Toxic Metals in Cereals in Cape Verde: Risk Assessment Evaluation
Abstract
:1. Introduction
2. Material and Methods
2.1. Samples
2.2. Sample Treatment
2.3. Analytical Method
2.4. Statistical Analysis
2.5. Calculation of Dietary Intake
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO (Food and Agriculture Organization of the United Nations). GIEWS Country Brief Cabo Verde. Available online: http://www.fao.org/giews/countrybrief/country.jsp?code=CPV (accessed on 29 January 2021).
- Governo de Cabo Verde. Informe Económico y Comercial. Cabo Verde. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwji7eXpsOXuAhXKTcAKHfgUD5wQFjADegQIBRAC&url=https%3A%2F%2Fwww.icex.es%2Ficex%2FGetDocumento%3FdDocName%3DDOC2018793032%26urlNoAcceso%3D%2Ficex%2Fes%2Fregistro%2Finiciar-sesion%2Findex.html%3FurlDestino%3Dhttps%3A%2F%2Fwww.icex.es%3A443%2Ficex%2Fes%2Fnavegacion-principal%2Ftodos-nuestros-servicios%2Finformacion-de-mercados%2Festudios-de-mercados-y-otros-documentos-de-comercio-exterior%2Findex.html%26site%3DicexES&usg=AOvVaw3NgJEPVkUw8wwZvuF-iJz1 (accessed on 29 January 2021).
- Monteiro, F.; Fortes, A.; Ferreira, V.; Pereira Essoh, A.; Gomes, I.; Correia, A.M.; Romeiras, M.M. Current Status and Trends in Cabo Verde Agriculture. Agronomy 2020, 10, 74. [Google Scholar] [CrossRef] [Green Version]
- SDG (Sustainable Development Goals). Cabo Verde. Voluntary National Report on the Implementation of the 2030 Agenda for Sustainable Development. Governo de Cabo Verde. June 2018. Available online: https://sustainabledevelopment.un.org/content/documents/19580Cabo_Verde_VNR_SDG_Cabo_Verde_2018_ING_final_NU_280618.pdf (accessed on 29 January 2021).
- Craveiro, I.; Alves, D.; Amado, M.; Santos, Z.; Fortes, A.T.; Delgado, A.P.; Correia, A.; Gonçalves, L. Determinants, health problems, and food insecurity in urban areas of the largest city in Cape Verde. Int. J. Environ. Res. Pub. Health 2016, 13, 1155. [Google Scholar] [CrossRef] [Green Version]
- Brizio, P.; Benedetto, A.; Squadrone, S.; Curcio, A.; Pellegrino, M.; Ferrero, M.; Abete, M.C. Heavy metals and essential elements in Italian cereals. Food Addit. Contam. PB 2016, 9, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Cen, K. Contamination and health risk assessment of heavy metals in cereals, legumes, and their products: A case study based on the dietary structure of the residents of Beijing, China. J. Clean. Prod. 2020, 260, 121001. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Scientific Opinion on the risks to public health related to the presence of chromium in food and drinking water. EFSA J. 2014, 12, 3595. [Google Scholar] [CrossRef]
- EFSA. Update of the risk assessment of nickel in food and drinking water. EFSA J. 2020, 18, 6268. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Strontium and strontium compounds. Concise Int. Chem. Assess. Doc. 2010, 77, 1–63. [Google Scholar]
- EFSA. Statement on the evaluation on a new study related to thee bioavailability of aluminum in food. EFSA J. 2011, 9, 2157. [Google Scholar] [CrossRef]
- EFSA. Panel on Contaminants in the Food Chain (CONTAM). Statement on tolerable weekly intake for cadmium. EFSA J. 2010, 9, 1975. [Google Scholar]
- EFSA. Scientific Opinion on Lead in Food. EFSA J. 2010, 8, 1570. [Google Scholar]
- Exley, C. The toxicity of aluminum in humans. Morphologie 2016, 100, 51–55. [Google Scholar] [CrossRef]
- González-Weller, D.; Gutiérrez, A.J.; Rubio, C.; Revert, C.; Hardisson, A. Dietary Intake of Aluminum in a Spanish Population (Canary Islands). J. Agric. Food Chem. 2010, 58, 10452–10457. [Google Scholar] [CrossRef]
- Hardisson, A.; Revert, C.; Gonzales-Weler, D.; Rubio, C. Aluminium exposure through the diet. Food Sci. Nutr. 2017, 3, 19. [Google Scholar]
- Zhao, Y.; Dang, M.; Zhang, W.; Lei, Y.; Ramesh, T.; Veeraraghavan, V.P.; Hou, X. Neuroprotective effects of Syringic acid against aluminium chloride induced oxidative stress mediated neuroinflammation in rat model of Alzheimer’s disease. J. Func. Foods 2020, 71, 104009. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Safety of aluminium from dietary intake-Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Food Contact Materials (AFC). EFSA J. 2008, 6, 754. [Google Scholar]
- Barbier, O.; Jacquillet, G.; Tauc, M.; Cougnon, M.; Poujeol, P. Effect of Heavy Metals on, and Handling by, the Kidney. Nephron Physiol. 2005, 99, 105–110. [Google Scholar] [CrossRef]
- Azhar, M.; Rehman, M.Z.; Ali, S.; Qayyum, M.F.; Naeem, A.; Ayub, M.A.; Haq, M.A.; Iqbal, A.; Rizwan, M. Comparative effectiveness of different biochars and conventional organic materials on growth, photosynthesis and cadmium accumulation in cereals. Chemosphere 2020, 227, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Rubio, C.; Napoleone, G.; Luis-González, G.; Gutiérrez, A.J.; González-Weller, D.; Hardisson, A.; Revert, C. Metals in edible seaweed. Chemosphere 2017, 173, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; He, C.; Shen, C.; Guo, J.; Mubeen, S.; Yuan, J.; Yang, Z. Toxicity of cadmium and its health risks from leafy vegetable consumption. Food Funct. 2017, 8, 1373–1401. [Google Scholar] [CrossRef] [PubMed]
- Rubio, C.; Hardisson, A.; Reguera, J.I.; Revert, C.; Lafuente, M.A.; Gonzalez-Iglesias, T. Cadmium dietary intake in the Canary Islands, Spain. Environ. Res. 2006, 100, 123–129. [Google Scholar] [CrossRef]
- EFSA. Cadmium dietary exposure in the European population. EFSA J. 2012, 10, 2551. [Google Scholar] [CrossRef]
- Løvik, M.; Frøyland, L.; Haugen, M.; Henjum, S.; Stea, T.; Strand, T.A.; Parr, C.; Holvik, K. Assessment of Dietary Intake of Chromium (III) in Relation to Tolerable Upper Intake Level. Euro. J. Nutr. Food Saf. 2018, 8, 195–197. [Google Scholar] [CrossRef] [Green Version]
- IOM (Institute of Medicine). Food and Nutrition Board of the Institute of Medicine of the National Academies. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Krejpcio, Z. Essentiality of Chromium for Human Nutrition and Health. Polish J. Environ. Stud. 2001, 10, 399–404. [Google Scholar]
- González-Weller, D.; Rubio, C.; Gutiérrez, A.J.; Luis González, G.; Caballero Mesa, J.M.; Revert Gironés, C.; Burgos Ojeda, A.; Hardisson, A. Dietary intake of barium, bismuth, chromium, lithium, and strontium in a Spanish population (Canary Islands, Spain). Food Chem. Toxicol. 2013, 62, 856–868. [Google Scholar] [CrossRef]
- Filippini, T.; Cilloni, S.; Malavolti, M.; Violi, F.; Malagoli, C.; Tesauro, M.; Bottecchi, I.; Ferrari, A.; Vescovi, L.; Vinceti, M. Dietary intake of cadmium, chromium, copper, manganese, selenium and zinc in a Northern Italy community. J. Trace Elem. Med. Biol. 2018, 50, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Carver, P.L. Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic; Walter de Gruyter GmbH&Co KG: Berlin, Germany, 2019. [Google Scholar]
- Nielsen, S.P. The biological role of strontium. Bone 2004, 35, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Chen, B.; Li, X.; Wang, L.; Xiao, H.; Liu, D. Toxicity assessment of artificially added zinc, selenium, and strontium in water. Sci. Total Environ. 2019, 670, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Rubio, C.; González-Iglesias, T.; Revert, C.; Reguera, J.I.; Gutiérrez, A.J.; Hardisson, A. Lead dietary intake in a Spanish population (Canary Islands). J. Agric. Food Chem. 2005, 53, 6543–6549. [Google Scholar] [CrossRef]
- Tinggi, U.; Schoendorfer, N. Analysis of lead and cadmium in cereal products and duplicate diets of a small group of selected Brisbane children for estimation of daily metal exposure. J. Trace Elem. Med. Biol. 2018, 50, 671–675. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Scientific Report of EFSA. Lead dietary exposure in the European population. EFSA J. 2012, 10, 2831. [Google Scholar]
- Caballero-Mesa, J.M.; Alonso Marrero, S.; González Weller, D.M.; Afonso Gutiérrez, V.L.; Rubio Armendáriz, C.; Hardisson de la Torre, A. Implementation and evaluation of critical hazards and checkpoints analysis (CHCPA) in gofio-producing industries from Tenerife. Nutr. Hosp. 2006, 21, 189–198. [Google Scholar] [PubMed]
- Caballero, J.M.; Tejera, R.L.; Caballero, A.; Rubio, C.; González-Weller, D.; Gutiérrez, A.J.; Hardisson, A. Mineral composition of different types of Canarian gofio; Factors affecting the presence of Na, Mg, Ca, Mn, Fe, Cu y Zn. Nutr. Hosp. 2014, 29, 687–694. [Google Scholar] [CrossRef]
- Luzardo, O.P.; Bernal-Suárez, M.M.; Camacho, M.; Henríquez-Hernández, L.A.; Boada, L.D.; Rial-Berriel, C.; Almeida-González, M.; Zumbado, M.; Díaz-Díaz, R. Estimated exposure to EU regulated mycotoxins and risk characterization of aflatoxin-induced hepatic toxicity through the consumption of the toasted cereal flour called “gofio”, a traditional food of the Canary Islands (Spain). Food Chem. Toxicol. 2016, 93, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Rubio, C.; Paz, S.; Tius, E.; Hardisson, A.; Gutierrez, A.J.; Gonzalez-Weller, D.; Caballero, J.M.; Revert, C. Metal contents in the most widely consumed commercial preparations of four different medicinal plants (aloe, senna, ginseng, and ginkgo) from Europe. Biol. Trace Elem. Res. 2018, 186, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Padrón, P.; Paz, S.; Rubio, C.; Gutiérrez, Á.J.; González-Weller, D.; Hardisson, A. Trace element levels in vegetable sausages and burgers determined by ICP-OES. Biol. Trace Elem. Res. 2020, 194, 616–626. [Google Scholar] [CrossRef] [PubMed]
- IUPAC (International Union of Pure and Applied Chemistry). Nomenclature in Evaluation of Analytical Methods including Detection and Quantification Capabilities. Pure Appl. Chem. 1995, 67, 1699–1723. [Google Scholar] [CrossRef]
- Razali, N.M.; Wah, Y.B. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Anal. 2011, 2, 21–33. [Google Scholar]
- Liu, H.; Probst, A.; Liao, B. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci. Total Environ. 2005, 339, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Millour, S.; Noël, L.; Kadar, A.; Chekri, R.; Vastel, C.; Sirot, V.; Guérin, T. Pb, Hg, Cd, As, Sb and Al levels in foodstuffs from the 2nd French total diet study. Food Chem. 2011, 126, 1787–1799. [Google Scholar] [CrossRef]
- Cubadda, F.; Iacoponi, F.; Ferraris, F.; D’Amato, M.; Aureli, F.; Raggi, A.; Sette, S.; Turrini, A.; Mantovnai, A. Dietary exposure of the Italian population to nickel: The national Total Diet Study. Food Chem. Toxicol. 2020, 146, 111813. [Google Scholar] [CrossRef]
- Mathebula, M.W.; Mandiwana, K.; Panichev, N. Speciation of chromium in bread and breakfast cereals. Food Chem. 2017, 217, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Tejera, R.L.; Luis, G.; González-Weller, D.; Caballero, J.M.; Gutiérrez, A.J.; Rubio, C.; Hardisson, A. Metals in wheat flour; comparative study and safety control. Nutr. Hosp. 2013, 28, 506–513. [Google Scholar] [PubMed]
- Škrbić, B.; Durišić-Mladenović, N.; Cvejanov, J. Principal Component Analysis of Trace Elements in Serbian Wheat. J. Agric. Food Chem. 2005, 53, 2171–2175. [Google Scholar] [CrossRef] [PubMed]
- Bilo, F.; Lodolo, M.; Borgese, L.; Bosio, A.; Benassi, L.; Depero, L.E.; Bontempi, E. Evaluation of Heavy Metals Contamination from Environment to Food Matrix by TXRF: The Case of Rice and Rice Husk. J. Chem. 2015, 2015, 274340. [Google Scholar] [CrossRef]
- Bakirciouglu, D.; Bakircioglu Kurtulus, Y.; Ibar, H. Investigation of trace elements in agricultural soil by BCR sequential extraction method and its transfer to wheat plants. Environ. Monit. Assess. 2011, 175, 303–314. [Google Scholar] [CrossRef] [PubMed]
- AESAN (Agencia Española de Seguridad Alimentaria y Nutrición). Modelo de Dieta Española para la Determinación de la Exposición del Consumidor a Sustancias Químicas; Ministerio de Sanidad y Consumo: Madrid, Spain, 2006. [Google Scholar]
- Gonçalves, L.; Santos, Z.; Amado, M.; Alves, D.; Simões, R.; Delgado, A.P.; Correia, A.; Cabral, J.; Lapão, L.V.; Craveiro, I. Urban Planning and Health Inequities: Looking in a Small-Scale in a City of Cape Verde. PLoS ONE 2015, 23, e0142955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Element | Parameter | Guideline Value | References |
---|---|---|---|
Cr (III) | TDI | 0.3 mg/kg bw/day | [8] |
Ni | 13 µg/kg bw/day | [9] | |
Sr | 0.13 mg/kg bw/day | [10] | |
Al | TWI | 1 mg/kg bw/week | [11] |
Cd | 2.5 µg/kg bw/week | [12] | |
Pb | BMDL | 0.63 1 µg/kg bw/day 1.50 2 µg/kg bw/day | [13] |
Type | No. Samples | Sampling Location | Origin |
---|---|---|---|
Rice | 56 | Santiago | Brazil, Vietnam, Thailand, Japan, USA (California), Cape Verde (Mindelo), Pakistan |
5 | São Vicente | ||
Corn gofio | 6 | Santiago | Unknown |
1 | São Vicente | ||
Corn flour | 10 | Santiago | Portugal, The Netherlands |
1 | São Vicente | ||
Wheat flour | 17 | Santiago | Portugal, France |
2 | São Vicente | ||
Corn | 13 | Santiago | Argentina, France, Russia, South America |
2 | São Vicente | ||
Wheat | 2 | Santiago | Russia, France, Cape Verde (Mindelo), Spain |
11 | São Vicente |
No. | Ramp (min) | Temperature (°C) | Time (min) |
---|---|---|---|
1 | 15 | 50 | 5 |
2 | 5 | 60 | 4 |
3 | 5 | 70 | 3 |
4 | 3 | 90 | 2 |
5 | 20 | 180 | 10 |
Metal | Material | Concentration Found (mg/kg) | Certified Concentration (mg/kg) | R (%) |
---|---|---|---|---|
Al | SRM 1515 Apple Leaves | 286 ± 9 | 285.1 ± 26 | 99.7 |
Sr | 25.0 ± 2.0 | 24.6 ± 4.0 | 98.3 | |
Cr | 0.29 ± 0.03 | 0.30 ± 0.00 | 97.8 | |
Ni | SRM 1548a Typical Diet | 0.37 ± 0.02 | 0.38 ± 0.04 | 102.3 |
Pb | 0.044 ± 0.000 | 0.044 ± 0.013 | 98.9 | |
Cd | SRM 1567a Wheat Flour | 0.026 ± 0.002 | 0.026 ± 0.008 | 98.4 |
Element | EDI (mg/day) | Contribution | EDI (mg/day) | Contribution | EDI (mg/day) | Contribution | EDI (mg/day) | Contribution | EDI (mg/day) | Contribution | EDI (mg/day) | Contribution |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rice | Corn | Corn Flour | Wheat Flour | Corn Gofio | Wheat | |||||||
Cr | 0.002 | 0.01% TDI | 0.008 | 0.04%TDI | 0.001 | 0.005%TDI | 0.002 | 0.01%TDI | 0.009 | 0.04%TDI | 0.01 | 0.05%TDI |
Ni | 0.02 | 10.00% TDI | 0.02 | 7.89%TDI | 0.008 | 4.21%TDI | 0.01 | 6.32%TDI | 0.02 | 11.6%TDI | 0.03 | 13.2%TDI |
Sr | 0.02 | 0.24% TDI | 0.04 | 0.45%TDI | 0.01 | 0.16%TDI | 0.08 | 0.87%TDI | 0.08 | 0.87%TDI | 0.16 | 1.80%TDI |
Al | 0.14 | 1.46% TWI | 0.24 | 2.46%TWI | 0.12 | 1.20% TWI | 0.27 | 2.80% TWI | 1.34 | 13.7% TWI | 0.49 | 4.96% TWI |
Cd | 0.001 | 4.09% TWI | 0.0007 | 2.86%TWI | 0.0005 | 2.04% TWI | 0.002 | 8.18% TWI | 0.0003 | 1.23% TWI | 0.001 | 4.09% TWI |
Pb | 0.003 | 7.50% BMDL for Nephrotoxicity | 0.003 | 7.50% BMDL for Nephrotoxicity | 0.003 | 7.50% BMDL for Nephrotoxicity | 0.003 | 7.50% BMDL for Nephrotoxicity | 0.008 | 20.0% BMDL for Nephrotoxicity | 0.007 | 17.5%BMDL for Nephrotoxicity |
3.00% BMDL for Cardiovascular Effects | 3.00% BMDL for Cardiovascular Effects | 3.00% BMDL for Cardiovascular Effects | 3.00% BMDL for Cardiovascular Effects | 8% BMDL for Cardiovascular Effects | 7% BMDL for Cardiovascular Effects |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubio-Armendáriz, C.; Paz, S.; Gutiérrez, Á.J.; Gomes Furtado, V.; González-Weller, D.; Revert, C.; Hardisson, A. Toxic Metals in Cereals in Cape Verde: Risk Assessment Evaluation. Int. J. Environ. Res. Public Health 2021, 18, 3833. https://doi.org/10.3390/ijerph18073833
Rubio-Armendáriz C, Paz S, Gutiérrez ÁJ, Gomes Furtado V, González-Weller D, Revert C, Hardisson A. Toxic Metals in Cereals in Cape Verde: Risk Assessment Evaluation. International Journal of Environmental Research and Public Health. 2021; 18(7):3833. https://doi.org/10.3390/ijerph18073833
Chicago/Turabian StyleRubio-Armendáriz, Carmen, Soraya Paz, Ángel J. Gutiérrez, Verena Gomes Furtado, Dailos González-Weller, Consuelo Revert, and Arturo Hardisson. 2021. "Toxic Metals in Cereals in Cape Verde: Risk Assessment Evaluation" International Journal of Environmental Research and Public Health 18, no. 7: 3833. https://doi.org/10.3390/ijerph18073833
APA StyleRubio-Armendáriz, C., Paz, S., Gutiérrez, Á. J., Gomes Furtado, V., González-Weller, D., Revert, C., & Hardisson, A. (2021). Toxic Metals in Cereals in Cape Verde: Risk Assessment Evaluation. International Journal of Environmental Research and Public Health, 18(7), 3833. https://doi.org/10.3390/ijerph18073833