Presence of Campylobacterjejuni and C. coli in Dogs under Training for Animal-Assisted Therapies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Bacterial Isolation
2.3. Polymerase Chain Reaction (PCR)
2.4. Data Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Overgaauw, P.A.M.; Vinke, C.M.; Hagen, M.A.E.V.; Lipman, L.J.A. A One Health Perspective on the Human-Companion Animal Relationship with Emphasis on Zoonotic Aspects. Int. J. Environ. Res. Public Health 2020, 17, 3789. [Google Scholar] [CrossRef]
- Terminology. Pet Partners. 2020. Available online: https://petpartners.org/learn/terminology/ (accessed on 21 February 2021).
- Santaniello, A.; Dicé, F.; Carratú, R.C.; Amato, A.; Fioretti, A.; Menna, L.F. Methodological and Terminological Issues in Animal-Assisted Interventions: An Umbrella Review of Systematic Reviews. Animals 2020, 10, 759. [Google Scholar] [CrossRef] [PubMed]
- Menna, L.F.; Santaniello, A.; Gerardi, F.; Sansone, M.; Di Maggio, A.; Di Palma, A.; Perruolo, G.; D’Esposito, V.; Formisano, P. Efficacy of animal-assisted therapy adapted to reality orientation therapy: Measurement of salivary cortisol. Psychogeriatrics 2019, 19, 510–512. [Google Scholar] [CrossRef]
- Menna, L.F.; Santaniello, A.; Todisco, M.; Amato, A.; Borrelli, L.; Scandurra, C.; Fioretti, A. The Human-Animal Relationship as the Focus of Animal-Assisted Interventions: A One Health Approach. Int. J. Environ. Res. Public Health 2019, 16, 3660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hediger, K.; Meisser, A.; Zinsstag, J. A One Health Research Framework for Animal-Assisted Interventions. Int. J. Environ. Res. Public Health 2019, 16, 640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedmann, E.; Son, H. The human-companion animal bond: How humans benefit. Vet. Clin. Small. Anim. 2009, 39, 293–326. [Google Scholar] [CrossRef] [PubMed]
- Griffioen, R.E.; van der Steen, S.; Verheggen, T.; Enders-Slegers, M.J.; Cox, R.J. Changes in behavioural synchrony during dog-assisted therapy for children with autism spectrum disorder and children with Down syndrome. Appl. Res. Intellect. Disabil. 2020, 33, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Wijker, C.; Leontjevas, R.; Spek, A.; Enders-Slegers, M.J. Effects of Dog Assisted Therapy for Adults with Autism Spectrum Disorder: An Exploratory Randomized Controlled Trial. J. Autism Dev. Disord. 2020, 50, 2153–2163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santaniello, A.; Garzillo, S.; Amato, A.; Sansone, M.; Di Palma, A.; Di Maggio, A.; Fioretti, A.; Menna, L.F. Animal-Assisted Therapy as a Non-Pharmacological Approach in Alzheimer’s Disease: A Retrospective Study. Animals 2020, 10, 1142. [Google Scholar] [CrossRef]
- Marks, G.; McVilly, K. Trained assistance dogs for people with dementia: A systematic review. Psychogeriatrics 2020, 20, 510–521. [Google Scholar] [CrossRef]
- Menna, L.F.; Santaniello, A.; Gerardi, F.; Di Maggio, A.; Milan, G. Evaluation of the efficacy of animal-assisted therapy based on the reality orientation therapy protocol in Alzheimer’s disease patients: A pilot study. Psychogeriatrics 2016, 16, 240–246. [Google Scholar] [CrossRef]
- Jones, M.G.; Rice, S.M.; Cotton, S.M. Incorporating animal-assisted therapy in mental health treatments for adolescents: A systematic review of canine assisted psychotherapy. PLoS ONE 2019, 14, e0210761. [Google Scholar] [CrossRef]
- Chang, S.J.; Lee, J.; An, H.; Hong, W.H.; Lee, J.Y. Animal-Assisted Therapy as an Intervention for Older Adults: A Systematic Review and Meta-Analysis to Guide Evidence-Based Practice. Worldviews Evid. Based Nurs. 2020. [Google Scholar] [CrossRef]
- Bert, F.; Gualano, M.R.; Camussi, E.; Pieve, G.; Voglino, G.; Siliquini, R. Animal assisted intervention: A systematic review of benefits and risks. Eur. J. Integr. Med. 2016, 8, 695–706. [Google Scholar] [CrossRef] [Green Version]
- Decaro, N.; Lorusso, A. Novel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses. Vet. Microbiol. 2020, 244, 108693. [Google Scholar] [CrossRef]
- Santaniello, A.; Sansone, M.; Fioretti, A.; Menna, L.F. Systematic Review and Meta-Analysis of the Occurrence of ESKAPE Bacteria Group in Dogs, and the Related Zoonotic Risk in Animal-Assisted Therapy, and in Animal-Assisted Activity in the Health Context. Int. J. Environ. Res. Public Health 2020, 17, 3278. [Google Scholar] [CrossRef]
- Santaniello, A.; Garzillo, S.; Amato, A.; Sansone, M.; Fioretti, A.; Menna, L.F. Occurrence of Pasteurella multocida in Dogs Being Trained for Animal-Assisted Therapy. Int. J. Environ. Res. Public Health 2020, 17, 6385. [Google Scholar] [CrossRef]
- Boyle, S.F.; Corrigan, V.K.; Buechner-Maxwell, V.; Pierce, B.J. Evaluation of Risk of Zoonotic Pathogen Transmission in a University-Based Animal Assisted Intervention (AAI) Program. Front. Vet. Sci. 2020, 50, 2153–2163. [Google Scholar] [CrossRef]
- Maurelli, M.P.; Santaniello, A.; Fioretti, A.; Cringoli, G.; Rinaldi, L.; Menna, L.F. The Presence of Toxocara Eggs on Dog’s Fur as Potential Zoonotic Risk in Animal-Assisted Interventions: A Systematic Review. Animals 2019, 9, 827. [Google Scholar] [CrossRef] [Green Version]
- Gerardi, F.; Santaniello, A.; Del Prete, L.; Maurelli, M.P.; Menna, L.F.; Rinaldi, L. Parasitic infections in dogs involved in animal-assisted interventions. Ital. J. Anim. Sci. 2018, 1, 269–272. [Google Scholar] [CrossRef] [Green Version]
- Ghasemzadeh, I.; Namazi, S.H. Review of bacterial and viral zoonotic infections transmitted by dogs. J. Med. Life 2015, 8, 1–5. [Google Scholar] [PubMed]
- European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). Scientific Report: The European Union One Health 2018 Zoonoses Report. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2019.5926 (accessed on 4 January 2021). [CrossRef] [Green Version]
- Dipineto, L.; Russo, T.P.; Gargiulo, A.; Borrelli, L.; Bossa, L.M.D.L.; Santaniello, A.; Buonocore, P.; Menna, L.F.; Fioretti, A. Prevalence of enteropathogenic bacteria in common quail (Coturnix coturnix). Avian Pathol. 2014, 43, 498–500. [Google Scholar] [CrossRef] [PubMed]
- Santaniello, A.; Dipineto, L.; Veneziano, V.; Mariani, U.; Fioretti, A.; Menna, L.F. Prevalence of thermotolerant Campylobacter spp. in farmed hares (Lepus europaeus). Vet. J. 2014, 202, 186–187. [Google Scholar] [CrossRef] [PubMed]
- Szczepanska, B.; Andrzejewska, M.; Spica, D.; Klawe, J.J. Prevalence and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolated from children and environmental sources in urban and suburban areas. BMC Microbiol. 2017, 17, 80. [Google Scholar] [CrossRef] [Green Version]
- Giacomelli, M.; Follador, N.; Coppola, L.M.; Martini, M.; Piccirillo, A. Survey of Campylobacter spp. in owned and unowned dogs and cats in Northern Italy. Vet. J. 2015, 204, 333–337. [Google Scholar] [CrossRef]
- Ramonaite, S.; Kudirkiene, E.; Tamuleviciene, E.; Leviniene, G.; Malakauskas, A.; Gölz, G.; Alter, T.; Malakauskas, M. Prevalence and genotypes of Campylobacter jejuni from urban environmental sources in comparison with clinical isolates from children. J. Med. Microbiol. 2014, 63, 1205–1213. [Google Scholar] [CrossRef]
- Gras, L.M.; Smid, J.H.; Wagenaar, J.A.; Koene, M.G.J.; Havelaar, A.H.; Friesema, I.H.M.; French, N.P.; Flemming, C.; Galson, J.D.; Graziani, C.; et al. Increased risk for Campylobacter jejuni and C. coli infection of pet origin in dog owners and evidence for genetic association between strains causing infection in humans and their pets. Epidemiol. Infect. 2013, 141, 2526–2535. [Google Scholar] [CrossRef] [Green Version]
- Murphy, C.; Carroll, C.; Jordan, K.N. Environmental survival mechanisms of the foodborne pathogen Campylobacter jejuni. J. Appl. Microbiol. 2006, 100, 623–632. [Google Scholar] [CrossRef]
- Wieland, B.; Regula, G.; Danuser, J.; Wittwer, M.; Burnens, A.P.; Wassenaar, T.M.; Stärk, K.D.C. Campylobacter spp. in dogs and cats in Switzerland: Risk factor analysis and molecular characterization with AFLP. J. Vet. Int. Med. B 2005, 52, 183–189. [Google Scholar] [CrossRef]
- Damborg, P.; Olsen, K.E.; Møller Nielsen, E.; Guardabassi, L. Occurrence of Campylobacter jejuni in pets living with human patients infected with C. jejuni. J. Clin. Microbiol. 2004, 42, 1363–1364. [Google Scholar] [CrossRef] [Green Version]
- Burnens, A.P.; Angéloz-Wick, B.; Nicolet, J. Comparison of campylobacter carriage rates in diarrheic and healthy pet animals. Zentralbl. Veterinarmed. B 1992, 39, 175–180. [Google Scholar] [CrossRef]
- Thrusfield, M. (Ed.) Surveys. In Veterinary Epidemiology; Blackwell Publishing House Scientific Ltd.: Oxford, UK, 1995; pp. 178–198. [Google Scholar]
- International Organization for Standardization 10272. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for Detection of Thermotolerant Campylobacter; ISO: Geneva, Switzerland, 1995. [Google Scholar]
- Khan, I.U.; Edge, T.A. Development of a novel triplex PCR assay for the detection and differentiation of thermophilic species of campylobacter using 16S-23S rDNA internal transcribed spacer (ITS) region. J. Appl. Microbiol. 2007, 103, 2561–2569. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression; Hosmer, D.W., Lemeshow, S., Eds.; Wiley: New York, NY, USA, 2000; pp. 1–346. [Google Scholar]
- Custance, D.; Mayer, J. Empathic-like responding by domestic dogs (Canis familiaris) to distress in humans: An exploratory study. Anim. Cogn. 2012, 15, 851–859. [Google Scholar] [CrossRef]
- Meyer, I.; Forkman, B. Nonverbal Communication and Human–Dog Interaction. Anthrozoös 2014, 27, 553–568. [Google Scholar] [CrossRef]
- Hare, B.; Rosati, A.; Kaminski, J.; Brauer, J.; Call, J.; Tomasello, M. The domestication hypothesis for dogs’ skills with human communication: A response to Udell et al. (2008) and Wynne et al. (2008). Anim. Behav. 2008, 79, e1–e6. [Google Scholar] [CrossRef] [Green Version]
- Ford, G.; Guob, K.; Mills, D. Human facial expression affects a dog’s response to conflicting directional gestural cues. Behav. Process. 2019, 159, 80–85. [Google Scholar] [CrossRef] [Green Version]
- Menna, L.F.; Santaniello, A.; Amato, A.; Ceparano, G.; Di Maggio, A.; Sansone, M.; Formisano, P.; Cimmino, I.; Perruolo, G.; Fioretti, A. Changes of Oxytocin and Serotonin Values in Dialysis Patients after Animal Assisted Activities (AAAs) with a Dog—A Preliminary Study. Animals 2019, 9, 526. [Google Scholar] [CrossRef] [Green Version]
- Elad, D. Immunocompromised patients and their pets: Still best friends? Vet. J. 2013, 197, 662–669. [Google Scholar] [CrossRef]
- Linder, D.E.; Siebens, H.C.; Mueller, M.K.; Gibbs, D.M.; Freeman, L.M. Animal-assisted interventions: A national survey of health and safety policies in hospitals, eldercare facilities, and therapy animal organizations. Am. J. Infect. Control. 2017, 45, 883–887. [Google Scholar] [CrossRef]
- Shen, R.Z.Z.; Xionga, P.; Choua, U.I.; Hall, B.J. “We need them as much as they need us”: A systematic review of the qualitative evidence for possible mechanisms of effectiveness of animal-assisted intervention (AAI). Complement. Ther. Med. 2018, 41, 203–207. [Google Scholar] [CrossRef]
- Koene, M.G.J.; Houwers, D.J.; Dijkstra, J.R.; Duim, B.; Wagenaar, J.A. Simultaneous presence of multiple Campylobacter species in dogs. J. Clin. Microbiol. 2004, 42, 819–821. [Google Scholar] [CrossRef] [Green Version]
- Acke, E.; McGill, K.; Golden, O.; Jones, B.R.; Fanning, S.; Whyte, P. Prevalence of thermophilic Campylobacter species in household cats and dogs in Ireland. Vet. Rec. 2009, 164, 44–47. [Google Scholar] [CrossRef]
- Chaban, B.; Ngeleka, M.; Hill, J.E. Detection and quantification of 14 Campylobacter species in pet dogs reveals an increase in species richness in feces of diarrheic animals. BMC Microbiol. 2010, 10, 73. [Google Scholar] [CrossRef] [Green Version]
- Tenkate, T.D.; Stafford, R.J. Risk factors for Campylobacter infection in infants and young children: A matched case-control study. Epidemiol. Infect. 2001, 127, 399–404. [Google Scholar] [CrossRef] [Green Version]
- Parsons, B.; Porter, C.; Ryvar, R.; Stavisky, J.; Williams, N.; Pinchbeck, G.; Birtles, R.; Christley, R.; German, A.; Radford, A.; et al. Prevalence of Campylobacter spp. in a cross-sectional study of dogs attending veterinary practices in the UK and risk indicators associated with shedding. Vet. J. 2010, 184, 66–70. [Google Scholar] [CrossRef]
- Andrzejewska, M.; Szczepańska, B.; Klawe, J.J.; Spica, D.; Chudzińska, M. Prevalence of Campylobacter jejuni and Campylobacter coli species in cats and dogs from Bydgoszcz (Poland) region. Pol. J. Vet. Sci. 2013, 16, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Leahy, A.M.; Cummings, K.J.; Rodriguez-Rivera, L.D.; Hamer, S.A.; Lawhon, S.D. Faecal Campylobacter shedding among dogs in animal shelters across Texas. Zoonoses Public Health 2017, 64, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Torkan, S.; Vazirian, B.; Khamesipour, F.; Dida, G.O. Prevalence of thermotolerant Campylobacter species in dogs and cats in Iran. Vet. Med. Sci. 2018, 4, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Thépault, A.; Rose, V.; Queguiner, M.; Chemaly, M.; Rivoal, K. Dogs and Cats: Reservoirs for Highly Diverse Campylobacter jejuni and a Potential Source of Human Exposure. Animals 2020, 10, 838. [Google Scholar] [CrossRef]
- Karama, M.; Cenci-Goga, B.T.; Prosperi, A.; Etter, E.; El-Ashram, S.; McCrindle, C.; Ombui, J.N.; Kalake, A. Prevalence and risk factors associated with Campylobacter spp. occurrence in healthy dogs visiting four rural community veterinary clinics in South Africa. Onderstepoort J. Vet. Res. 2019, 86, e1–e6. [Google Scholar] [CrossRef] [PubMed]
- Badlìk, M.; Holoda, E.; Pistl, J.; Koscová, J.; Sihelská, Z. Prevalence of zoonotic Campylobacter spp. in rectal swabs from dogs in Slovakia: Special reference to C. jejuni and C. coli. Berl. Munch. Tierarztl. Wochenschr. 2014, 127, 144–148. [Google Scholar]
- Sandberg, M.; Bergsjø, B.; Hofshagen, M.; Skjerve, E.; Kruse, H. Risk factors for Campylobacter infection in Norwegian cats and dogs. Prev. Vet. Med. 2002, 55, 241–253. [Google Scholar] [CrossRef]
- Rossi, R.; Hänninen, M.L.; Revez, J.; Hannula, M.; Zanoni, R.G. Occurrence and species level diagnostics of Campylobacter spp., Enteric Helicobacter spp. and Anaerobiospirillum spp. in healthy and diarrheic dogs and cats. Vet. Microbiol. 2008, 129, 304–314. [Google Scholar] [CrossRef]
- Ahmed, I.; Verma, A.K.; Kumar, A. Prevalence, associated risk factors and antimicrobial susceptibility pattern of Campylobacter species among dogs attending veterinary practices at Veterinary University, Mathura, India. Vet. Anim. Sci. 2018, 6, 6–11. [Google Scholar] [CrossRef]
- Leonard, E.; Pearl, D.; Janecko, N.; Weese, J.; Reid-Smith, R.; Peregrine, A.; Finley, R. Factors related to Campylobacter spp. carriage in client-owned dogs visiting veterinary clinics in a region of Ontario, Canada. Epidemiol. Inf. 2011, 139, 1531–1541. [Google Scholar] [CrossRef] [PubMed]
- Dalton, K.R.; Waite, K.B.; Ruble, K.; Carroll, K.C.; DeLone, A.; Frankenfield, P.; Serpell, J.A.; Thorpe, R.J., Jr.; Morris, D.O.; Agnew, J.; et al. Risks associated with animal-assisted intervention programs: A literature review. Complement. Ther. Clin. Pract. 2020, 39, 101145. [Google Scholar] [CrossRef]
- Murthy, R.; Bearman, G.; Brown, S.; Bryant, K.; Chinn, R.; Hewlett, A.; George, B.G.; Goldstein, E.J.; Holzmann-Pazgal, G.; Rupp, M.E.; et al. Animals in healthcare facilities: Recommendations to minimize potential risks. Infect. Control Hosp. Epidemiol. 2015, 36, 495–516. [Google Scholar] [CrossRef] [Green Version]
- Hardin, P.; Brown, J.; Wright, M.E. Prevention of transmitted infections in a pet therapy program: An exemplar. Am. J. Infect. Control 2016, 44, 846–850. [Google Scholar] [CrossRef]
- The Society for Healthcare Epidemiology of America (SHEA). Available online: https://www.shea-online.org/index.php/about/mission-history (accessed on 27 January 2021).
Dog Data | No. of Tested Dogs | No. of Positive Dogs | % | 95% CI | p * |
---|---|---|---|---|---|
Age | |||||
<6 months | 245 | 41 | 16.7 | 12.4–22.1 | 0.393 |
>6 months | 305 | 43 | 14.1 | 10.5–18.6 | |
Sex | |||||
Male | 299 | 42 | 14.0 | 10.4–18.6 | 0.383 |
Female | 251 | 42 | 16.7 | 12.4–22.1 | |
Breed | |||||
Crossbred | 385 | 53 | 13.8 | 10.6–17.7 | 0.134 |
Purebred | 165 | 31 | 18.8 | 13.3–25.8 | |
Eating habits | |||||
Dry food | 378 | 54 | 14.3 | 11.0–18.3 | 0.000 |
Canned meat | 154 | 21 | 13.6 | 8.8–20.3 | |
Home-cooked | 18 | 9 | 50.0 | 26.8–73.2 | |
Total | 550 | 84 | 15.27 | 12.42–18.62 |
Dog Data | No. of Tested Dogs | No. of Positive Dogs | % | 95% CI | p * |
---|---|---|---|---|---|
Age | |||||
<6 months | 245 | 26 | 10.6 | 7.2–15.3 | 0.332 |
>6 months | 305 | 25 | 8.2 | 5.5–12.0 | |
Sex | |||||
Male | 299 | 30 | 10.0 | 7.0–14.1 | 0.502 |
Female | 251 | 21 | 8.4 | 5.4–12.7 | |
Breed | |||||
Crossbred | 385 | 24 | 6.2 | 4.1–9.3 | 0.000 |
Purebred | 165 | 27 | 16.4 | 11.2–23.1 | |
Eating habits | |||||
Dry food | 378 | 39 | 10.3 | 7.5–13.9 | 0.446 |
Canned meat | 154 | 11 | 7.1 | 3.8–12.7 | |
Home-cooked | 18 | 1 | 5.6 | 0.3–29.4 | |
Total | 550 | 51 | 9.3 | 7.0–12.1 |
Independent Variable | Standard Error | p Value | Odds Ratio | 95% Confidence Interval | |
---|---|---|---|---|---|
Low | High | ||||
Breed * | |||||
Purebred vs. Crossbred | 0.210 | 0.001 | 2.042 | 1.352 | 3.084 |
Eating habits ** | |||||
Dry food vs. Canned meat | 0.232 | 0.346 | 0.804 | 0.510 | 1.266 |
Dry food vs. Home-cooked food | 0.489 | 0.006 | 3.831 | 1.469 | 9.992 |
Canned meat vs. Home-cooked food | 0.514 | 0.002 | 4.766 | 1.739 | 13.057 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santaniello, A.; Varriale, L.; Dipineto, L.; Borrelli, L.; Pace, A.; Fioretti, A.; Menna, L.F. Presence of Campylobacterjejuni and C. coli in Dogs under Training for Animal-Assisted Therapies. Int. J. Environ. Res. Public Health 2021, 18, 3717. https://doi.org/10.3390/ijerph18073717
Santaniello A, Varriale L, Dipineto L, Borrelli L, Pace A, Fioretti A, Menna LF. Presence of Campylobacterjejuni and C. coli in Dogs under Training for Animal-Assisted Therapies. International Journal of Environmental Research and Public Health. 2021; 18(7):3717. https://doi.org/10.3390/ijerph18073717
Chicago/Turabian StyleSantaniello, Antonio, Lorena Varriale, Ludovico Dipineto, Luca Borrelli, Antonino Pace, Alessandro Fioretti, and Lucia Francesca Menna. 2021. "Presence of Campylobacterjejuni and C. coli in Dogs under Training for Animal-Assisted Therapies" International Journal of Environmental Research and Public Health 18, no. 7: 3717. https://doi.org/10.3390/ijerph18073717
APA StyleSantaniello, A., Varriale, L., Dipineto, L., Borrelli, L., Pace, A., Fioretti, A., & Menna, L. F. (2021). Presence of Campylobacterjejuni and C. coli in Dogs under Training for Animal-Assisted Therapies. International Journal of Environmental Research and Public Health, 18(7), 3717. https://doi.org/10.3390/ijerph18073717