Acute Moderate Hypoxia Reduces One-Legged Cycling Performance Despite Compensatory Increase in Peak Cardiac Output: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
2.3. One-Legged Exercise Tests
2.4. Measurements and Calculation
2.5. Statistics
3. Results
4. Discussion
4.1. Methodological Considerations and Limitations
4.2. Practical Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calbet, J.A.; Radegran, G.; Boushel, R.; Saltin, B. On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: Role of muscle mass. J. Physiol. 2009, 587, 477–490. [Google Scholar] [CrossRef] [PubMed]
- Gatterer, H.; Greilberger, J.; Philippe, M.; Faulhaber, M.; Djukic, R.; Burtscher, M. Short-Term Supplementation with Alpha-Ketoglutaric Acid and 5-Hydroxymethylfurfural Does not Prevent the Hypoxia Induced Decrease of Exercise Performance Despite Attenuation of Oxidative Stress. Int. J. Sports Med. 2013, 34, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Treml, B.; Gatterer, H.; Burtscher, J.; Kleinsasser, A.; Burtscher, M. A Focused Review on the Maximal Exercise Responses in Hypo- and Normobaric Hypoxia: Divergent Oxygen Uptake and Ventilation Responses. Int. J. Environ. Res. Public Health 2020, 17, 5239. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, M.; Gatterer, H.; Burtscher, J.; Mairbaurl, H. Extreme Terrestrial Environments: Life in Thermal Stress and Hypoxia. A Narrative Review. Front. Physiol. 2018, 9, 572. [Google Scholar] [CrossRef] [Green Version]
- Rowell, L.B.; Saltin, B.; Kiens, B.; Christensen, N.J. Is peak quadriceps blood flow in humans even higher during exercise with hypoxemia? Am. J. Physiol. 1986, 251, H1038–H1044. [Google Scholar] [CrossRef]
- Shephard, R.J.; Bouhlel, E.; Vandewalle, H.; Monod, H. Muscle mass as a factor limiting physical work. J. Appl. Physiol. 1988, 64, 1472–1479. [Google Scholar] [CrossRef]
- Roach, R.C.; Koskolou, M.D.; Calbet, J.A.; Saltin, B. Arterial O2 content and tension in regulation of cardiac output and leg blood flow during exercise in humans. Am. J. Physiol. 1999, 276, H438–H445. [Google Scholar] [CrossRef]
- Hogan, M.C.; Roca, J.; Wagner, P.D.; West, J.B. Limitation of maximal O2 uptake and performance by acute hypoxia in dog muscle in situ. J. Appl. Physiol. 1988, 65, 815–821. [Google Scholar] [CrossRef]
- Richardson, R.S.; Knight, D.R.; Poole, D.C.; Kurdak, S.S.; Hogan, M.C.; Grassi, B.; Wagner, P.D. Determinants of maximal exercise VO2 during single leg knee-extensor exercise in humans. Am. J. Physiol. 1995, 268, H1453–H1461. [Google Scholar] [CrossRef]
- Koskolou, M.D.; Calbet, J.A.; Rådegran, G.; Roach, R.C. Hypoxia and the cardiovascular response to dynamic knee-extensor exercise. Am. J. Physiol. 1997, 272, H2655–H2663. [Google Scholar] [CrossRef] [Green Version]
- Richardson, R.S.; Grassi, B.; Gavin, T.P.; Haseler, L.J.; Tagore, K.; Roca, J.; Wagner, P.D. Evidence of O2 supply-dependent VO2 max in the exercise-trained human quadriceps. J. Appl. Physiol. 1999, 86, 1048–1053. [Google Scholar] [CrossRef] [Green Version]
- Wagner, P.D. New ideas on limitations to VO2max. Exerc. Sport Sci. Rev. 2000, 28, 10–14. [Google Scholar]
- Saltin, B.; Calbet, J.A. Point: In health and in a normoxic environment, VO2 max is limited primarily by cardiac output and locomotor muscle blood flow. J. Appl. Physiol. 2006, 100, 744–745. [Google Scholar] [CrossRef] [Green Version]
- Casey, D.P.; Joyner, M.J. Compensatory vasodilatation during hypoxic exercise: Mechanisms responsible for matching oxygen supply to demand. J. Physiol. 2012, 590, 6321–6326. [Google Scholar] [CrossRef] [Green Version]
- Siebenmann, C.; Rasmussen, P.; Sorensen, H.; Zaar, M.; Hvidtfeldt, M.; Pichon, A.; Secher, N.H.; Lundby, C. Cardiac output during exercise: A comparison of four methods. Scand. J. Med. Sci. Sports 2015, 25, e20–e27. [Google Scholar] [CrossRef]
- Naeije, R. Physiological adaptation of the cardiovascular system to high altitude. Prog. Cardiovasc. Dis. 2010, 52, 456–466. [Google Scholar] [CrossRef]
- Faoro, V.; Deboeck, G.; Vicenzi, M.; Gaston, A.F.; Simaga, B.; Doucende, G.; Hapkova, I.; Roca, E.; Subirats, E.; Durand, F.; et al. Pulmonary Vascular Function and Aerobic Exercise Capacity at Moderate Altitude. Med. Sci. Sports Exerc. 2017, 49, 2131–2138. [Google Scholar] [CrossRef]
- Bourdillon, N.; Yazdani, S.; Subudhi, A.W.; Lovering, A.T.; Roach, R.C.; Vesin, J.M.; Kayser, B. AltitudeOmics: Baroreflex Sensitivity During Acclimatization to 5260 m. Front. Physiol. 2018, 9, 767. [Google Scholar] [CrossRef]
- Beltrán, A.R.; Arce-Álvarez, A.; Ramirez-Campillo, R.; Vásquez-Muñoz, M.; von Igel, M.; Ramírez, M.A.; Del Rio, R.; Andrade, D.C. Baroreflex Modulation During Acute High-Altitude Exposure in Rats. Front. Physiol. 2020, 11, 1049. [Google Scholar] [CrossRef]
- Bernardi, L. Heart rate and cardiovascular variability at high altitude. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 6679–6681. [Google Scholar] [CrossRef]
- Somers, V.K.; Mark, A.L.; Abboud, F.M. Interaction of baroreceptor and chemoreceptor reflex control of sympathetic nerve activity in normal humans. J. Clin. Investig. 1991, 87, 1953–1957. [Google Scholar] [CrossRef]
- Cooper, V.L.; Pearson, S.B.; Bowker, C.M.; Elliott, M.W.; Hainsworth, R. Interaction of chemoreceptor and baroreceptor reflexes by hypoxia and hypercapnia—a mechanism for promoting hypertension in obstructive sleep apnoea. J. Physiol. 2005, 568, 677–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortensen, S.P.; Svendsen, J.H.; Ersboll, M.; Hellsten, Y.; Secher, N.H.; Saltin, B. Skeletal muscle signaling and the heart rate and blood pressure response to exercise: Insight from heart rate pacing during exercise with a trained and a deconditioned muscle group. Hypertension 2013, 61, 1126–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, M.N.; Mizuno, M.; Mitchell, J.H.; Smith, S.A. Cardiovascular regulation by skeletal muscle reflexes in health and disease. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H1191–H1204. [Google Scholar] [CrossRef] [PubMed]
- Heinonen, I.H.; Kemppainen, J.; Kaskinoro, K.; Peltonen, J.E.; Borra, R.; Lindroos, M.; Oikonen, V.; Nuutila, P.; Knuuti, J.; Boushel, R.; et al. Regulation of human skeletal muscle perfusion and its heterogeneity during exercise in moderate hypoxia. Am. J. Physiol. 2010, 299, R72–R79. [Google Scholar] [CrossRef] [PubMed]
- DeLorey, D.S.; Shaw, C.N.; Shoemaker, J.K.; Kowalchuk, J.M.; Paterson, D.H. The effect of hypoxia on pulmonary O2 uptake, leg blood flow and muscle deoxygenation during single-leg knee-extension exercise. Exp. Physiol. 2004, 89, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Laaksonen, M.S.; Kalliokoski, K.K.; Kyrolainen, H.; Kemppainen, J.; Teras, M.; Sipila, H.; Nuutila, P.; Knuuti, J. Skeletal muscle blood flow and flow heterogeneity during dynamic and isometric exercise in humans. Am. J. Physiol. Heart Circ. Physiol. 2003, 284, H979–H986. [Google Scholar] [CrossRef] [Green Version]
- Parker, B.A.; Smithmyer, S.L.; Pelberg, J.A.; Mishkin, A.D.; Herr, M.D.; Proctor, D.N. Sex differences in leg vasodilation during graded knee extensor exercise in young adults. J. Appl. Physiol. 2007, 103, 1583–1591. [Google Scholar] [CrossRef] [Green Version]
- Shephard, R.J.; Vandewalle, H.; Bouhlel, E.; Monod, H. Sex differences of physical working capacity in normoxia and hypoxia. Ergonomics 1988, 31, 1177–1192. [Google Scholar] [CrossRef]
- Abbiss, C.R.; Karagounis, L.G.; Laursen, P.B.; Peiffer, J.J.; Martin, D.T.; Hawley, J.A.; Fatehee, N.N.; Martin, J.C. Single-leg cycle training is superior to double-leg cycling in improving the oxidative potential and metabolic profile of trained skeletal muscle. J. Appl. Physiol. 2011, 110, 1248–1255. [Google Scholar] [CrossRef]
- Simpson, L.L.; Steinback, C.D.; Stembridge, M.; Moore, J.P. A sympathetic view of blood pressure control at high altitude: New insights from microneurographic studies. Exp. Physiol. 2020, 106, 377–384. [Google Scholar] [CrossRef]
- Polizzi, G.; Giaccone, M.; Gervasi, M.; D’Amato, A.; Palma, A.; Bartolucci, C.; Brandoni, G.; Federici, A.; Lucertini, F. Pilot study on cardiac and metabolic responses to moderate-altitude endurance training in middle-distance runners. Med. Sport 2014, 67, 633–641. [Google Scholar]
- Svedenhag, J.; Piehl-Aulin, K.; Skog, C.; Saltin, B. Increased left ventricular muscle mass after long-term altitude training in athletes. Acta Physiol. Scand. 1997, 161, 63–70. [Google Scholar] [CrossRef]
- Menz, V.; Semsch, M.; Mosbach, F.; Burtscher, M. Cardiorespiratory Effects of One-Legged High-Intensity Interval Training in Normoxia and Hypoxia: A Pilot Study. J. Sports Sci. Med. 2016, 15, 208–213. [Google Scholar]
Variables | Mean ± SD |
---|---|
Age (years) | 42.6 ± 10.2 |
Weight (kg) | 62.8 ± 10.6 |
Height (cm) | 175.6 ± 5.7 |
BMI (kg/m2) | 20.3 ± 2.5 |
HRmax (b/min) | 180.6 ± 2.7 |
Pmax (W/kg) | 4.5 ± 0.7 |
VO2max (ml/min/kg) | 49.1 ± 7.0 |
Lamax (mmol/l) | 10.6 ± 1.6 |
Sport practice (h/week) | 6.0 ± 0.8 |
Variables | Normoxia | Hypoxia | p-Value |
---|---|---|---|
HR (b/min) | 59.4 ± 4.6 | 64.4 ± 4.6 | 0.03 |
MABP (mmHg) | 92.2 ± 3.9 | 89.7 ± 6.6 | 0.43 |
SV (mL) | 78.0 ± 5.8 | 73.6 ± 7.8 | 0.18 |
CO (L/min) | 4.63 ± 0.46 | 4.72 ± 0.33 | 0.69 |
SpO2 (%) | 96.5 ± 1.2 | 91.4 ± 1.1 | 0.04 |
CaO2 (mL/L) | 190.2 ± 34.6 | 178.3 ± 25.3 | 0.14 |
Systemic O2 delivery (L/min) | 0.88 ± 0.18 | 0.84 ± 0.15 | 0.35 |
Variables | Normoxia | Hypoxia | p-Value |
---|---|---|---|
HRpeak (b/min) | 142.4 ± 6.9 | 155.6 ± 3.6 | 0.03 |
MABP (mmHg) | 97.3 ± 10.4 | 99.2 ± 14.9 | 0.89 |
TPR (mmHg/L/min) | 5.82 ± 1.34 | 5.21 ± 1.71 | 0.09 |
SVpeak (mL) | 118.2 ± 21.4 | 121.8 ± 23.0 | 0.08 |
COpeak (L/min) | 16.83 ± 3.10 | 18.96 ± 3.59 | 0.04 |
paO2 (mmHg) | 89.4 ± 3.2 | 76.8 ± 4.1 | 0.03 |
SpO2 (%) | 95.9 ± 1.8 | 86.9 ± 1.1 | 0.03 |
Hb (g/dL) | 15.2 ± 1.2 | 15.4 ± 1.8 | 0.35 |
CaO2 (mL/L) | 197.9 ± 15.0 | 181.5 ± 19.3 | 0.04 |
a–vDO2 (mL/L) | 137 ± 21 | 112 ± 19 | 0.03 |
Systemic O2 delivery (L/min) | 3.37 ± 0.84 | 3.47 ± 0.89 | 0.04 |
Ppeak (W) | 154 ± 31 | 128 ± 26 | 0.03 |
Ppeak (W/kg) | 2.4 ± 0.2 | 2.0 ± 0.2 | 0.03 |
VO2peak (mL/min) | 2351 ± 719 | 2170 ± 706 | 0.04 |
VO2peak (mL/min/kg) | 36.8 ± 6.6 | 33.9 ± 6.9 | 0.04 |
Lapeak (mmol/L) | 8.2 ± 1.5 | 9.0 ± 1.6 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatterer, H.; Menz, V.; Burtscher, M. Acute Moderate Hypoxia Reduces One-Legged Cycling Performance Despite Compensatory Increase in Peak Cardiac Output: A Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 3732. https://doi.org/10.3390/ijerph18073732
Gatterer H, Menz V, Burtscher M. Acute Moderate Hypoxia Reduces One-Legged Cycling Performance Despite Compensatory Increase in Peak Cardiac Output: A Pilot Study. International Journal of Environmental Research and Public Health. 2021; 18(7):3732. https://doi.org/10.3390/ijerph18073732
Chicago/Turabian StyleGatterer, Hannes, Verena Menz, and Martin Burtscher. 2021. "Acute Moderate Hypoxia Reduces One-Legged Cycling Performance Despite Compensatory Increase in Peak Cardiac Output: A Pilot Study" International Journal of Environmental Research and Public Health 18, no. 7: 3732. https://doi.org/10.3390/ijerph18073732
APA StyleGatterer, H., Menz, V., & Burtscher, M. (2021). Acute Moderate Hypoxia Reduces One-Legged Cycling Performance Despite Compensatory Increase in Peak Cardiac Output: A Pilot Study. International Journal of Environmental Research and Public Health, 18(7), 3732. https://doi.org/10.3390/ijerph18073732