereira, B.; Boisseau, N. Effect of High-Intensity Interval Training on Total, Abdominal and Visceral Fat Mass: A Meta-Analysis. Sports Med. 2018, 48, 269–288. [Google Scholar] [CrossRef]
- Cox, C.E. Role of Physical Activity for Weight Loss and Weight Maintenance. Diabetes Spectr. 2017, 30, 157–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentil, P.; Viana, R.B.; Naves, J.P.; Del Vecchio, F.B.; Coswig, V.; Loenneke, J.; de Lira, C.A.B. Is It Time to Rethink Our Weight Loss Paradigms? Biology 2020, 9, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ransdell, L.B.; Wells, C.L. Sex Differences in Athletic Performance. Women Sport Phys. Act. J. 1999, 8, 55–81. [Google Scholar] [CrossRef]
- Courtright, S.H.; McCormick, B.W.; Postlethwaite, B.E.; Reeves, C.J.; Mount, M.K. A Meta-Analysis of Sex Differences in Physical Ability: Revised Estimates and Strategies for Reducing Differences in Selection Contexts. J. Appl. Psychol. 2013, 98, 623. [Google Scholar] [CrossRef]
- Schmitz, B.; Niehues, H.; Thorwesten, L.; Klose, A.; Krüger, M.; Brand, S.-M. Sex Differences in High-Intensity Interval Training–Are HIIT Protocols Interchangeable Between Females and Males? Front. Physiol. 2020, 11. [Google Scholar] [CrossRef]
- Mirwald, R.L.; Baxter-Jones, A.D.; Bailey, D.A.; Beunen, G.P. An Assessment of Maturity from Anthropometric Measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [CrossRef]
- Malina, R.M.; Rogol, A.D.; Cumming, S.P.; de Silva, M.J.C.; Figueiredo, A.J. Biological Maturation of Youth Athletes: Assessment and Implications. Br. J. Sports Med. 2015, 49, 852–859. [Google Scholar] [CrossRef] [Green Version]
- Chtourou, H.; Souissi, N. The Effect of Training at a Specific Time of Day: A Review. J. Strength Cond. Res. 2012, 26, 1984–2005. [Google Scholar] [CrossRef] [PubMed]
- McLester, C.N.; Nickerson, B.S.; Kliszczewicz, B.M.; McLester, J.R. Reliability and Agreement of Various InBody Body Composition Analyzers as Compared to Dual-Energy X-Ray Absorptiometry in Healthy Men and Women. J. Clin. Densitom. 2020, 23, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Chaabene, H.; Negra, Y.; Bouguezzi, R.; Capranica, L.; Franchini, E.; Prieske, O.; Hbacha, H.; Granacher, U. Tests for the Assessment of Sport-Specific Performance in Olympic Combat Sports: A Systematic Review with Practical Recommendations. Front. Physiol. 2018, 9, 386. [Google Scholar] [CrossRef] [PubMed]
- Marini, E.; Campa, F.; Buffa, R.; Stagi, S.; Matias, C.N.; Toselli, S.; Sardinha, L.B.; Silva, A.M. Phase Angle and Bioelectrical Impedance Vector Analysis in the Evaluation of Body Composition in Athletes. Clin. Nutr. 2020, 39, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Matias, C.N.; Marini, E.; Heymsfield, S.B.; Toselli, S.; Sardinha, L.B.; Silva, A.M. Identifying Athlete Body Fluid Changes during a Competitive Season with Bioelectrical Impedance Vector Analysis. Int. J. Sports Physiol. Perform. 2020, 15, 361–367. [Google Scholar] [CrossRef] [PubMed]
EG (n = 8) | CG (n = 8) | |
---|---|---|
1st week | 3 rounds of 4 repetitions of 4 s of work: 28 s rest/1 min recovery | Continuous roundhouse kick with partner with use of paddles for speed |
2nd week | 3 rounds of 5 repetitions of 4 s of work: 24 s rest/1 min recovery | Continuous bandal-tchagi kicks with partner with use of paddle for speed |
3rd week | 3 rounds of 5 repetitions of 4 s of work: 20 s rest/1 min recovery | Simulated combat with technical specifications |
4th week | 3 rounds of 6 repetitions of 4 s of work: 16 s rest/1 min recovery | Simulated combat with technical specifications |
PRE | POST | PRE | POST | F | p | η2p | |
---|---|---|---|---|---|---|---|
Physical Fitness Components | |||||||
SJ (cm) | 30 ± 6.8 | 29.2 ± 5.2 | 27.2 ± 6.2 | 28.3 ± 5.5 | 0.19 | 0.66 | 0.00 |
CMJ (cm) | 33.3 ± 7.4 | 31.5 ± 6.4 | 32.3 ± 6.2 | 28.1 ± 6.44 | 0.25 | 0.61 | 0.09 |
5M (m s−1) | 1.14 ± 0.07 | 1.24 ± 0.09 | 1.22 ± 0.05 | 1.23 ± 0.12 | 1.91 | 1.91 | 0.64 |
TSAT (s) | 7.95 ±1.11 | 5.0 ± 0.74 | 7.82 ± 1.04 | 6.78 ± 0.42 | 1.91 | 0.66 | 0.01 |
Total kicks (n) | 95.3 ± 7.2 | 98.7 ± 7.3 | 96.3 ± 7.8 | 99.2 ± 6.5 | 0.09 | 0.92 | 0.00 |
KDI (%) | 7.9 ± 3.9 | 5.2 ± 3.2 | 11.1 ± 4.3 | 7.1 ± 2.4 | 1.80 | 0.60 | 0.00 |
20MSR (min) | 7.8 ± 2.6 | 8.8 ± 2.5 | 8.0 ± 2.1 | 9.2 ± 2.0 | 0.02 | 0.88 | 0.01 |
Anthropometric and Body Composition Characteristics | |||||||
BM (kg) | 61.8 ± 11.5 | 60.6 ± 11.2 | 62.8 ± 11.1 | 61.43 ± 9.9 | 0.001 | 0.97 | 0.00 |
FM (kg) | 10.6 ± 5.6 | 9.8 ± 5.5 | 12.7 ± 5.6 | 12 ± 5.1 | 0.20 | 0.92 | 0.01 |
FM (%) | 17.0 ± 7.9 | 16.1± 8.2 | 19.3 ± 10.4 | 19.9 ± 8.6 | 0.23 | 0.63 | 0.00 |
MM (kg) | 28.5 ± 6.2 | 28.6 ± 6.7 | 28.2 ± 7.3 | 27.6 ± 6.4 | 0.36 | 0.85 | 0.00 |
EG (n = 8) | CG (n = 8) | EG vs. CG | ||||||
---|---|---|---|---|---|---|---|---|
Δ % (90%CI) | ES (90%CI) | Rs, n (%) | Δ % (90%CI) | ES (90%CI) | Rs, n (%) | Δ % (90%CI) | ES (90%CI) | |
Physical Fitness Components | ||||||||
SJ (cm) | 2.6 (0.1 to 5.3) | 0.20 (0.01 to 0.40) | 2 (25) | −1.7 (−8.8 to 5.9) | −0.07 (−0.35 to 0.22) | 0 (0) | −5.2 (−15.7 to 6.6) | −0.20 (−0.64 to 0.24) |
CMJ (cm) | −10.4 (−15.5 to −5.0) | −0.83 (−1.27 to −0.39) | 0 (0) | −9.6 (−19.7 to 1.7) | −0.36 (−0.78 to 0.06) | 1 (12.5) | 11 (−0.7 to 24.2) | 0.45 (−0.03 to 0.93) |
TSAT (s) | −8.6 (−16.5 to 0.00) | −1.07 (−2.14 to 0.00) | 3 (37.5) | −12.7 (−16 to −9.2) | −0.87 (−1.12 to −0.61) | 2 (25) | 0.8 (−6.9 to 9.1) | 0.06 (−0.48 to 0.60) |
5M (m s−1) | −3.8 (−9.0 to 1.8) | −0.52 (−1.28 to 0.24) | 0 (0) | 7.5 (1.8 to 13.5) | 1.11 (0.27 to 1.94) | 2 (25) | −8.5 (−13.6 to −3.0) | −1.27 (−2.10 to −0.44) |
Total kicks (n) | 4.4 (−3.6 to 13.0) | 0.58 (−0.49 to 1.64) | 1 (12.5) | 3.7 (−1.6 to 9.4) | 0.36 (−0.16 to 0.88) | 1 (12.5) | 0.8 (−4.5 to 6.3) | 0.09 (−0.53 to 0.72) |
KDI (%) | −32.5 (−56.4 to 4.5) | −0.80 (−1.69 to 0.09) | 2 (25) | −37.7 (−79.8 to 92.1) | −0.48 (−1.63 to 0.67) | 3 (37.5) | −11.8 (−66.4 to 131.8) | −0.17 (−1.48 to 1.14) |
20MSR (min) | 12.9 (4.0 to 22.6) | 1.07 (0.34 to 1.79) | 7 (87.5) | 9.2 (3.4 to 15.3) | 0.24 (0.09 to 0.39) | 7 (87.5) | −2.0 (−10.9 to 7.7) | −0.06 (−0.34 to 0.22) |
Body Composition Characteristics | ||||||||
BM (kg) | −2.1 (−4.7 a 0.4) | −0.12 (−0.26 to 0.02) | 4 (50) | −1.7 (−3.4 to 0.1) | 0.05 (−0.11 to 0.00) | 3 (37.5) | 0.3 (−1.6 to 2.4) | 0.01 (−0.11 to 0.13) |
FM (kg) | 2.2 (−18.8 to 17.7) | 0.05 (−0.48 to 0.38) | 1 (12.5) | 3.6 (−16.1 to 10.8) | 0.04 (−0.22 to 0.13) | 1 (12.5) | 6.9 (−11.5 to 29.1) | 0.11 (−0.20 to 0.42) |
FM (%) | 19.5 (−8.8 to 56.5) | 0.45 (−0.23 to 1.12) | 1 (12.5) | −2.0 (−13.8 to 11.5) | −0.03 (−0.20 to 0.15) | 1 (12.5) | −10.0 (−24.8 to 7.8) | −0.17 (−0.46 to 0.12) |
MM (kg) | −3.1 (−6.6 to 0.5) | −0.17 (−0.37 to 0.03) | 0 (0) | −0.8 (−3.9 to 2.3) | −0.02 (−0.11 to 0.06) | 1 (12.5) | 0.8 (−2.5 to 4.2) | 0.03 (−0.09 to 0.16) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ojeda-Aravena, A.; Herrera-Valenzuela, T.; Valdés-Badilla, P.; Cancino-López, J.; Zapata-Bastias, J.; García-García, J.M. Effects of 4 Weeks of a Technique-Specific Protocol with High-Intensity Intervals on General and Specific Physical Fitness in Taekwondo Athletes: An Inter-Individual Analysis. Int. J. Environ. Res. Public Health 2021, 18, 3643. https://doi.org/10.3390/ijerph18073643
Ojeda-Aravena A, Herrera-Valenzuela T, Valdés-Badilla P, Cancino-López J, Zapata-Bastias J, García-García JM. Effects of 4 Weeks of a Technique-Specific Protocol with High-Intensity Intervals on General and Specific Physical Fitness in Taekwondo Athletes: An Inter-Individual Analysis. International Journal of Environmental Research and Public Health. 2021; 18(7):3643. https://doi.org/10.3390/ijerph18073643
Chicago/Turabian StyleOjeda-Aravena, Alex, Tomás Herrera-Valenzuela, Pablo Valdés-Badilla, Jorge Cancino-López, José Zapata-Bastias, and José Manuel García-García. 2021. "Effects of 4 Weeks of a Technique-Specific Protocol with High-Intensity Intervals on General and Specific Physical Fitness in Taekwondo Athletes: An Inter-Individual Analysis" International Journal of Environmental Research and Public Health 18, no. 7: 3643. https://doi.org/10.3390/ijerph18073643
APA StyleOjeda-Aravena, A., Herrera-Valenzuela, T., Valdés-Badilla, P., Cancino-López, J., Zapata-Bastias, J., & García-García, J. M. (2021). Effects of 4 Weeks of a Technique-Specific Protocol with High-Intensity Intervals on General and Specific Physical Fitness in Taekwondo Athletes: An Inter-Individual Analysis. International Journal of Environmental Research and Public Health, 18(7), 3643. https://doi.org/10.3390/ijerph18073643