QuEChERS LC–MS/MS Screening Method for Mycotoxin Detection in Cereal Products and Spices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Standards
2.2. Materials
2.3. Working Solutions
2.4. Sample Preparation
2.5. Sample Extraction
2.6. Instrumentation
2.7. Validation Procedure
2.8. Real Samples
3. Results and Discussion
3.1. Method Development
3.1.1. Extraction Solvent and Cleanup
3.1.2. Matrix Effect in Mycotoxin Analysis
3.2. Method Optimization
3.2.1. Validation Parameters
3.2.2. Instrumental Method
3.3. Ring Test and Application to Real Samples
3.3.1. Ring Test
3.3.2. Application of the Method to Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodman, L.S. Goodman and Gilman’s Manual of Pharmacology and Therapeutics; McGraw Hill Professional: New York, NY, USA, 2008; ISBN 978-0-07-144343-2. [Google Scholar]
- Fung, F.; Clark, R.F. Health Effects of Mycotoxins: A Toxicological Overview. J. Toxicol. Clin. Toxicol. 2004, 42, 217–234. [Google Scholar] [CrossRef] [PubMed]
- Speijers, G.J.A.; Speijers, M.H.M. Combined Toxic Effects of Mycotoxins. Toxicol. Lett. 2004, 153, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, M.; Negi, B.; Kaushik, N.; Adhikari, A.; Al-Khedhairy, A.A.; Kaushik, N.K.; Choi, E.H. T-2 Mycotoxin: Toxicological Effects and Decontamination Strategies. Oncotarget 2017, 8, 33933–33952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peraica, M.; Radić, B.; Lucić, A.; Pavlović, M. Toxic Effects of Mycotoxins in Humans. Bull. World Health Organ. 1999, 77, 754–766. [Google Scholar] [PubMed]
- Abd-Elsalam, K.A.; Rai, M. Chapter 1—An introduction to nanomycotoxicology. In Nanomycotoxicology; Rai, M., Abd-Elsalam, K.A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 1–7. ISBN 978-0-12-817998-7. [Google Scholar]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxification in Foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef]
- Klich, M.A. Aspergillus Flavus: The Major Producer of Aflatoxin. Mol. Plant. Pathol. 2007, 8, 713–722. [Google Scholar] [CrossRef]
- Smith, J.W.; Groopman, J.D. Aflatoxins. In Encyclopedia of Cancer, 3rd ed.; Boffetta, P., Hainaut, P., Eds.; Academic Press: Oxford, UK, 2019; pp. 30–43. ISBN 978-0-12-812485-7. [Google Scholar]
- Bräse, S.; Gläser, F.; Kramer, C.; Lindner, S.; Linsenmeier, A.M.; Masters, K.-S.; Meister, A.C.; Ruff, B.M.; Zhong, S. The Chemistry of Mycotoxins; Progress in the Chemistry of Organic Natural Products; Springer: Vienna, Austria, 2013; Volume 97, ISBN 978-3-7091-1311-0. [Google Scholar]
- Guevara-González, R.G. Aflatoxins—Biochemistry and Molecular Biology; INTECH Open Access Publisher: London, UK, 2011; ISBN 978-953-307-395-8. [Google Scholar]
- Alshannaq, A.; Yu, J.-H. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef] [Green Version]
- Benkerroum, N. Chronic and Acute Toxicities of Aflatoxins: Mechanisms of Action. Int. J. Environ. Res. Public Health 2020, 17, 423. [Google Scholar] [CrossRef] [Green Version]
- International Agency for Research on Cancer (Ed.) Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene: This Publication Represents the Views and Expert Opinions of an IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, Which Met in Lyon, 12–19 February 2002; IARC monographs on the evaluation of carcinogenic risks to humans; IARC: Lyon, France, 2002; ISBN 978-92-832-1282-9. [Google Scholar]
- Guengerich, F.P.; Johnson, W.W.; Ueng, Y.-F.; Yamazaki, H.; Shimada, T. Involvement of Cytochrome P450, Glutathione S-Transferase, and Epoxide Hydrolase in the Metabolism of Aflatoxin B1 and Relevance to Risk of Human Liver Cancer. Environ. Health Perspect. 1996, 104, 557–562. [Google Scholar] [CrossRef]
- Groopman, J.D.; Cain, L.G.; Kensler, T.W. Aflatoxin Exposure in Human Populations: Measurements and Relationship to Cancer. Crit. Rev. Toxicol. 1988, 19, 113–145. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, A.G. (Ed.) Aflatoxins: Food Sources, Occurrence and Toxicological Effects; Food science and technology; Nova Publishers: New York, NY, USA, 2014; ISBN 978-1-63117-514-5. [Google Scholar]
- Rheeder, J.P.; Marasas, W.F.O.; Vismer, H.F. Production of Fumonisin Analogs by Fusarium Species. Appl. Environ. Microbiol. 2002, 68, 2101–2105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arumugam, T.; Ghazi, T.; Chuturgoon, A. Fumonisin B1 Epigenetically Regulates PTEN Expression and Modulates DNA Damage Checkpoint Regulation in HepG2 Liver Cells. Toxins 2020, 12, 625. [Google Scholar] [CrossRef] [PubMed]
- Waśkiewicz, A.; Beszterda, M.; Goliński, P. Occurrence of Fumonisins in Food—An Interdisciplinary Approach to the Problem. Food Control. 2012, 26, 491–499. [Google Scholar] [CrossRef]
- Qian, G.; Tang, L.; Lin, S.; Xue, K.S.; Mitchell, N.J.; Su, J.; Gelderblom, W.C.; Riley, R.T.; Phillips, T.D.; Wang, J.-S. Sequential Dietary Exposure to Aflatoxin B1 and Fumonisin B1 in F344 Rats Increases Liver Preneoplastic Changes Indicative of a Synergistic Interaction. Food Chem. Toxicol. 2016, 95, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Maiorano, A.; Blandino, M.; Reyneri, A.; Vanara, F. Effects of Maize Residues on the Fusarium Spp. Infection and Deoxynivalenol (DON) Contamination of Wheat Grain. Crop. Prot. 2008, 27, 182–188. [Google Scholar] [CrossRef]
- Sobrova, P.; Adam, V.; Vasatkova, A.; Beklova, M.; Zeman, L.; Kizek, R. Deoxynivalenol and Its Toxicity. Interdiscip. Toxicol. 2010, 3, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Vesonder, R.F.; Ciegler, A.; Jensen, A.H. Isolation of the Emetic Principle from Fusarium-Infected Corn. Appl. Microbiol. 1973, 26, 1008–1010. [Google Scholar] [CrossRef]
- Bonnet, M.S.; Roux, J.; Mounien, L.; Dallaporta, M.; Troadec, J.-D. Advances in Deoxynivalenol Toxicity Mechanisms: The Brain as a Target. Toxins 2012, 4, 1120–1138. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Li, R.; Zhou, C.; Zhang, J.; He, C.; Zheng, Y.; Wu, W.; Zhang, H. Separation and Purification of Deoxynivalenol (DON) Mycotoxin from Wheat Culture Using a Simple Two-Step Silica Gel Column Chromatography. J. Integr. Agric. 2016, 15, 694–701. [Google Scholar] [CrossRef]
- Wolf-Hall, C.E.; Hanna, M.A.; Bullerman, L.B. Stability of Deoxynivalenol in Heat-Treated Foods. J. Food Prot. 1999, 62, 962–964. [Google Scholar] [CrossRef]
- Haschek, W.M.; Voss, K.A. Chapter 39—Mycotoxins. In Haschek and Rousseaux’s Handbook of Toxicologic Pathology, 3rd ed.; Haschek, W.M., Rousseaux, C.G., Wallig, M.A., Eds.; Academic Press: Boston, MA, USA, 2013; pp. 1187–1258. ISBN 978-0-12-415759-0. [Google Scholar]
- McCormick, S.P.; Stanley, A.M.; Stover, N.A.; Alexander, N.J. Trichothecenes: From Simple to Complex Mycotoxins. Toxins 2011, 3, 802–814. [Google Scholar] [CrossRef]
- Sudakin, D.L. Trichothecenes in the Environment: Relevance to Human Health. Toxicol. Lett. 2003, 143, 97–107. [Google Scholar] [CrossRef]
- Scientific Opinion on the Risks for Animal and Public Health Related to the Presence of T-2 and HT-2 Toxin in Food and Feed. EFSA J. 2011, 9, 2481. [CrossRef]
- Palumbo, R.; Crisci, A.; Venâncio, A.; Cortiñas Abrahantes, J.; Dorne, J.-L.; Battilani, P.; Toscano, P. Occurrence and Co-Occurrence of Mycotoxins in Cereal-Based Feed and Food. Microorganisms 2020, 8, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bullerman, L.B. Mycotoxins | Classifications. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Oxford, UK, 2003; pp. 4080–4089. ISBN 978-0-12-227055-0. [Google Scholar]
- Li, Y.; Wang, Z.; Beier, R.C.; Shen, J.; Smet, D.D.; De Saeger, S.; Zhang, S. T-2 Toxin, a Trichothecene Mycotoxin: Review of Toxicity, Metabolism, and Analytical Methods. J. Agric. Food Chem. 2011, 59, 3441–3453. [Google Scholar] [CrossRef] [PubMed]
- Heussner, A.H.; Bingle, L.E.H. Comparative Ochratoxin Toxicity: A Review of the Available Data. Toxins 2015, 7, 4253–4282. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.C. (Ed.) Veterinary Toxicology: Basic and Clinical Principles, 3rd ed.; Academic Press: Amsterdam, The Netherlands, 2018; ISBN 978-0-12-811410-0. [Google Scholar]
- Risk Assessment of Ochratoxin A in Food—2020—EFSA Journal—Wiley Online Library. Available online: https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2020.6113 (accessed on 7 March 2021).
- Piacentini, K.C.; Ferranti, L.S.; Pinheiro, M.; Bertozzi, B.G.; Rocha, L.O. Mycotoxin Contamination in Cereal-Based Baby Foods. Curr. Opin. Food Sci. 2019, 30, 73–78. [Google Scholar] [CrossRef]
- El Khoury, A.; Atoui, A. Ochratoxin A: General Overview and Actual Molecular Status. Toxins 2010, 2, 461–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.-L.; Feng, Y.-L.; Song, J.-L.; Zhou, X.-S. Zearalenone: A Mycotoxin with Different Toxic Effect in Domestic and Laboratory Animals’ Granulosa Cells. Front. Genet. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scientific Opinion on the Risks for Public Health Related to the Presence of Zearalenone in Food. EFSA J. 2011, 9, 2197. [CrossRef]
- Schöneberg, T.; Kibler, K.; Wettstein, F.E.; Bucheli, T.D.; Forrer, H.R.; Musa, T.; Mascher, F.; Bertossa, M.; Keller, B.; Vogelgsang, S. Influence of Temperature, Humidity Duration and Growth Stage on the Infection and Mycotoxin Production by Fusarium Langsethiae and Fusarium Poae in Oats. Plant. Pathol. 2019, 68, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Felizardo, R.J.; Câmara, N.O. Hepatocellular Carcinoma and Food Contamination: Aflatoxins and Ochratoxin A as Great Prompter. World J. Gastroenterol. 2013, 19, 3723–3725. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.A.; Wang, Y.; Shen, Z.; Li, X.; Saleemi, M.K.; He, C. Mycotoxin Contamination and Control Strategy in Human, Domestic Animal and Poultry: A Review. Microb. Pathog. 2020, 142, 104095. [Google Scholar] [CrossRef] [PubMed]
- Paterson, R.R.M.; Lima, N. How Will Climate Change Affect Mycotoxins in Food? Food Res. Int. 2010, 43, 1902–1914. [Google Scholar] [CrossRef] [Green Version]
- Calado, T.; Venâncio, A.; Abrunhosa, L. Irradiation for Mold and Mycotoxin Control: A Review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1049–1061. [Google Scholar] [CrossRef] [Green Version]
- Scott, P.M. Effects of Food Processing on Mycotoxins. J. Food Prot. 1984, 47, 489–499. [Google Scholar] [CrossRef]
- Houbraken, J.; Samson, R.A.; Frisvad, J.C. Byssochlamys: Significance of Heat Resistance and Mycotoxin Production. In Proceedings of the Advances in Food Mycology; Hocking, A.D., Pitt, J.I., Samson, R.A., Thrane, U., Eds.; Springer US: Boston, MA, USA, 2006; pp. 211–224. [Google Scholar]
- Obonyo, M.A.; Salano, E.N. Perennial and Seasonal Contamination of Maize by Aflatoxins in Eastern Kenya. Food Contam. 2018, 5, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitt, J.I. Toxigenic Fungi and Mycotoxins. Br. Med. Bull. 2000, 56, 184–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppa, C.F.S.C.; Cirelli, A.C.; Gonçalves, B.L.; Barnabé, E.M.B.; Mousavi Khaneghah, A.; Corassin, C.H.; Oliveira, C.A.F. Dietary Exposure Assessment and Risk Characterization of Mycotoxins in Lactating Women: Case Study of São Paulo State, Brazil. Food Res. Int. 2020, 134, 109272. [Google Scholar] [CrossRef]
- Vin, K.; Rivière, G.; Leconte, S.; Cravedi, J.-P.; Fremy, J.M.; Oswald, I.P.; Roudot, A.-C.; Vasseur, P.; Jean, J.; Hulin, M.; et al. Dietary Exposure to Mycotoxins in the French Infant Total Diet Study. Food Chem. Toxicol. 2020, 140, 111301. [Google Scholar] [CrossRef]
- Gracia-Lor, E.; Zuccato, E.; Hernández, F.; Castiglioni, S. Wastewater-Based Epidemiology for Tracking Human Exposure to Mycotoxins. J. Hazard. Mater. 2020, 382, 121108. [Google Scholar] [CrossRef] [PubMed]
- Tonon, K.M.; Reiter, M.G.R.; de Oliveira Dutra, M.; Savi, G.D.; Scussel, V.M. Dietary Intake of Mycotoxin Susceptible Foods by Brazilian Nursing Mothers. Curr. Nutr. Food Sci. 2020, 16, 953–962. [Google Scholar] [CrossRef]
- Han, Z.; Nie, D.; Yang, X.; Wang, J.; Peng, S.; Wu, A. Quantitative Assessment of Risk Associated with Dietary Intake of Mycotoxin Ochratoxin A on the Adult Inhabitants in Shanghai City of P.R. China. Food Control. 2013, 32, 490–495. [Google Scholar] [CrossRef]
- Przybyłowicz, K.E.; Arłukowicz, T.; Danielewicz, A.; Morze, J.; Gajęcka, M.; Zielonka, Ł.; Fotschki, B.; Sawicki, T. Association between Mycotoxin Exposure and Dietary Habits in Colorectal Cancer Development Among a Polish Population: A Study Protocol. Int. J. Environ. Res. Public Health 2020, 17, 698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misihairabgwi, J.M.; Ezekiel, C.N.; Sulyok, M.; Shephard, G.S.; Krska, R. Mycotoxin Contamination of Foods in Southern Africa: A 10-Year Review (2007–2016). Crit. Rev. Food Sci. Nutr. 2019, 59, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Cammilleri, G.; Graci, S.; Collura, R.; Buscemi, M.D.; Vella, A.; Macaluso, A.; Giaccone, V.; Giangrosso, G.; Cicero, A.; Lo Dico, G.M.; et al. Aflatoxin M1 in Cow, Sheep, and Donkey Milk Produced in Sicily, Southern Italy. Mycotoxin Res. 2019, 35, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Zinedine, A.; Brera, C.; Elakhdari, S.; Catano, C.; Debegnach, F.; Angelini, S.; De Santis, B.; Faid, M.; Benlemlih, M.; Minardi, V.; et al. Natural Occurrence of Mycotoxins in Cereals and Spices Commercialized in Morocco. Food Control. 2006, 17, 868–874. [Google Scholar] [CrossRef]
- Sarmast, E.; Fallah, A.A.; Jafari, T.; Mousavi Khaneghah, A. Occurrence and Fate of Mycotoxins in Cereals and Cereal-Based Products: A Narrative Review of Systematic Reviews and Meta-Analyses Studies. Curr. Opin. Food Sci. 2021, 39, 68–75. [Google Scholar] [CrossRef]
- Khaneghah, A.M.; Fakhri, Y.; Gahruie, H.H.; Niakousari, M.; Sant’Ana, A.S. Mycotoxins in Cereal-Based Products during 24 Years (1983–2017): A Global Systematic Review. Trends Food Sci. Technol. 2019, 91, 95–105. [Google Scholar] [CrossRef]
- Animal Feed Contamination—1st Edition. Available online: https://www.elsevier.com/books/animal-feed-contamination/fink-gremmels/978-1-84569-725-9 (accessed on 28 September 2020).
- Martins, M.L.; Martins, H.M.; Bernardo, F. Aflatoxins in Spices Marketed in Portugal. Food Addit. Contam. 2001, 18, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Selim, M.I.; Popendorf, W.; Ibrahim, M.S.; Sharkawy, S.E.; Kashory, E.S.E. Anatoxin B1 in Common Egyptian Foods. J. AOAC Int. 1996, 79, 1124–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Directorate-General for Health and Food Safety. In RASFF Annual Report 2019; European Commission: Brussels, Belgium, 2020; ISBN 978-92-76-17508-7. [Google Scholar]
- EUR-Lex—02006R1881-20200701—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1881-20200701 (accessed on 23 July 2020).
- Berthiller, F.; Crews, C.; Dall’Asta, C.; Saeger, S.D.; Haesaert, G.; Karlovsky, P.; Oswald, I.P.; Seefelder, W.; Speijers, G.; Stroka, J. Masked Mycotoxins: A Review. Mol. Nutr. Food Res. 2013, 57, 165–186. [Google Scholar] [CrossRef] [PubMed]
- Cunha, S.C.; Fernandes, J.O. Development and Validation of a Method Based on a QuEChERS Procedure and Heart-Cutting GC-MS for Determination of Five Mycotoxins in Cereal Products. J. Sep. Sci. 2010, 33, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Carrasco, Y.; Moltó, J.C.; Mañes, J.; Berrada, H. Exposure Assessment Approach through Mycotoxin/Creatinine Ratio Evaluation in Urine by GC–MS/MS. Food Chem. Toxicol. 2014, 72, 69–75. [Google Scholar] [CrossRef]
- Rastogi, S.; Dwivedi, P.D.; Khanna, S.K.; Das, M. Detection of Aflatoxin M1 Contamination in Milk and Infant Milk Products from Indian Markets by ELISA. Food Control. 2004, 15, 287–290. [Google Scholar] [CrossRef]
- Rubert, J.; Soler, C.; Mañes, J. Application of an HPLC–MS/MS Method for Mycotoxin Analysis in Commercial Baby Foods. Food Chem. 2012, 133, 176–183. [Google Scholar] [CrossRef]
- Colombo, R.; Papetti, A. Pre-Concentration and Analysis of Mycotoxins in Food Samples by Capillary Electrophoresis. Molecules 2020, 25, 3441. [Google Scholar] [CrossRef]
- Turner, N.; Subrahmanyam, S.; Piletsky, S. Analytical Methods for Determination of Mycotoxins: A Review. Anal. Chim. Acta 2009, 632, 168–180. [Google Scholar] [CrossRef]
- Irakli, M.N.; Skendi, A.; Papageorgiou, M.D. HPLC-DAD-FLD Method for Simultaneous Determination of Mycotoxins in Wheat Bran. J. Chromatogr. Sci. 2017, 55, 690–696. [Google Scholar] [CrossRef]
- Czerwiecki, L.; Wilczyńska, G. Determination of Deoxynivalenol in Cereals by HPLC-UV. Mycotoxin Res. 2003, 19, 31–34. [Google Scholar] [CrossRef]
- Rasmussen, R.R.; Storm, I.M.L.D.; Rasmussen, P.H.; Smedsgaard, J.; Nielsen, K.F. Multi-Mycotoxin Analysis of Maize Silage by LC-MS/MS. Anal. Bioanal. Chem. 2010, 397, 765–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavungu, J.D.D.; Monbaliu, S.; Scippo, M.-L.; Maghuin-Rogister, G.; Schneider, Y.-J.; Larondelle, Y.; Callebaut, A.; Robbens, J.; Peteghem, C.V.; Saeger, S.D. LC-MS/MS Multi-Analyte Method for Mycotoxin Determination in Food Supplements. Food Addit. Contam. Part. A 2009, 26, 885–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warth, B.; Parich, A.; Atehnkeng, J.; Bandyopadhyay, R.; Schuhmacher, R.; Sulyok, M.; Krska, R. Quantitation of Mycotoxins in Food and Feed from Burkina Faso and Mozambique Using a Modern LC-MS/MS Multitoxin Method. J. Agric. Food Chem. 2012, 60, 9352–9363. [Google Scholar] [CrossRef] [PubMed]
- Njumbe Ediage, E.; Diana Di Mavungu, J.; Monbaliu, S.; Van Peteghem, C.; De Saeger, S. A Validated Multianalyte LC–MS/MS Method for Quantification of 25 Mycotoxins in Cassava Flour, Peanut Cake and Maize Samples. J. Agric. Food Chem. 2011, 59, 5173–5180. [Google Scholar] [CrossRef] [PubMed]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in Analysis and Detection of Major Mycotoxins in Foods. Foods 2020, 9, 518. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Chen, X.; Han, S.-Y.; Li, M.; Ma, T.-Z.; Sheng, W.-J.; Zhu, X. Simultaneous Analysis of 20 Mycotoxins in Grapes and Wines from Hexi Corridor Region (China): Based on a QuEChERS–UHPLC–MS/MS Method. Molecules 2018, 23, 1926. [Google Scholar] [CrossRef] [Green Version]
- Magan, N.; Olsen, M. Mycotoxins in Food: Detection and Control; Woodhead Publishing: Sawston, Cambridge, UK, 2004; ISBN 978-1-85573-733-4. [Google Scholar]
- Rubert, J.; Dzuman, Z.; Vaclavikova, M.; Zachariasova, M.; Soler, C.; Hajslova, J. Analysis of Mycotoxins in Barley Using Ultra High Liquid Chromatography High Resolution Mass Spectrometry: Comparison of Efficiency and Efficacy of Different Extraction Procedures. Talanta 2012, 99, 712–719. [Google Scholar] [CrossRef]
- Filigenzi, M.S.; Ehrke, N.; Aston, L.S.; Poppenga, R.H. Evaluation of a Rapid Screening Method for Chemical Contaminants of Concern in Four Food-Related Matrices Using QuEChERS Extraction, UHPLC and High Resolution Mass Spectrometry. Food Addit. Contam. Part. A 2011, 28, 1324–1339. [Google Scholar] [CrossRef]
- Chiesa, L.M.; Nobile, M.; Malandra, R.; Pessina, D.; Panseri, S.; Labella, G.F.; Arioli, F. Food Safety Traits of Mussels and Clams: Distribution of PCBs, PBDEs, OCPs, PAHs and PFASs in Sample from Different Areas Using HRMS-Orbitrap® and Modified QuEChERS Extraction Followed by GC-MS/MS. Food Addit. Contam. Part A 2018, 35, 959–971. [Google Scholar] [CrossRef]
- Mekonen, S.; Ambelu, A.; Spanoghe, P. Pesticide Residue Evaluation in Major Staple Food Items of Ethiopia Using the QuEChERS Method: A Case Study from the Jimma Zone. Environ. Toxicol. Chem. 2014, 33, 1294–1302. [Google Scholar] [CrossRef]
- Andraščíková, M.; Hrouzková, S. A Comparative Study of Three Modifications of the QuEChERS Method for Determination of Endocrine Disrupting Pesticide Residues in Lemon Matrices by Fast GC-MS. Anal. Methods 2013, 5, 1374–1384. [Google Scholar] [CrossRef]
- Musarurwa, H.; Chimuka, L.; Pakade, V.E.; Tavengwa, N.T. Recent Developments and Applications of QuEChERS Based Techniques on Food Samples during Pesticide Analysis. J. Food Compos. Anal. 2019, 84, 103314. [Google Scholar] [CrossRef]
- Moretti, S.; Cruciani, G.; Romanelli, S.; Rossi, R.; Saluti, G.; Galarini, R. Multiclass Method for the Determination of 62 Antibiotics in Milk. J. Mass Spectrom. 2016, 51, 792–804. [Google Scholar] [CrossRef] [PubMed]
- Mantzos, N.; Karakitsou, A.; Zioris, I.; Leneti, E.; Konstantinou, I. QuEChERS and Solid Phase Extraction Methods for the Determination of Energy Crop Pesticides in Soil, Plant and Runoff Water Matrices. Int. J. Environ. Anal. Chem. 2013, 93, 1566–1584. [Google Scholar] [CrossRef]
- Zweigenbaum, J. (Ed.) Mass Spectrometry in Food Safety: Methods and Protocols; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2011; ISBN 978-1-61779-135-2. [Google Scholar]
- Rejczak, T.; Tuzimski, T. A Review of Recent Developments and Trends in the QuEChERS Sample Preparation Approach. Open Chem. 2015, 1. [Google Scholar] [CrossRef]
- Tamura, M.; Uyama, A.; Mochizuki, N. Development of a Multi-Mycotoxin Analysis in Beer-Based Drinks by a Modified QuEChERS Method and Ultra-High-Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry. Anal. Sci. Int. J. Jpn. Soc. Anal. Chem. 2011, 27, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Bouafifssa, Y.; Manyes, L.; Rahouti, M.; Mañes, J.; Berrada, H.; Zinedine, A.; Fernández-Franzón, M. Multi-Occurrence of Twenty Mycotoxinsin Pasta and a Risk Assessment in the Moroccan Population. Toxins 2018, 10, 432. [Google Scholar] [CrossRef] [Green Version]
- Streit, E.; Schatzmayr, G.; Tassis, P.; Tzika, E.; Marin, D.; Taranu, I.; Tabuc, C.; Nicolau, A.; Aprodu, I.; Puel, O.; et al. Current Situation of Mycotoxin Contamination and Co-Occurrence in Animal Feed—Focus on Europe. Toxins 2012, 4, 788–809. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Zhang, B.; Zhang, H.; Hao, L.-L.; Ma, T.-Z.; Wang, J.; Han, S.-Y. Monitoring of 49 Pesticides and 17 Mycotoxins in Wine by QuEChERS and UHPLC-MS/MS Analysis. J. Food Sci. 2019, 84, 2688–2697. [Google Scholar] [CrossRef]
- Battilani, P.; Palumbo, R.; Giorni, P.; Dall’Asta, C.; Dellafiora, L.; Gkrillas, A.; Toscano, P.; Crisci, A.; Brera, C.; Santis, B.D.; et al. Mycotoxin Mixtures in Food and Feed: Holistic, Innovative, Flexible Risk Assessment Modelling Approach. EFSA Supporting Publ. 2020, 17, 1757E. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Li, W.; Zhang, Y.; Hu, X.; Wu, L.; Wang, B. QuEChERS Purification Combined with Ultrahigh-Performance Liquid Chromatography Tandem Mass Spectrometry for Simultaneous Quantification of 25 Mycotoxins in Cereals. Toxins 2016, 8, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frenich, A.G.; Romero-González, R.; Gómez-Pérez, M.L.; Vidal, J.L.M. Multi-Mycotoxin Analysis in Eggs Using a QuEChERS-Based Extraction Procedure and Ultra-High-Pressure Liquid Chromatography Coupled to Triple Quadrupole Mass Spectrometry. J. Chromatogr. A 2011, 1218, 4349–4356. [Google Scholar] [CrossRef]
- Alcántara-Durán, J.; Moreno-González, D.; García-Reyes, J.F.; Molina-Díaz, A. Use of a Modified QuEChERS Method for the Determination of Mycotoxin Residues in Edible Nuts by Nano Flow Liquid Chromatography High Resolution Mass Spectrometry. Food Chem. 2019, 279, 144–149. [Google Scholar] [CrossRef]
- Cammilleri, G.; Pulvirenti, A.; Vella, A.; Macaluso, A.; Lo Dico, G.M.; Giaccone, V.; Giordano, V.; Vinciguerra, M.; Cicero, N.; Cicero, A.; et al. Tetracycline Residues in Bovine Muscle and Liver Samples from Sicily (Southern Italy) by LC-MS/MS Method: A Six-Year Study. Molecules 2019, 24, 695. [Google Scholar] [CrossRef] [Green Version]
- Karageorgou, E.; Samanidou, V. Youden Test Application in Robustness Assays during Method Validation. J. Chromatogr. A 2014, 1353, 131–139. [Google Scholar] [CrossRef]
- Beltrán, E.; Ibáñez, M.; Sancho, J.V.; Hernández, F. Determination of Mycotoxins in Different Food Commodities by Ultra-High-Pressure Liquid Chromatography Coupled to Triple Quadrupole Mass Spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 1801–1809. [Google Scholar] [CrossRef] [PubMed]
- Publications Office of the European Union. Report on the 2016 Proficiency Test of the European Union Reference Laboratory for Mycotoxins for the Network of National Reference Laboratories: Determination of Aflatoxin B1 in Defatted Peanut Powder. Available online: http://op.europa.eu/it/publication-detail/-/publication/23623826-a267-11e7-a56f-01aa75ed71a1 (accessed on 17 August 2020).
- González-Curbelo, M.Á.; Socas-Rodríguez, B.; Herrera-Herrera, A.V.; González-Sálamo, J.; Hernández-Borges, J.; Rodríguez-Delgado, M.Á. Evolution and Applications of the QuEChERS Method. Trac. Trends Anal. Chem. 2015, 71, 169–185. [Google Scholar] [CrossRef]
- Hidy, P.H.; Baldwin, R.S.; Greasham, R.L.; Keith, C.L.; Mcmullen, J.R. Zearalenone and Some Derivatives: Production and Biological Activities. In Advances in Applied Microbiology; Elsevier: Amsterdam, The Netherlands, 1977; Volume 22, pp. 59–82. ISBN 978-0-12-002622-7. [Google Scholar]
- Moss, M.O. AFLATOXINS. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Oxford, UK, 2003; pp. 66–72. ISBN 978-0-12-227055-0. [Google Scholar]
- Visconti, A.; Doko, M.B.; Bottalico, C.; Schurer, B.; Boenke, A. Stability of Fumonisins (FB1 and FB2 ) in Solution. Food Addit. Contam. 1994, 11, 427–431. [Google Scholar] [CrossRef]
- Knutsen, H.-K.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; Hogstrand, C.; et al. Appropriateness to Set a Group Health Based Guidance Value for T2 and HT2 Toxin and Its Modified Forms. EFSA J. 2017, 15, e04655. [Google Scholar] [CrossRef]
- Stahnke, H.; Kittlaus, S.; Kempe, G.; Alder, L. Reduction of Matrix Effects in Liquid Chromatography–Electrospray Ionization–Mass Spectrometry by Dilution of the Sample Extracts: How Much Dilution Is Needed? Anal. Chem. 2012, 84, 1474–1482. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Han, S.; Lu, M.; Wang, P.; Han, J.; Wang, J. Modified QuEChERS Method Combined with Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry for the Simultaneous Determination of 26 Mycotoxins in Sesame Butter. J. Chromatogr. B 2014, 970, 68–76. [Google Scholar] [CrossRef]
- Koesukwiwat, U.; Sanguankaew, K.; Leepipatpiboon, N. Evaluation of a Modified QuEChERS Method for Analysis of Mycotoxins in Rice. Food Chem. 2014, 153, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Vaclavik, L.; Zachariasova, M.; Hrbek, V.; Hajslova, J. Analysis of Multiple Mycotoxins in Cereals under Ambient Conditions Using Direct Analysis in Real Time (DART) Ionization Coupled to High Resolution Mass Spectrometry. Talanta 2010, 82, 1950–1957. [Google Scholar] [CrossRef] [PubMed]
- Madureira, T.V.; Velhote, S.; Santos, C.; Cruzeiro, C.; Rocha, E.; Rocha, M.J. A Step Forward Using QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) Based Extraction and Gas Chromatography-Tandem Mass Spectrometry—Levels of Priority Polycyclic Aromatic Hydrocarbons in Wild and Commercial Mussels. Environ. Sci. Pollut. Res. 2014, 21, 6089–6098. [Google Scholar] [CrossRef] [PubMed]
- Giaccone, V.; Cammilleri, G.; Macaluso, A.; Cicero, N.; Pulvirenti, A.; Vella, A.; Ferrantelli, V. A LC-HRMS after QuEChERS Cleanup Method for the Rapid Determination of Dye Residues in Fish Products. Food Anal. Methods 2018, 11, 625–634. [Google Scholar] [CrossRef]
- Rodríguez-Carrasco, Y.; Moltó, J.C.; Berrada, H.; Mañes, J. A Survey of Trichothecenes, Zearalenone and Patulin in Milled Grain-Based Products Using GC–MS/MS. Food Chem. 2014, 146, 212–219. [Google Scholar] [CrossRef]
- Galluzzo, F.G.; Cammilleri, G.; Pantano, L.; Cascio, G.L.; Pulvirenti, A.; Macaluso, A.; Vella, A.; Ferrantelli, V. Acrylamide Assessment of Wheat Bread Incorporating Chia Seeds (Salvia Hispanica L.) by LC-LM/MS. Food Addit. Contam. Part. A 2021, 38, 1–8. [Google Scholar] [CrossRef]
- Smeraglia, J.; Baldrey, S.F.; Watson, D. Matrix Effects and Selectivity Issues in LC-MS-MS. Chromatographia 2002, 55, S95–S99. [Google Scholar] [CrossRef]
- Cortese, M.; Gigliobianco, M.R.; Magnoni, F.; Censi, R.; Di Martino, P. Compensate for or Minimize Matrix Effects? Strategies for Overcoming Matrix Effects in Liquid Chromatography-Mass Spectrometry Technique: A Tutorial Review. Molecules 2020, 25, 3047. [Google Scholar] [CrossRef] [PubMed]
- De Nicolò, A.; Cantù, M.; D’Avolio, A. Matrix Effect Management in Liquid Chromatography Mass Spectrometry: The Internal Standard Normalized Matrix Effect. Bioanalysis 2017, 9, 1093–1105. [Google Scholar] [CrossRef] [PubMed]
- Fabregat-Cabello, N.; Zomer, P.; Sancho, J.V.; Roig-Navarro, A.F.; Mol, H.G.J. Comparison of Approaches to Deal with Matrix Effects in LC-MS/MS Based Determinations of Mycotoxins in Food and Feed. World Mycotoxin J. 2016, 9, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Boevre, M.D.; Mavungu, J.D.D.; Maene, P.; Audenaert, K.; Deforce, D.; Haesaert, G.; Eeckhout, M.; Callebaut, A.; Berthiller, F.; Peteghem, C.V.; et al. Development and Validation of an LC-MS/MS Method for the Simultaneous Determination of Deoxynivalenol, Zearalenone, T-2-Toxin and Some Masked Metabolites in Different Cereals and Cereal-Derived Food. Food Addit. Contam. Part. A 2012, 29, 819–835. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Dou, X.-W.; Zhang, C.; Logrieco, A.F.; Yang, M.-H. A Review of Current Methods for Analysis of Mycotoxins in Herbal Medicines. Toxins 2018, 10, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yogendrarajah, P.; Van Poucke, C.; De Meulenaer, B.; De Saeger, S. Development and Validation of a QuEChERS Based Liquid Chromatography Tandem Mass Spectrometry Method for the Determination of Multiple Mycotoxins in Spices. J. Chromatogr. A 2013, 1297, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lattanzio, V.M.T.; Solfrizzo, M.; Powers, S.; Visconti, A. Simultaneous Determination of Aflatoxins, Ochratoxin A and Fusarium Toxins in Maize by Liquid Chromatography/Tandem Mass Spectrometry after Multitoxin Immunoaffinity Cleanup. Rapid Commun. Mass Spectrom. 2007, 21, 3253–3261. [Google Scholar] [CrossRef] [PubMed]
- Spanjer, M.C.; Rensen, P.M.; Scholten, J.M. LC–MS/MS Multi-Method for Mycotoxins after Single Extraction, with Validation Data for Peanut, Pistachio, Wheat, Maize, Cornflakes, Raisins and Figs. Food Addit. Contam. Part. A 2008, 25, 472–489. [Google Scholar] [CrossRef] [PubMed]
- EUR-Lex—02006R0401-20140701—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R0401-20140701 (accessed on 6 November 2020).
- Kmellár, B.; Abrankó, L.; Fodor, P.; Lehotay, S.J. Routine Approach to Qualitatively Screening 300 Pesticides and Quantification of Those Frequently Detected in Fruit and Vegetables Using Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS). Food Addit. Contam. Part. A 2010, 27, 1415–1430. [Google Scholar] [CrossRef] [Green Version]
- Stachniuk, A.; Szmagara, A.; Czeczko, R.; Fornal, E. LC-MS/MS Determination of Pesticide Residues in Fruits and Vegetables. J. Environ. Sci. HealthPart. B 2017, 52, 446–457. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Wang, Y.; Xu, Y.; Liu, X. Determination of Antibiotics in Vegetables Using QuEChERS-Based Method and Liquid Chromatography-Quadrupole Linear Ion Trap Mass Spectrometry. Food Anal. Methods 2018, 11, 2857–2864. [Google Scholar] [CrossRef]
- Camilleri, J.; Vulliet, E. Determination of Steroid Hormones in Sediments Based on Quick, Easy, Cheap, Effective, Rugged, and Safe (Modified-QuEChERS) Extraction Followed by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). Anal. Methods 2015, 7, 9577–9586. [Google Scholar] [CrossRef]
- Sulyok, M.; Krska, R.; Schuhmacher, R. Application of an LC–MS/MS Based Multi-Mycotoxin Method for the Semi-Quantitative Determination of Mycotoxins Occurring in Different Types of Food Infected by Moulds. Food Chem. 2010, 119, 408–416. [Google Scholar] [CrossRef]
- Folloni, S.; Bellocchi, G.; Kagkli, D.-M.; Pastor-Benito, S.; Aguilera, M.; Mazzeo, A.; Querci, M.; Van den Eede, G.; Ermolli, M. Development of an ELISA Reverse-Based Assay to Assess the Presence of Mycotoxins in Cereal Flour. Food Anal. Methods 2011, 4, 221–227. [Google Scholar] [CrossRef]
- Oplatowska-Stachowiak, M.; Reiring, C.; Sajic, N.; Haasnoot, W.; Brabet, C.; Campbell, K.; Elliott, C.T.; Salden, M. Development and In-House Validation of a Rapid and Simple to Use ELISA for the Detection and Measurement of the Mycotoxin Sterigmatocystin. Anal. Bioanal. Chem. 2018, 410, 3017–3023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, D.; Qiu, N.; Zhou, S.; Lyu, B.; Zhang, S.; Li, J.; Zhao, Y.; Wu, Y. Development of Sensitive and Reliable UPLC-MS/MS Methods for Food Analysis of Emerging Mycotoxins in China Total Diet Study. Toxins 2019, 11, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Y.; Zhang, Y.; Shao, S.; Cai, Z.; Feng, L.; Pan, H.; Wang, Z. Simultaneous Determination of Multi-Component Mycotoxin Contaminants in Foods and Feeds by Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. A 2007, 1143, 48–64. [Google Scholar] [CrossRef]
- Azaiez, I.; Giusti, F.; Sagratini, G.; Mañes, J.; Fernández-Franzón, M. Multi-Mycotoxins Analysis in Dried Fruit by LC/MS/MS and a Modified QuEChERS Procedure. Food Anal. Methods 2014, 7, 935–945. [Google Scholar] [CrossRef]
- Njumbe Ediage, E.; Van Poucke, C.; De Saeger, S. A Multi-Analyte LC–MS/MS Method for the Analysis of 23 Mycotoxins in Different Sorghum Varieties: The Forgotten Sample Matrix. Food Chem. 2015, 177, 397–404. [Google Scholar] [CrossRef]
- Oliveira, M.S.; Rocha, A.; Sulyok, M.; Krska, R.; Mallmann, C.A. Natural Mycotoxin Contamination of Maize (Zea Mays L.) in the South Region of Brazil. Food Control. 2017, 73, 127–132. [Google Scholar] [CrossRef]
- Abdallah, M.F.; Girgin, G.; Baydar, T.; Krska, R.; Sulyok, M. Occurrence of Multiple Mycotoxins and Other Fungal Metabolites in Animal Feed and Maize Samples from Egypt Using LC-MS/MS. J. Sci. Food Agric. 2017, 97, 4419–4428. [Google Scholar] [CrossRef]
- Tansakul, N.; Jala, P.; Laopiem, S.; Tangmunkhong, P.; Limsuwan, S. Co-Occurrence of Five Fusarium Toxins in Corn-Dried Distiller’s Grains with Solubles in Thailand and Comparison of ELISA and LC-MS/MS for Fumonisin Analysis. Mycotoxin Res. 2013, 29, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Milani, J.; Maleki, G. Effects of Processing on Mycotoxin Stability in Cereals. J. Sci. Food Agric. 2014, 94, 2372–2375. [Google Scholar] [CrossRef] [PubMed]
- Magan, N.; Aldred, D.; Mylona, K.; Lambert, R.J.W. Limiting Mycotoxins in Stored Wheat. Food Addit. Contam. Part. A Chem. Anal. Control. Expo. Risk Assess. 2010, 27, 644–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, L.; Marín, S.; Sanchis, V.; Ramos, A.J. Screening of Mycotoxin Multicontamination in Medicinal and Aromatic Herbs Sampled in Spain. J. Sci. Food Agric. 2009, 89, 1802–1807. [Google Scholar] [CrossRef]
- Gratz, S.W. Do Plant-Bound Masked Mycotoxins Contribute to Toxicity? Toxins 2017, 9, 85. [Google Scholar] [CrossRef]
Working Solutions | Conc. | Fortified Sample | SMix 1 (Low Level) | SMix 2 (High Level) | ||||
---|---|---|---|---|---|---|---|---|
Conc μg/Kg (μg/L) | Vol 2 (μL) | Conc. | Vol 3 (μL) | μg/L | Vol 3 (μL) | |||
OTA | OTA | 100 | 3.0 (7.5) | 150 | 1.5 | 15 | 7.5 | 75 |
AFLA | AFB1 | 100 | 1.6 (4.0) | 0.8 | 4 | |||
AFG1 | 100 | 1.6 (4.0) | 80 | 0.8 | 8 | 4 | 40 | |
AFB2 | 25 | 0.4 (1.0) | 0.2 | 1 | ||||
AFG2 | 25 | 0.4 (1.0) | 0.2 | 1 | ||||
ZEA | ZEA | 1000 | 75 (187.5) | 375 | 37.5 | 37.5 | 187.5 | 187.5 |
FUMO | FB1 | 10,000 | 400 (1000) | 200 | ||||
FB2 | 10,000 | 400 (1000) | 200 | 200 | 20 | 1000 | 100 | |
FB3 | 10,000 | 400 (1000) | 200 | |||||
DON | DON | 10,000 | 100 (250) | 50 | 50 | 5 | 250 | 25 |
MIX T2 | T2 | 1000 | 25 (62.5) | 12.5 | ||||
125 | 12.5 | 62.5 | 62.5 | |||||
HT2 | 1000 | 25 (62.5) | 12.5 | |||||
OTA-d5 1 | OTA D5 | 100 | 3.0 (7.5) | 150 | 7.5 | 75 | 7.5 | 75 |
Time (min) | A (%) | B (%) |
---|---|---|
0 | 100 | 0 |
0.5 | 80 | 20 |
1.5 | 80 | 20 |
1.6 | 40 | 60 |
4.2 | 0 | 100 |
4.9 | 0 | 100 |
5 | 100 | 0 |
6 | 100 | 0 |
Mycotoxin | Rt | Parent | Product 1 (m/z) | CE (V) | Product 2 (m/z) | CE (V) |
---|---|---|---|---|---|---|
OTA | 3.52 | 404.2 [M + H]+ | 239.2 | 27 | 221.7 | 37 |
ZEA | 3.43 | 319.1 [M + H]+ | 283.2 | 20 | 187.0 | 22 |
AFB1 | 2.96 | 313.1 [M + H]+ | 285.1 | 25 | 241.0 | 38 |
AFB2 | 2.91 | 315.1 [M + H]+ | 287.1 | 27 | 259.0 | 30 |
AFG1 | 2.87 | 329.1 [M + H]+ | 243.0 | 27 | 311.0 | 25 |
AFG2 | 2.82 | 331.1 [M + H]+ | 245.0 | 30 | 313.0 | 30 |
DON | 1.04 | 297.2 [M + H]+ | 203 | 20 | 249.2 | 15 |
FB1 | 3.28 | 722.2 [M + H]+ | 334.2 | 40 | 252.2 | 30 |
FB2 | 3.45 | 706.3 [M + H]+ | 354.2 | 37 | 336.1 | 37 |
FB3 | 3.55 | 706.3 [M + H]+ | 354.2 | 37 | 336.1 | 37 |
T2 | 3.32 | 484.2 [M + NH4]+ | 305.0 | 15 | 215.0 | 15 |
HT2 | 3.17 | 442.2 [M + NH4]+ | 263.0 | 15 | 215.0 | 15 |
Sample Type | Mycotoxin | Linearity (μg/L) | Matrix Effect (%) | STC μg/kg | Cut-Off μg/kg | Repeatability | Recovery (%) |
---|---|---|---|---|---|---|---|
Maize | OTA | 1.5–15 | −25.40 | 3.0 | 0.93 | 1.81 | 73 |
ZEA | 37.5–375 | −2.85 | 75 | 43 | 7.83 | 65 | |
AFB1 | 0.8–8 | −12.18 | 1.6 | 0.95 | 0.95 | 79 | |
AFG1 | 0.8–8 | +43.74 | 1.6 | 1.06 | 0.19 | 75 | |
AFB2 | 0.20–2 | −20.18 | 0.4 | 0.37 | 0.14 | 117 | |
AFG2 | 0.20–2 | +6.69 | 0.4 | 0.27 | 0.057 | 77 | |
DON | 50–500 | +37.06 | 100 | 75 | 36.7 | 120 | |
FB1 | 200–2000 | +57.26 | 400 | 75 | 36.7 | 60 | |
FB2 | 200–2000 | +66.82 | 400 | 46 | 141 | 60 | |
FB3 | 200–2000 | +21.47 | 400 | 212 | 223 | 92 | |
T2 | 12.50–125 | −13.35 | 25 | 23 | 1.99 | 99 | |
HT2 | 12.50–125 | −2.21 | 25 | 26 | 6.02 | 120 | |
Black pepper | OTA | 1.5–15 | −26.03 | 3.0 | 1.33 | 1.27 | 74 |
AFB1 | 0.8–8 | −13.64 | 1.6 | 1.44 | 0.09 | 94 | |
AFG1 | 0.8–8 | −1.41 | 1.6 | 1.38 | 0.1 | 90 | |
AFB2 | 0.2–2 | −26.17 | 0.4 | 0.35 | 0.03 | 94 | |
AFG2 | 0.2–2 | −0.89 | 0.4 | 0.34 | 0.026 | 90 |
Sample Commodity | Detected Mycotoxin | Number of Sample with a Detectable Amount of Mycotoxin | Amount |
---|---|---|---|
Maize | OTA | 1 | 2.53 μg/kg |
Wheat | - | 0 | - |
Black pepper | OTA AFB2 | 1 1 | 1.85 μg/kg 0.358 μg/kg |
Coffee | - | 0 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantano, L.; La Scala, L.; Olibrio, F.; Galluzzo, F.G.; Bongiorno, C.; Buscemi, M.D.; Macaluso, A.; Vella, A. QuEChERS LC–MS/MS Screening Method for Mycotoxin Detection in Cereal Products and Spices. Int. J. Environ. Res. Public Health 2021, 18, 3774. https://doi.org/10.3390/ijerph18073774
Pantano L, La Scala L, Olibrio F, Galluzzo FG, Bongiorno C, Buscemi MD, Macaluso A, Vella A. QuEChERS LC–MS/MS Screening Method for Mycotoxin Detection in Cereal Products and Spices. International Journal of Environmental Research and Public Health. 2021; 18(7):3774. https://doi.org/10.3390/ijerph18073774
Chicago/Turabian StylePantano, Licia, Ladislao La Scala, Francesco Olibrio, Francesco Giuseppe Galluzzo, Carmelo Bongiorno, Maria Drussilla Buscemi, Andrea Macaluso, and Antonio Vella. 2021. "QuEChERS LC–MS/MS Screening Method for Mycotoxin Detection in Cereal Products and Spices" International Journal of Environmental Research and Public Health 18, no. 7: 3774. https://doi.org/10.3390/ijerph18073774
APA StylePantano, L., La Scala, L., Olibrio, F., Galluzzo, F. G., Bongiorno, C., Buscemi, M. D., Macaluso, A., & Vella, A. (2021). QuEChERS LC–MS/MS Screening Method for Mycotoxin Detection in Cereal Products and Spices. International Journal of Environmental Research and Public Health, 18(7), 3774. https://doi.org/10.3390/ijerph18073774