Cumulative Pesticides Exposure of Children and Their Parents Living near Vineyards by Hair Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Pesticides Selection
- Certainly Used in the study Area (CUA) = the citizen association, with the consultancy of an agronomist, expert on the cultivars of the area, provided an initial list of 9 pesticides certainly used in the study area (chlorpyrifos, cycloxidim, dimethomorph, mandipropamid, meptylninocap, metalaxyl, pyraclostrobin, spiroxamine, and tetraconazole).
- Probably Used in the study Area (PUA) = Another 12 pesticides that were probably used in the study area, as approved in the protocol of the consortium of the vineyard farmers [27], were added to this list (azoxystobin, boscalid, cyprodinil, fenamidone, fludioxonil, indoxacarb, iprovalicarb, metrafenone, penconazole, pyrimethanil, quinoxyfen, and zoxamide).
- Probably Used in the Surroundings (PUS) = Another 9 pesticides probably used in the surroundings, that were not authorized by the farmers’ consortium, but widely used in other vineyards, were also added (bupirimate, chlortoluron, cyproconazole, diuron, etofenprox, imidacloprid, metobromuron, terbuthylazine, and tebuconazole).
- Persistent Pesticides Not Authorized (PPNA) = Finally, 9 persistent pesticides not authorized by the European Commission [28], but widely used in the past and with a high persistence in the environment, were included in the list (atrazine, bitertanol, carbendazim, linuron, methabenzthiazuron, metoxuron, monolinuron, sebuthylazine, and simazine).
2.3. Hair Preparation and Extraction
2.4. LC-MS/MS Analysis of Pesticides
2.5. Statistical Analysis
3. Results
3.1. Study Population and Hair Samples
3.2. Pesticides in Hair
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- European Council. Regulation (EC) no 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market and Repealing. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32009R1107 (accessed on 28 February 2021).
- European Council. Regulation (EC) no 396/2005 of the European Parliament and of the Council on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32005R0396 (accessed on 28 February 2021).
- European Council. Directive 2009/128/EC of the European Parliament and of the Council Establishing a Framework for COMMUNITY Action to Achieve the Sustainable Use of Pesticides. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009L0128 (accessed on 28 February 2021).
- Citizens for Science in Pesticide Regulation. Citizens for Science in Pesticide Regulation a European Coalition. Available online: https://citizens4pesticidereform.eu/ (accessed on 28 February 2021).
- International Panel of Experts on Sustainable Food Systems. Towards a Common Food Policy for the European Union—The Policy Reform and Realignment that Is Required to Build Sustainable Food Systems in Europe. 2019. Available online: http://www.ipes-food.org/_img/upload/files/CFP_FullReport.pdf (accessed on 28 February 2021).
- Curl, C.L.; Fenske, R.A.; Kissel, J.C.; Shirai, J.H.; Moate, T.F.; Griffith, W.; Coronado, G.; Thompson, B. Evaluation of take-home organophosphorus pesticide exposure among agricultural workers and their children. Environ. Health Perspect. 2002, 110, A787–A792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenske, R.A.; Lu, C.; Barr, D.; Needham, L. Children’s exposure to chlorpyrifos and parathion in an agricultural community in central Washington State. Environ. Health Perspect. 2002, 110, 549–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Klaveren, J.D.; Kennedy, M.C.; Moretto, A.; Verbeke, W.; van der Voet, H.; Boon, P.E. The ACROPOLIS project: Its aims, achievements, and way forward. Food Chem. Toxicol. 2015, 79, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Nougadère, A.; Sirot, V.; Kadar, A.; Fastier, A.; Truchot, E.; Vergnet, C.; Hommet, F.; Baylé, J.; Gros, P.; Leblanc, J.C. Total diet study on pesticide residues in France: Levels in food as consumed and chronic dietary risk to consumers. Environ. Int. 2012, 45, 135–150. [Google Scholar] [CrossRef]
- European Food Safety Authority. General principles for the collection of national food consumption data in the view of a pan-European dietary survey. EFSA J. 2019, 7, 1435. [Google Scholar]
- Ostrea, E.M.; Reyes, A.; Villanueva-Uy, E.; Pacifico, R.; Benitez, B.; Ramos, E.; Bernardo, R.C.; Bielawski, D.M.; Delaney-Black, V.; Chiodo, L.; et al. Fetal exposure to propoxur and abnormal child neurodevelopment at 2 years of age. Neurotoxicology 2012, 33, 669–675. [Google Scholar] [CrossRef] [Green Version]
- Trunnelle, K.J.; Bennett, D.H.; Tancredi, D.J.; Gee, S.J.; Stoecklin-Marois, M.T.; Hennessy-Burt, T.E.; Hammock, B.D.; Schenker, M.B. Pyrethroids in house dust from the homes of farm worker families in the MICASA study. Environ. Int. 2013, 61, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Quirós-Alcalá, L.; Bradman, A.; Nishioka, M.; Harnly, M.E.; Hubbard, A.; McKone, T.E.; Ferber, J.; Eskenazi, B. Pesticides in house dust from urban and farmworker households in California: An observational measurement study. Environ. Health 2011, 10, 19. [Google Scholar] [CrossRef] [Green Version]
- Istituto Nazionale di Statistica. (I.Stat) Banca dati delle Statistiche Correntemente Prodotte dall’Istituto Nazionale di Statistica. Available online: http://dati.istat.it/ (accessed on 28 February 2021).
- Angerer, J.; Ewers, U.; Wilhelm, M. Human biomonitoring: State of the art. Int. J. Hyg. Environ. Health 2007, 210, 201–228. [Google Scholar] [CrossRef]
- Berode, M.; Droz, P.O.; Guillemin, M.P. Biological Monitoring of Exposure to Industrial Chemicals in Patty’s Industrial Hygiene; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; Volume 6. [Google Scholar]
- Yusa, V.; Millet, M.; Coscolla, C.; Pardo, O.; Roca, M. Occurrence of biomarkers of pesticide exposure in non-invasive human specimens. Chemosphere 2015, 139, 91–108. [Google Scholar] [CrossRef]
- Appenzeller, B.M.R.; Hardy, E.M.; Grova, N.; Chata, C.; Faÿs, F.; Briand, O.; Schroeder, H.; Duca, R.C. Hair analysis for the biomonitoring of pesticide exposure: Comparison with blood and urine in a rat model. Arch. Toxicol. 2017, 91, 2813–2825. [Google Scholar] [CrossRef] [Green Version]
- Covaci, A.; Hura, C.; Gheorghe, A.; Neels, H.; Dirtu, A.C. Organochlorine contaminants in hair of adolescents from Iassy, Romania. Chemosphere 2008, 72, 16–20. [Google Scholar] [CrossRef]
- Raeppel, C.; Salquèbre, G.; Millet, M.; Appenzeller, B.M. Pesticide detection in air samples from contrasted houses and in their inhabitants’ hair. Sci. Total Environ. 2016, 544, 845–852. [Google Scholar] [CrossRef]
- Tsatsakis, A.M.; Barbounis, M.G.; Kavalakis, M.; Kokkinakis, M.; Terzi, I.; Tzatzarakis, M.N. Determination of dialkyl phosphates in human hair for the biomonitoring of exposure to organophosphate pesticides. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 1246–1252. [Google Scholar] [CrossRef]
- Hernández, A.F.; Lozano-Paniagua, D.; González-Alzaga, B.; Kavvalakis, M.P.; Tzatzarakis, M.N.; López-Flores, I.; Aguilar-Garduño, C.; Caparros-Gonzalez, R.A.; Tsatsakis, A.M.; Lacasaña, M. Biomonitoring of common organophosphate metabolites in hair and urine of children from an agricultural community. Environ. Int. 2019, 131, 104997. [Google Scholar] [CrossRef]
- He, C.T.; Yan, X.; Wang, M.H.; Zheng, X.B.; Chen, K.H.; Guo, M.N.; Zheng, J.; Chen, S.J. Dichloro-diphenyl-trichloroethanes (DDTs) in human hair and serum in rural and urban areas in South China. Environ. Res. 2017, 155, 279–286. [Google Scholar] [CrossRef]
- Béranger, R.; Hardy, E.M.; Dexet, C.; Guldner, L.; Zaros, C.; Nougadère, A.; Metten, M.A.; Chevrier, C.; Appenzeller, B.M.R. Multiple pesticide analysis in hair samples of pregnant French women: Results from the ELFE national birth cohort. Environ. Int. 2018, 120, 43–53. [Google Scholar] [CrossRef]
- Iglesias-González, A.; Hardy, E.M.; Appenzeller, B.M.R. Cumulative exposure to organic pollutants of French children assessed by hair analysis. Environ. Int. 2020, 134, 105332. [Google Scholar] [CrossRef]
- Polledri, E.; Mercadante, R.; Fustinoni, S. A liquid chromatography tandem mass spectrometry method to assess 41 pesticides in human hair. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1159, 122389. [Google Scholar] [CrossRef]
- Consorzio Conegliano Valdobbiadene. Protocollo Viticolo, del Conegliano Valdobbiadene Prosecco DOCG. Available online: http://www.prosecco.it/wp-content/uploads/2018/04/Protocollo-2018-Visione-Finale-04-2018.pdf (accessed on 28 February 2021).
- European Commission. EU Pesticides Database. Available online: http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=homepage&language=EN (accessed on 28 February 2021).
- Consonni, D.; Bertazzi, P.A. Health significance and statistical uncertainty. The value of P-value. Med. Lav. 2017, 108, 327–331. [Google Scholar] [CrossRef]
- Sterne, J.A.; Smith, G.D. Sifting the evidence-what’s wrong with significance tests? Phys. Ther. 2001, 81, 1464–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercadante, R.; Polledri, E.; Bertazzi, P.A.; Fustinoni, S. Biomonitoring short- and long-term exposure to the herbicide terbuthylazine in agriculture workers and in the general population using urine and hair specimens. Environ. Int. 2013, 60, 42–47. [Google Scholar] [CrossRef]
- Mercadante, R.; Polledri, E.; Moretto, A.; Fustinoni, S. Long-term occupational and environmental exposure to penconazole and tebuconazole by hair biomonitoring. Toxicol. Lett. 2018, 298, 19–24. [Google Scholar] [CrossRef]
- Polledri, E.; Mercadante, R.; Nijssen, R.; Consonni, D.; Mol, H.; Fustinoni, S. Hair as a matrix to evaluate cumulative and aggregate exposure to pesticides in winegrowers. Sci. Total Environ. 2019, 687, 808–816. [Google Scholar] [CrossRef]
- Agency of Toxic Substances and Disease Registry (ATSDR). Hair Analysis Panel Discussion. Available online: https://www.atsdr.cdc.gov/hac/hair_analysis/table.html (accessed on 28 February 2021).
Pesticides Group | Pesticides | CAS | Agrochemical Category | EU Status | Approved by the Farmers’ Consortium | LOQ (pg/mg Hair) |
---|---|---|---|---|---|---|
Pesticides Certainly Used in the study Area (CUA) | Chlorpyrifos | 2921-88-2 | Insecticide | Approved | Approved | 0.08 |
Cycloxidim | 101205-02-1 | Herbicide | Approved | Approved | 0.08 | |
Dimethomorph | 110488-70-5 | Fungicide | Approved | Approved | 0.04 | |
Mandipropamid | 374726-62-2 | Fungicide, Herbicide | Approved | Approved | 0.04 | |
Meptyldinocap | 131-72-6 | Fungicide | Approved | Approved | 0.04 | |
Metalaxyl | 57837-19-1 | Fungicide | Approved | Approved | 0.04 | |
Pyraclostrobin | 175013-18-0 | Fungicide | Approved | Approved | 0.04 | |
Spiroxamine | 118134-30-8 | Fungicide | Approved | Approved | 0.08 | |
Tetraconazole | 107534-96-3 | Fungicide | Approved | Approved | 0.04 | |
Pesticides Probably Used in the study Area (PUA) | Azoxystrobin | 131860-33-8 | Fungicide | Approved | Approved | 0.04 |
Boscalid | 188425-85-6 | Fungicide | Approved | Approved | 0.04 | |
Cyprodinil | 121552-61-2 | Fungicide | Approved | Approved | 0.04 | |
Fenamidone | 161326-34-7 | Fungicide | Not Approved Max period of grace: 14/11/2019 | Approved | 0.04 | |
Fludioxonil | 131341-86-1 | Fungicide | Not Approved Max. period of grace: 31/10/2018 | Approved | 0.08 | |
Indoxacarb | 173584-44-6 | Insecticide | Not Approved Max. period of grace: 31/10/2018 | Approved | 0.04 | |
Iprovalicarb | 140923-17-7 | Fungicide | Approved | Approved | 0.04 | |
Metrafenone | 220899-03-6 | Fungicide | Approved | Approved | 0.04 | |
Penconazole | 66246-88-6 | Fungicide | Approved | Approved | 0.04 | |
Pyrimethanil | 53112-28-0 | Fungicide | Approved | Approved | 0.04 | |
Quinoxyfen | 124495-18-7 | Fungicide | Approved | Approved | 0.04 | |
Zoxamide | 156052-68-5 | Fungicide | Approved | Approved | 0.04 | |
Pesticide Probably Used in the Surroundings (PUS) | Bupirimate | 41483-43-6 | Fungicide | Approved | Not approved | 0.04 |
Chlortoluron | 15545-48-9 | Herbicide | Not Approved Max. period of grace: 31/10/2018 | Not approved | 0.08 | |
Cyproconazole | 94361-06-5 | Fungicide | Approved | Not approved | 0.04 | |
Diuron | 330-54-1 | Herbicide | Not Approved Max period of grace: 30/09/2018 | Not approved | 0.20 | |
Etofenprox | 80844-07-1 | Insecticide | Approved | Not approved | 0.20 | |
Imidacloprid | 138261-41-3 | Insecticide | Approved | Not approved | 0.04 | |
Metobromuron | 3060-89-7 | Herbicide | Approved | Not approved | 0.20 | |
Terbuthylazine | 5915-41-3 | Herbicide | Approved | Not approved | 0.04 | |
Tebuconazole | 107534-96-3 | Fungicide | Approved | Not approved | 0.04 | |
Persistent Pesticides Not Authorized (PPNA) | Atrazine | 1912-24-9 | Herbicide | Not Approved | Not approved | 0.04 |
Bitertanol | 55179-31-2 | Insecticide | Not Approved | Not approved | 0.08 | |
Carbendazim * | 10605-21-7 | Fungicide | Not Approved | Not approved | 0.08 | |
Linuron | 330-55-2 | Herbicide | Not Approved | Not approved | 0.20 | |
Methabenzthiazuron | 18691-97-9 | Herbicide | Not Approved | Not approved | 0.04 | |
Metoxuron | 19937-59-8 | Herbicide | Not Approved | Not approved | 0.08 | |
Monolinuron | 1746-81-2 | Herbicide | Not Approved | Not approved | 0.20 | |
Sebuthylazine | 7286-69-3 | Herbicide | Not Approved | Not approved | 0.20 | |
Simazine | 122-34-9 | Herbicide | Not Approved | Not approved | 0.20 |
Children | Parents | Total | |||
---|---|---|---|---|---|
Subjects initially recruited, n | 33 | 16 | 49 | ||
Subjects without valid hair samples, n | 3 | 0 | 3 | ||
Subjects entering the study, n | 30 | 16 | 46 | ||
PRE-EXP hair samples only, n | 0 | 1 | 1 | ||
POST-EXP hair samples only, n | 3 | 1 | 4 | ||
PRE-EXP + POST-EXP paired hair samples, n | 27 | 14 | 41 | ||
Gender | n male (%) | 21 (70%) | 4 (25%) | 25 (54%) | |
n female (%) | 9 (30%) | 12 (75%) | 21 (46%) | ||
Mean age (minimum-maximum) | 6 (1.5–16) | 42 (35–51) | |||
Home-to-vineyards distance (m) Mean (minimum-maximum) | 73 (5–400) | 63 (5–400) | 67 (5–400) | ||
Consumption of vegetables grown in the study area, n (%) | Never | 6 (20%) | 3 (19%) | 9 (20%) | |
Rarely | 4 (13%) | 2 (12%) | 6 (13%) | ||
Often | 16 (54%) | 4 (25%) | 20 (43%) | ||
Usually | 4 (13%) | 7 (44%) | 11 (24%) | ||
Consumption of fruits grown in the study area, n (%) | Never | 3 (10%) | 3 (19%) | 6 (13%) | |
Rarely | 8 (27%) | 4 (25%) | 12 (26%) | ||
Often | 15 (50%) | 4 (25%) | 19 (41%) | ||
Usually | 4 (13%) | 5 (31%) | 9 (20%) |
Pesticides Group | Pesticide | Children | Parents | Children vs. Parents | ||||||
---|---|---|---|---|---|---|---|---|---|---|
PRE-EXP | POST-EXP | p Value PRE- vs. POST-EXP a,b | PRE-EXP | POST-EXP | p Value PRE- vs. POST-EXP a,b | p Value PRE-EXP c,d | p Value POST-EXP c,d | |||
CUA | Chlorpyrifos | N ≥ LOQ (%) | 14 (52) | 30 (100) | <0.001 | 9 (60) | 15 (100) | 0.06 | 0.75 | na |
Median (min–max) | 3.29 (2.07–7.41) | 3.83 (0.79–21.9) | 0.14 | 2.94 (2.41–28.2) | 5.28 (1.41–33.8) | 0.18 | 0.64 | 0.16 | ||
Cycloxidim | N ≥ LOQ (%) | 14 (52) | 30 (100) | <0.001 | 11 (73) | 15 (100) | 0.12 | 0.21 | na | |
Median (min–max) | 0.16 (0.10–0.32) | 1.86 (0.58–4.37) | <0.001 | 0.18 (0.12–0.40) | 3.12 (0.68–4.46) | <0.001 | 0.24 | 0.01 | ||
Dimethomorph | N ≥ LOQ (%) | 27 (100) | 30 (100) | 1.00 | 12 (80) | 15 (100) | 0.25 | 0.04 | na | |
Median (min–max) | 0.30 (0.05–4.97) | 1.06 (0.22–12.9) | 0.001 | 0.39 (0.07–10.4) | 1.27 (0.30–18.8) | 0.04 | 0.66 | 0.62 | ||
Mandipropamid | N ≥ LOQ (%) | 7 (26) | 28 (93) | <0.001 | 14 (93) | 15 (100) | 1.00 | <0.001 | 0.55 | |
Median (min–max) | 0.11 (0.06–0.27) | 0.19 (0.06–3.36) | 0.04 | 0.24 (0.06–0.78) | 0.39 (0.09–1.76) | 0.01 | 0.04 | 0.03 | ||
Meptyldinocap | N ≥ LOQ (%) | 1 (4) | 10 (33) | 0.01 | 3 (20) | 8 (53) | 0.06 | 0.12 | 0.22 | |
Median (min–max) | 0.38 | 0.31 (0.08–10.8) | 0.75 | 0.07 (0.05–0.14) | 1.15 (0.14–7.10) | 0.02 | 0.18 | 0.29 | ||
Metalaxyl | N ≥ LOQ (%) | 23 (85) | 30 (100) | 0.12 | 13 (87) | 15 (100) | 0.50 | 1.00 | na | |
Median (min–max) | 0.24 (0.05–1.30) | 0.42 (0.08–5.20) | 0.02 | 0.18 (0.08–1.84) | 0.51 (0.13–7.04) | 0.01 | 0.75 | 0.26 | ||
Pyraclostrobin | N ≥ LOQ (%) | 17 (63) | 30 (100) | 0.002 | 4 (27) | 13 (87) | 0.008 | 0.05 | 0.11 | |
Median (min–max) | 0.16 (0.06–0.66) | 0.33 (0.09–1.37) | 0.01 | 0.30 (0.13–0.45) | 0.47 (0.07–1.58) | 0.14 | 0.28 | 0.15 | ||
Spiroxamine | N ≥ LOQ (%) | 21 (78) | 30 (100) | 0.03 | 14 (93) | 14 (93) | 1.00 | 0.39 | 0.33 | |
Median (min–max) | 0.92 (0.37–3.13) | 3.83 (0.42–37.7) | <0.001 | 0.74 (0.13–1.73) | 2.61 (0.63–30.1) | 0.001 | 0.14 | 0.40 | ||
Tetraconazole | N ≥ LOQ (%) | 15 (56) | 28 (93) | 0.001 | 12 (80) | 14 (93) | 0.50 | 0.18 | 1.00 | |
Median (min–max) | 0.14 (0.06–0.57) | 0.30 (0.05–1.53) | 0.001 | 0.20 (0.11–0.88) | 0.42 (0.18–1.01) | 0.02 | 0.06 | 0.34 | ||
PUA | Azoxystrobin | N ≥ LOQ (%) | 6 (22) | 11 (37) | 0.69 | 2 (13) | 11 (73) | 0.004 | 0.69 | 0.03 |
Median (min–max) | 0.07 (0.06–0.19) | 0.29 (0.05–0.77) | 0.04 | 0.08 (0.06–0.11) | 0.21 (0.05–0.73) | 0.08 | 0.86 | 0.97 | ||
Boscalid | N ≥ LOQ (%) | 8 (30) | 18 (60) | 0.01 | 8 (53) | 11 (73) | 0.25 | 0.19 | 0.51 | |
Median (min–max) | 0.08 (0.05–0.15) | 0.20 (0.06–2.55) | 0.004 | 0.14 (0.05–0.35) | 0.30 (0.05–3.85) | 0.13 | 0.24 | 0.43 | ||
Cyprodinil | N ≥ LOQ (%) | 12 (44) | 22 (73) | 0.008 | 2 (13) | 13 (87) | 0.001 | 0.05 | 0.46 | |
Median (min–max) | 0.09 (0.04–0.21) | 0.11 (0.05–0.71) | 0.10 | 0.15 (0.06–0.24) | 0.18 (0.05–0.57) | 0.67 | 0.52 | 0.37 | ||
Fludioxonil | N ≥ LOQ (%) | 6 (22) | 16 (53) | 0.004 | 7 (47) | 14 (93) | 0.03 | 0.16 | 0.01 | |
Median (min–max) | 0.21 (0.10–0.46) | 0.29 (0.09–3.19) | 0.29 | 0.24 (0.09–1.45) | 0.25 (0.09–7.48) | 0.91 | 0.47 | 0.76 | ||
Indoxacarb | N ≥ LOQ (%) | 0 | 1 (3) | 1.00 | 1 (7) | 2 (13) | 1.00 | 0.36 | 0.25 | |
Median (min–max) | 0.06 | na | 0.08 | 0.16 (0.12–0.21) | 0.22 | na | 0.22 | |||
Iprovalicarb | N ≥ LOQ (%) | 6 (22) | 14 (47) | 0.03 | 5 (33) | 11 (73) | 0.01 | 0.48 | 0.12 | |
Median (min–max) | 0.07 (0.06–0.41) | 0.11 (0.05–0.70) | 0.11 | 0.20 (0.06–0.34) | 0.12 (0.06–0.77) | 0.87 | 0.71 | 0.60 | ||
Metrafenone | N ≥ LOQ (%) | 12 (44) | 21 (70) | 0.04 | 8 (53) | 15 (100) | 0.03 | 0.75 | 0.02 | |
Median (min–max) | 0.11 (0.05–0.33) | 0.18 (0.05–1.20) | 0.02 | 0.21 (0.05–0.83) | 0.22 (0.10–3.43) | 061 | 0.03 | 0.17 | ||
Penconazole | N ≥ LOQ (%) | 10 (37) | 23 (77) | 0.01 | 6 (40) | 13 (87) | 0.07 | 1.00 | 0.70 | |
Median (min–max) | 0.07 (0.04–0.18) | 0.11 (0.04–0.60) | 0.02 | 0.06 (0.05–0.22) | 0.14 (0.04–0.59) | 0.11 | 0.87 | 0.83 | ||
Pyrimethanil | N ≥ LOQ (%) | 15 (56) | 26 (87) | 0.008 | 12 (80) | 15 (100) | 0.25 | 0.18 | 0.29 | |
Median (min–max) | 0.16 (0.07–2.11) | 0.23 (0.06–11.1) | 0.36 | 0.15 (0.07–8.42) | 0.42 (0.09–48.6) | 0.03 | 0.64 | 0.07 | ||
Quinoxyfen | N ≥ LOQ (%) | 6 (22) | 16 (53) | 0.02 | 8 (53) | 14 (93) | 0.03 | 0.09 | 0.01 | |
Median (min–max) | 0.08 (0.05–0.17) | 0.10 (0.04–0.55) | 0.48 | 0.06 (0.04–0.21) | 0.15 (0.05–0.48) | 0.04 | 0.56 | 0.20 | ||
Zoxamide | N ≥ LOQ (%) | 1 (4) | 2 (7) | 1.00 | 0 | 3 (20) | 0.25 | 1.00 | 0.32 | |
Median (min–max) | 0.05 | 0.16 (0.05–0.27) | 0.48 | 0.12 (0.11–0.85) | na | na | 0.56 | |||
PUS | Cyproconazole | N ≥ LOD (%) | 14 (52) | 30 (100) | <0.001 | 8 (53) | 15 (100) | 0.03 | 1.00 | na |
Median (min–max) | 0.07 (0.05–0.29) | 0.26 (0.12–2.17) | <0.001 | 0.11 (0.06–0.23) | 0.23 (0.19–0.68) | 0.001 | 0.13 | 0.87 | ||
Diuron | N ≥ LOQ (%) | 0 | 5 (17) | 0.12 | 0 | 2 (13) | 1.00 | na | 1.00 | |
Median (min–max) | 0.29 (0.23–4.47) | na | 0.49 (0.22–0.75) | na | na | 0.70 | ||||
Imidacloprid | N ≥ LOQ (%) | 16 (59) | 27 (90) | 0.004 | 5 (33) | 11 (73) | 0.03 | 0.20 | 0.20 | |
Median (min–max) | 0.09 (0.04–12.4) | 0.20 (0.04–32.7) | 0.08 | 0.31 (0.14–1.60) | 0.37 (0.04–8.19) | 0.78 | 0.14 | 0.69 | ||
Metobromuron | N ≥ LOQ (%) | 0 | 1 (3) | 1.00 | 0 | 2 (13) | 0.50 | na | 0.25 | |
Median (min–max) | 0.21 | na | 0.25 (0.20–0.31) | na | na | 1.00 | ||||
Terbuthylazine | N ≥ LOQ (%) | 5 (19) | 16 (53) | 0.01 | 9 (60) | 14 (93) | 0.03 | 0.02 | 0.01 | |
Median (min–max) | 0.06 (0.05–0.10) | 0.12 (0.05–0.50) | 0.02 | 0.08 (0.04–0.11) | 0.17 (0.04–0.73) | 0.02 | 0.25 | 0.43 | ||
Tebuconazole | N ≥ LOQ (%) | 19 (70) | 30 (100) | 0.008 | 14 (93) | 15 (100) | 1.00 | 0.12 | na | |
Median (min–max) | 0.13 (0.04–0.91) | 0.29 (0.04–1.63) | 0.02 | 0.14 (0.05–0.68) | 0.46 (0.07–1.31) | 0.02 | 0.72 | 0.27 | ||
PPNA | Atrazine | N ≥ LOQ (%) | 2 (7) | 0 | 0.50 | 1 (7) | 2 (13) | 1.00 | 1.00 | 0.11 |
Median (min–max) | 0.14 (0.06–0.21) | na | 0.16 | 0.08 (0.05–0.10) | 0.22 | 1.00 | na | |||
Bitertanol | N ≥ LOQ (%) | 1 (4) | 3 (10) | 0.50 | 0 | 1 (7) | 1.00 | 1.00 | 1.00 | |
Median (min–max) | 0.20 | 0.14 (0.11–1.00) | 0.66 | 0.10 | na | na | 0.18 | |||
Carbendazim | N ≥ LOQ (%) | 1 (4) | 10 (33) | 0.008 | 0 | 11 (73) | 0.002 | 1.00 | 0.03 | |
Median (min–max) | 0.37 | 0.29 (0.09–1.35) | 0.53 | 0.35 (0.09–6.39) | na | na | 0.46 | |||
Methabenzthiazuron | N ≥ LOQ (%) | 0 | 6 (20) | 0.03 | 0 | 2 (13) | 0.50 | na | 0.70 | |
Median (min–max) | 0.15 (0.07–0.94) | na | 0.07 (0.05–0.08) | na | na | 0.10 | ||||
Metoxuron | N ≥ LOQ (%) | 0 | 9 (30) | 0.008 | 0 | 3 (20) | 0.25 | na | 0.72 | |
Median (min–max) | 0.15 (0.09–0.35) | na | 0.10 (0.08–0.12) | na | na | 0.11 | ||||
Total exposure to pesticides | Σfmolpest/mg hair | Median (min–max) | 12.5 (1.83–68.7) | 68.7 (17.1–280) | <0.001 | 16.8 (3.35–173) | 82.6 (22.9–571) | <0.001 | 0.19 | 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polledri, E.; Mercadante, R.; Consonni, D.; Fustinoni, S. Cumulative Pesticides Exposure of Children and Their Parents Living near Vineyards by Hair Analysis. Int. J. Environ. Res. Public Health 2021, 18, 3723. https://doi.org/10.3390/ijerph18073723
Polledri E, Mercadante R, Consonni D, Fustinoni S. Cumulative Pesticides Exposure of Children and Their Parents Living near Vineyards by Hair Analysis. International Journal of Environmental Research and Public Health. 2021; 18(7):3723. https://doi.org/10.3390/ijerph18073723
Chicago/Turabian StylePolledri, Elisa, Rosa Mercadante, Dario Consonni, and Silvia Fustinoni. 2021. "Cumulative Pesticides Exposure of Children and Their Parents Living near Vineyards by Hair Analysis" International Journal of Environmental Research and Public Health 18, no. 7: 3723. https://doi.org/10.3390/ijerph18073723
APA StylePolledri, E., Mercadante, R., Consonni, D., & Fustinoni, S. (2021). Cumulative Pesticides Exposure of Children and Their Parents Living near Vineyards by Hair Analysis. International Journal of Environmental Research and Public Health, 18(7), 3723. https://doi.org/10.3390/ijerph18073723