Identification of Vulnerable Populations and Areas at Higher Risk of COVID-19-Related Mortality during the Early Stage of the Epidemic in the United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Study Variables
2.3. Multivariate Analyses of Risk Factors for COVID-19-Related Death
3. Results
3.1. Sociodemographic and Socio-Environmental Variables
3.2. Multivariate Analyses of Risk Factors for COVID-19-Related Death
3.3. COVID-19 Disease Mapping
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CDC COVID-19 Response Team. Geographic Differences in COVID-19 Cases, Deaths, and Incidence—United States, February 12–April 7, 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 465–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, I.F.; Becker, A.D.; Grenfell, B.T.; Metcalf, C.J.E. Disease and healthcare burden of COVID-19 in the United States. Nat. Med. 2020, 26, 1212–1217. [Google Scholar] [CrossRef]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W. The Northwell COVID-19 Research Consortium. Presenting Characteristics, Comorbidities, and Outcomes among 5700 Patients Hospitalized with COVID-19 in the New York City Area. JAMA 2020. Available online: https://jamanetwork.com/journals/jama/fullarticle/2765184 (accessed on 20 April 2020). [CrossRef] [PubMed]
- Shi, S.; Qin, M.; Shen, B.; Cai, Y.; Liu, T.; Yang, F.; Gong, W.; Liu, X.; Liang, J.; Zhao, Q.; et al. Association of Cardiac Injury with Mortality in Hospitalized Patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020. Available online: https://jamanetwork.com/journals/jamacardiology/fullarticle/2763524 (accessed on 20 April 2020). [CrossRef] [Green Version]
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline Characteristics and Outcomes of 1591 Patients Infected with SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323, 1574–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.; Huang, S.; Liu, J.; Shu, Y.; Luo, Y.; Wang, L.; Li, M.; Wang, Y. Association between comorbidities and the risk of death in patients with COVID-19: Sex-specific differences. medRxiv 2020. Available online: https://www.medrxiv.org/content/10.1101/2020.05.22.20109579v1 (accessed on 29 May 2020). [CrossRef]
- Williamson, E.; Walker, A.J.; Bhaskaran, K.J.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. OpenSAFELY: Factors associated with COVID-19-related hospital death in the linked electronic health records of 17 million adult NHS patients. medRxiv 2020. Available online: https://www.medrxiv.org/content/10.1101/2020.05.06.20092999v1 (accessed on 10 May 2020). [CrossRef]
- Remuzzi, A.; Remuzzi, G. COVID-19 and Italy: What next? Lancet 2020, 395, 1225–1228. [Google Scholar] [CrossRef]
- Li, R.; Rivers, C.; Tan, Q.; Murray, M.B.; Toner, E.; Lipsitch, M. Estimated Demand for US Hospital Inpatient and Intensive Care Unit Beds for Patients with COVID-19 Based on Comparisons with Wuhan and Guangzhou, China. JAMA Netw. Open 2020, 3, e208297. [Google Scholar] [CrossRef] [PubMed]
- Schneider, E.C. Failing the Test—The Tragic Data Gap Undermining the U.S. Pandemic Response. N. Engl. J. Med. 2020, 383, 299–302. [Google Scholar] [CrossRef]
- CDC. COVID-19 Death Data and Resources. Available online: https://www.cdc.gov/nchs/nvss/covid-19.htm (accessed on 2 April 2021).
- Johns Hopkins University. 2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE. Available online: https://github.com/CSSEGISandData/COVID-19 (accessed on 24 April 2020).
- Bureau, U.S.C. American Community Survey 2014–2018 5-Year Estimates. Available online: https://www.census.gov/data/developers/data-sets/acs-5year.2018.html (accessed on 20 April 2020).
- Gregory, E.W.; Hallisey, E.; Heitgerd, J.L.; Lewis, B. A Social Vulnerability Index for Disaster Management. J. Homel. Secur. Emerg. Manag. 2011, 8, 3. [Google Scholar]
- Centers for Disease Control and Prevention, National Center for Health Statistics. Underlying Cause of Death 1999–2018 on CDC WONDER Online Database, Released in 2020. Available online: http://wonder.cdc.gov/ucd-icd10.html (accessed on 26 April 2020).
- van Donkelaar, A.; Martin, R.V.; Li, C.; Burnett, R.T. Regional Estimates of Chemical Composition of Fine Particulate Matter Using a Combined Geoscience-Statistical Method with Information from Satellites, Models, and Monitors. Environ. Sci. Technol. 2019, 53, 2595–2611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bureau, C. Race & Ethnicity. Available online: https://bber.unm.edu/media/files/race-ethnicity-onepager.pdf (accessed on 20 April 2020).
- CDC COVID-19 Response Team. Preliminary Estimates of the Prevalence of Selected Underlying Health Conditions among Patients with Coronavirus Disease 2019. Morb. Mortal. Wkly. Rep. 2020, 69, 382–386. [Google Scholar]
- Hsu, H.E.; Ashe, E.M.; Silverstein, M.; Hofman, M.; Lange, S.J.; Razzaghi, H.; Mishuris, R.G.; Davidoff, R.; Parker, E.M.; Penman-Aguilar, A.; et al. Race/Ethnicity, Underlying Medical Conditions, Homelessness, and Hospitalization Status of Adult Patients with COVID-19 at an Urban Safety-Net Medical Center—Boston, Massachusetts, 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Epidemiology 2007, 18, 800–804. [Google Scholar] [CrossRef] [Green Version]
- Niedzwiedz, C.L.; Donnell, C.A.; Jani, B.D.; Demou, E.; Ho, F.K.; Celis-Morales, C.; Nicholl, B.I.; Mair, F.; Welsh, P.; Sattar, N.; et al. Ethnic and socioeconomic differences in SARS-CoV-2 infection: Prospective cohort study using UK Biobank. medRxiv 2020, 18, 1–14. [Google Scholar] [CrossRef]
- Halpin, D.M.G.; Faner, R.; Sibila, O.; Badia, J.R.; Agusti, A. Do chronic respiratory diseases or their treatment affect the risk of SARS-CoV-2 infection? Lancet Respir. Med. 2020, 8, 436–438. [Google Scholar] [CrossRef]
- Pansini, R.; Fornacca, D. Initial evidence of higher morbidity and mortality due to SARS-CoV-2 in regions with lower air quality. medRxiv 2020. Available online: https://www.medrxiv.org/content/medrxiv/early/2020/04/07/2020.04.04.20053595.full.pdf (accessed on 10 May 2020). [CrossRef]
- Fattorini, D.; Regoli, F. Role of the atmospheric pollution in the Covid-19 outbreak risk in Italy. medRxiv 2020, 264, 114732. [Google Scholar] [CrossRef] [Green Version]
- Hernán, M.A.; Hernández-Díaz, S.; Robins, J.M. A Structural Approach to Selection Bias. Epidemiology 2004, 15, 615–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Besag, J.; York, J.; Mollié, A. Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Stat. Math. 1991, 43, 1–20. [Google Scholar] [CrossRef]
- Lu, Z. Handbook of Spatial Statistics; Gelfand, A.E., Diggle, P.J., Montserrat Fuentes and Peter Guttorp, Eds.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2010; p. xii+607. ISBN 978-1-4200-7287-7. [Google Scholar] [CrossRef]
- Healthcare, D. USA Hospital Beds. Available online: https://coronavirus-resources.esri.com/datasets/1044bb19da8d4dbfb6a96eb1b4ebf629_0?geometry=80.507%2C-16.820%2C-105.469%2C72.123 (accessed on 5 May 2020).
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling. 2019. Available online: https://rdrr.io/cran/raster/#vignettes (accessed on 1 April 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Bürkner, P.-C. brms: An R Package for Bayesian Multilevel Models Using Stan. J. Stat. Softw. 2017, 80, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Kim, A.Y.; Jon, W. SpatialEpi: Methods and Data for Spatial Epidemiology; R Package Version 1.2.3; University of Washington: Seatle, WA, USA, 2018. [Google Scholar]
- Owen, W.F., Jr.; Carmona, R.; Pomeroy, C. Failing Another National Stress Test on Health Disparities. JAMA 2020, 323, 1905–1906. [Google Scholar] [CrossRef] [Green Version]
- NYC Department of Health and Mental Hygiene. COVID-19: Data. Available online: https://www1.nyc.gov/site/doh/covid/covid-19-data.page (accessed on 17 May 2020).
- Hernandez, A.; Correa-Agudelo, E.; Kim, H.; Branscum, A.J.; Miller, F.D.; MacKinnon, N.; Cuadros, D.F. On the impact of early non-pharmaceutical interventions as containment strategies against the COVID-19 pandemic. medRxiv 2020. Available online: https://www.medrxiv.org/content/10.1101/2020.05.05.20092304v1 (accessed on 10 May 2020). [CrossRef]
- United States Environmental Protection Agency. Revised Air Quality Standards for Particle Pollution and Updates to the Air Quality Index (AQI). Available online: https://www.epa.gov/sites/production/files/2016-04/documents/2012_aqi_factsheet.pdf (accessed on 28 March 2021).
- Kelly, F.J.; Fussell, J.C. Air pollution and airway disease. Clin. Exp. Allergy 2011, 41, 1059–1071. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Ni, Y.; Li, H.; Pan, L.; Yang, D.; Baccarelli, A.A.; Deng, F.; Chen, Y.; Shima, M.; Guo, X. Short-term exposure to high ambient air pollution increases airway inflammation and respiratory symptoms in chronic obstructive pulmonary disease patients in Beijing, China. Environ. Int. 2016, 94, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Minelli, C.; Wei, I.; Sagoo, G.; Jarvis, D.; Shaheen, S.; Burney, P. Interactive effects of antioxidant genes and air pollution on respiratory function and airway disease: A HuGE review. Am. J. Epidemiol. 2011, 173, 603–620. [Google Scholar] [CrossRef] [PubMed]
- Viegi, G.; Simoni, M.; Scognamiglio, A.; Baldacci, S.; Pistelli, F.; Carrozzi, L.; Annesi-Maesano, I. Indoor air pollution and airway disease. Int. J. Tuberc. Lung Dis. 2004, 8, 1401–1415. [Google Scholar] [PubMed]
- Ulmer, W.T. Air pollution and airway disease. Der Internist 1985, 26, 233–240. [Google Scholar] [PubMed]
- Karakatsani, A.; Analitis, A.; Perifanou, D.; Ayres, J.G.; Harrison, R.M.; Kotronarou, A.; Kavouras, I.G.; Pekkanen, J.; Hameri, K.; Kos, G.P.; et al. Particulate matter air pollution and respiratory symptoms in individuals having either asthma or chronic obstructive pulmonary disease: A European multicentre panel study. Environ. Health 2012, 11, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vineis, P.; Hoek, G.; Krzyzanowski, M.; Vigna-Taglianti, F.; Veglia, F.; Airoldi, L.; Autrup, H.; Dunning, A.; Garte, S.; Hainaut, P.; et al. Air pollution and risk of lung cancer in a prospective study in Europe. Int. J. Cancer 2006, 119, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Raaschou-Nielsen, O.; Vineis, P.; Brunekreef, B.; Nieuwenhuijsen, M.; Hoffmann, B.; Forastiere, F.; Oudin, A.; Hoek, G.; Katsouyanni, K.; Schwarze, P.; et al. Air pollution and lung cancer in Europe—Authors’ reply. Lancet Oncol. 2013, 14, e440. [Google Scholar] [CrossRef]
- Sax, S.N.; Zu, K.; Goodman, J.E. Air pollution and lung cancer in Europe. Lancet Oncol. 2013, 14, e439–e440. [Google Scholar] [CrossRef]
- Nawrot, T.S.; Nackaerts, K.; Hoet, P.H.; Nemery, B. Lung cancer mortality and fine particulate air pollution in Europe. Int. J. Cancer 2007, 120, 1825–1826. [Google Scholar] [CrossRef] [PubMed]
- Nature. Coronavirus: The First Three Months As It Happened. Available online: https://www.nature.com/articles/d41586-020-00154-w (accessed on 19 May 2020).
- American Lung Association. State of the Air 2020; American Lung Association: Chicago, IL, USA, 2020. [Google Scholar]
- Institute for Health Metrics and Evaluation. New COVID-19 Forecasts: US Hospitals Could Be Overwhelmed in the Second Week of April by Demand for ICU Beds, and US Deaths Could Total 81,000 by July. Available online: www.healthdata.org/news-release/new-covid-19-forecasts-us-hospitals-could-be-overwhelmed-second-week-april-demand-icu (accessed on 10 May 2020).
- Achakulwisut, P.; Brauer, M.; Hystad, P.; Anenberg, S.C. Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO2 pollution: Estimates from global datasets. Lancet Planet. Health 2019, 3, e166–e178. [Google Scholar] [CrossRef] [Green Version]
COVID-19 | n | |
---|---|---|
Confirmed Cases | 5,958,655 | |
Confirmed Deaths | 181,937 | |
Sociodemographic | Mean | (SD) |
Age (years) | ||
Percent under 25 | 31.2 | (4.8) |
Percent 25–34 | 11.8 | (2.3) |
Percent 35–44 | 11.6 | (1.5) |
Percent 45–59 | 20.2 | (2.2) |
Percent 60–74 | 17.4 | (3.7) |
Percent 75+ | 7.8 | (2.4) |
Percent of population in poverty | 15.6 | (6.5) |
Race | ||
Percent of white population | 83.1 | (16.9) |
Percent of black population | 9.1 | (14.5) |
Percent of other races | 7.9 | (10.2) |
Ethnicity | ||
Percent of not Hispanic or Latino population | 90.7 | (13.8) |
Percent of Hispanic or Latino population | 9.3 | (13.8) |
Crude mortality rates | Mean | (SD) |
Chronic lower respiratory disease | 69.9 | (26.0) |
Diabetes mellitus | 33.5 | (14.7) |
Hypertension | 27.1 | (16.9) |
Ischemic heart disease | 151.2 | (57.2) |
Environment | Mean | (SD) |
Long-term PM2.5 exposure | 8.0 | (2.4) |
Connectivity Index (n) | ||
Counties with no airport/highway | 1200 | |
Counties crossed by a highway | 629 | |
Counties next to airport | 1047 | |
Counties with an airport | 232 |
County-Level Covariates | RR | CrI: [2.5%, 97.5%] | |
---|---|---|---|
Sociodemographic | |||
Age | |||
Under 25 | Ref | Ref | |
25–34 | 0.98 | (0.96 | 1.01) |
35–44 | 1.01 | (0.97 | 1.04) |
45–59 | 1.02 | (1.00 | 1.05) |
60–74 | 0.98 | (0.96 | 1.00) |
75+ | 1.05 | (1.01 | 1.08) |
Percentage of population in poverty | 1.01 | (1.00 | 1.02) |
Race | |||
Percent of white population | Ref | Ref | |
Percent of black population | 1.01 | (1.01 | 1.02) |
Percent of other races | 1.02 | (1.01 | 1.02) |
Ethnicity | |||
Percent of non-Hispanic or Latino population | Ref | Ref | |
Percent of Hispanic or Latino population | 1.02 | (1.02 | 1.03) |
Crude mortality rates | |||
Chronic lower respiratory disease | 1.00 | (1.00 | 1.00) |
Diabetes mellitus | 1.00 | (1.00 | 1.00) |
Hypertension | 1.00 | (1.00 | 1.01) |
Ischemic heart disease | 1.00 | (1.00 | 1.00) |
Environment | |||
Long-term exposure to PM2.5 | 1.14 | (1.08 | 1.20) |
Connectivity Index | |||
Counties with no airport/highway | Ref | Ref | |
Counties crossed by a highway | 1.10 | (1.00 | 1.20) |
Counties next to airport | 1.13 | (1.03 | 1.24) |
Counties with an airport | 1.31 | (1.14 | 1.51) |
Location | Observed Counts | Expected Counts | Connectivity Index | PM25 (u/gml) | Poverty (%) | |
---|---|---|---|---|---|---|
Bronx, NY | 4912 | 810 | Next to airport | 11.7 | 29.1 | |
McKinley, NM | 243 | 41 | Crossed by a highway | 3.0 | 36 | |
Queens, NY | 7224 | 1295 | Airport | 11.2 | 13 | |
Kings, NY | 7290 | 1465 | Next to airport | 11.5 | 21.1 | |
Essex, NJ | 2116 | 447 | Airport | 11.2 | 16.4 | |
Passaic, NJ | 1245 | 284 | Next to airport | 9.6 | 16.7 | |
Union, NJ | 1351 | 312 | Next to airport | 11.4 | 9.8 | |
Richmond, NY | 1083 | 267 | Next to airport | 11.3 | 12.8 | |
Hudson, NJ | 1508 | 377 | Next to airport | 12.3 | 16.3 | |
Bergen, NJ | 2035 | 524 | Next to airport | 11.3 | 7 | |
Location | ICU Per 100,000 | White (%) | Black (%) | Other Races (%) | Latino (%) | RR CI: [2.5%, 97.5%] |
Bronx, NY | 19.1 | 21.3 | 34.1 | 44.6 | 55.9 | 6.07 [5.90, 6.24] |
McKinley, NM | 35.7 | 15 | 0.7 | 84.3 | 14.3 | 5.85 [5.13, 6.61] |
Queens, NY | 6.4 | 39 | 18.3 | 42.7 | 28 | 5.58 [5.45, 5.71] |
Kings, NY | 10.8 | 43.5 | 32.6 | 23.9 | 19.2 | 4.98 [4.86, 5.09] |
Essex, NJ | 28.5 | 42.1 | 39.8 | 18.1 | 22.7 | 4.74 [4.54, 4.94] |
Passaic, NJ | 10.5 | 62.2 | 11.4 | 26.4 | 40.9 | 4.39 [4.15, 4.63] |
Union, NJ | 13.9 | 56.2 | 21.2 | 22.6 | 31.1 | 4.33 [4.11, 4.57] |
Richmond, NY | 15.2 | 74.3 | 10.2 | 15.5 | 18.3 | 4.06 [3.82, 4.3] |
Hudson, NJ | 13.3 | 55.1 | 12.4 | 32.5 | 43.2 | 4.0 [3.80, 4.21] |
Bergen, NJ | 13.1 | 71.4 | 6.0 | 22.6 | 19.4 | 3.88 [3.72, 4.05] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correa-Agudelo, E.; Mersha, T.B.; Branscum, A.J.; MacKinnon, N.J.; Cuadros, D.F. Identification of Vulnerable Populations and Areas at Higher Risk of COVID-19-Related Mortality during the Early Stage of the Epidemic in the United States. Int. J. Environ. Res. Public Health 2021, 18, 4021. https://doi.org/10.3390/ijerph18084021
Correa-Agudelo E, Mersha TB, Branscum AJ, MacKinnon NJ, Cuadros DF. Identification of Vulnerable Populations and Areas at Higher Risk of COVID-19-Related Mortality during the Early Stage of the Epidemic in the United States. International Journal of Environmental Research and Public Health. 2021; 18(8):4021. https://doi.org/10.3390/ijerph18084021
Chicago/Turabian StyleCorrea-Agudelo, Esteban, Tesfaye B. Mersha, Adam J. Branscum, Neil J. MacKinnon, and Diego F. Cuadros. 2021. "Identification of Vulnerable Populations and Areas at Higher Risk of COVID-19-Related Mortality during the Early Stage of the Epidemic in the United States" International Journal of Environmental Research and Public Health 18, no. 8: 4021. https://doi.org/10.3390/ijerph18084021
APA StyleCorrea-Agudelo, E., Mersha, T. B., Branscum, A. J., MacKinnon, N. J., & Cuadros, D. F. (2021). Identification of Vulnerable Populations and Areas at Higher Risk of COVID-19-Related Mortality during the Early Stage of the Epidemic in the United States. International Journal of Environmental Research and Public Health, 18(8), 4021. https://doi.org/10.3390/ijerph18084021