Impact of Technology Innovation on Air Quality—An Empirical Study on New Energy Vehicles in China
Abstract
:1. Introduction
2. Literature Review and Hypothesis Development
2.1. Technology Innovation of NEVs and Air Quality
2.2. VVT and Air Quality
3. Research Design
3.1. Data Acquirement and Variables
3.2. Empirical Model
4. Empirical Results
4.1. Descriptive Statistics
4.2. Baseline Results
4.3. Analysis of Mediator Effect
4.4. Analysis of Moderator Effect
4.5. Robustness Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Type | Province | <1 L | 1–1.6 L | 1.6–2 L | 2–2.5 L | 2.5–3 L | 3–4 L | >4 L |
---|---|---|---|---|---|---|---|---|
Low Tax Regions | Chongqing | 120 | 300 | 360 | 660 | 1200 | 2400 | 3600 |
Ningxia | 120 | 300 | 360 | 660 | 1800 | 3000 | 4500 | |
Qinghai | 60 | 300 | 360 | 660 | 1500 | 2700 | 4200 | |
Sichuan | 180 | 300 | 360 | 720 | 1800 | 3000 | 4500 | |
Hainan | 60 | 300 | 360 | 720 | 1500 | 2700 | 4200 | |
Anhui | 180 | 300 | 360 | 660 | 1200 | 2700 | 3900 | |
Fujian | 180 | 300 | 360 | 720 | 1500 | 2640 | 3900 | |
Tibet | 60 | 300 | 360 | 660 | 1200 | 2400 | 3600 | |
Zhejiang | 180 | 300 | 360 | 660 | 1500 | 3000 | 4500 | |
Guizhou | 180 | 300 | 360 | 660 | 1200 | 2400 | 3600 | |
Hunan | 120 | 300 | 360 | 720 | 1920 | 3120 | 4800 | |
Jiangsu | 120 | 300 | 360 | 660 | 1200 | 2400 | 3600 | |
Jiangxi | 180 | 300 | 360 | 660 | 1200 | 2400 | 3600 | |
Yunnan | 60 | 300 | 390 | 780 | 1800 | 3000 | 4500 | |
Henan | 180 | 300 | 420 | 720 | 1500 | 3000 | 4500 | |
Shanxi | 180 | 300 | 480 | 900 | 1800 | 3000 | 4500 | |
Hebei | 120 | 300 | 480 | 840 | 1800 | 3000 | 4500 | |
High Tax Regions | Beijing | 250 | 350 | 400 | 750 | 1600 | 2900 | 4400 |
Inner Mongolia | 300 | 360 | 420 | 900 | 1800 | 3000 | 4500 | |
Guangdong | 180 | 360 | 420 | 720 | 1800 | 3000 | 4500 | |
Shandong | 240 | 360 | 420 | 900 | 1800 | 3000 | 4500 | |
Xinjiang | 180 | 360 | 420 | 720 | 1800 | 3000 | 4500 | |
Hubei | 240 | 360 | 420 | 720 | 1800 | 3000 | 4500 | |
Guangxi | 60 | 360 | 420 | 780 | 1800 | 3000 | 4500 | |
Shanghai | 180 | 360 | 450 | 720 | 1500 | 3000 | 4500 | |
Tianjin | 270 | 390 | 450 | 900 | 1800 | 3000 | 4500 | |
Liaoning | 300 | 420 | 480 | 900 | 1800 | 3000 | 4500 | |
Gansu | 240 | 420 | 480 | 720 | 1800 | 3000 | 4500 | |
Shaanxi | 180 | 360 | 480 | 720 | 1800 | 3000 | 4500 | |
Jilin | 240 | 420 | 480 | 900 | 1800 | 3000 | 4500 | |
Heilongjiang | 240 | 420 | 480 | 900 | 1800 | 3000 | 4500 |
References
- Yu, L.; Rong, L.L.; Yang, S.; Zhi, J.Z. The role of environmental tax in alleviating the impact of environmental pollution on residents’ happiness in China. Int. J. Environ. Res. Public Health 2019, 16, 4574. [Google Scholar]
- Li, Y.Y.; Huang, S.; Yin, C.X.; Sun, G.H.; Ge, C. Construction and countermeasure discussion on government performance evaluation model of air pollution control: A case study from Beijing-Tianjin-Hebei region. J. Clean. Prod. 2020, 254, 120072. [Google Scholar] [CrossRef]
- Wang, R.; Xue, D.; Liu, Y.; Liu, P.; Chen, H. The relationship between air pollution and depression in China: Is neighbourhood social capital protective? Int. J. Environ. Res. Public Health 2018, 15, 1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhang, X.B.; Chen, X. Happiness in the air: How does a dirty sky affect mental health and subjective well-being? J. Environ. Econ. Manag. 2017, 85, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Heresh, A.; Christian, D.; Lim, Y.H.; Amar, M.; Jeanette, T.; Jorgensen, J.; Mortensen, L.H.; Rudi, W.; Barbara, H. Long-term exposure to air pollution and stroke incidence: A Danish Nurse cohort study. Environ. Int. 2020, 1421, 05891. [Google Scholar]
- Anamika, P.; Michael, B.; Maureen, L.C.; Kalpana, B. Health and economic impact of air pollution in the states of India: The Global Burden of Disease Study 2019. Lancet Planet. Health 2021, 5, 25–38. [Google Scholar]
- Zhai, X.Q.; An, Y.F. Analyzing influencing factors of green transformation in China’s manufacturing industry under environmental regulation: A structural equation model. J. Clean. Prod. 2020, 251, 119760. [Google Scholar] [CrossRef]
- Li, Y.M.; Zhang, Q.; Liu, B.Y.; Benjamin, M.; Gao, Y.; Tang, Y.Y. Substitution effect of New-Energy Vehicle Credit Program and Corporate Average energy Consumption Regulation for Green-car Subsidy. Energy 2018, 152, 223–236. [Google Scholar] [CrossRef]
- Lin, B.Q.; Zhu, J.P. The role of renewable energy technological innovation on climate change: Empirical evidence from China. Sci. Total Environ. 2019, 659, 1505–1512. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Xi, X.; Na, Q.; Wang, S.; Seifedine, N.K.; Priyan, M.K. The technological innovation of hybrid and plug-in electric vehicles for environment carbon pollution control. Environ. Impact Assess. Rev. 2021, 86, 106506. [Google Scholar] [CrossRef]
- Tan, R.P.; Tang, D.; Lin, B.Q. Policy impact of new energy vehicles promotion on air quality in Chinese cities. Energy Policy 2018, 118, 33–40. [Google Scholar] [CrossRef]
- Yang, T.; Xing, C.; Li, X.Y. Evaluation and analysis of new-energy vehicle industry policies in the context of technical innovation in China. J. Clean. Prod. 2021, 281, 125126. [Google Scholar] [CrossRef]
- Zhang, L.H.; Wang, L.W.; Chai, J.X. Influence of new energy vehicle subsidy policy on emission reduction of atmospheric pollutants: A case study of Beijing, China. J. Clean. Prod. 2020, 275, 124069. [Google Scholar] [CrossRef]
- Yu, F.F.; Wang, L.T.; Li, X.T. The effects of government subsidies on new energy vehicle enterprises: The moderating role of intelligent transformation. Energy Policy 2020, 141, 111463. [Google Scholar] [CrossRef]
- Benzidia, S.; Ruxandra, M.L.; Sergiy, B. Disruptive innovation, business models, and encroachment strategies: Buyer’s perspective on electric and hybrid vehicle technology. Technol. Forecast. Soc. Chang. 2021, 165, 120520. [Google Scholar] [CrossRef]
- The Ministry of Finance; The State Administration of Taxation; The Ministry of Industry and Information Technology and the Ministry of Transport in China. A Notice on Preferential Policies for Energy-Efficient New Energy Vehicles and Vessels; The Ministry of Industry and Information Technology and the Ministry of Transport in China: Beijing, China, 2018.
- Shcheklein, S.E.; Dubinin, A.M. Analysis of nitrogen oxide emissions from modern vehicles using hydrogen or other natural and synthetic fuels in combustion chamber. Int. J. Hydrogen Energy 2020, 45, 1151–1157. [Google Scholar] [CrossRef]
- Law of the People’s Republic of China on Motor Vehicle and Vessel Tax. Gazette of the Standing Committee of the National People’s Congress of the People’s Republic of China; The Standing Committee of the National People’s Congress of the People’s Republic of China: Beijing, China, 2019; Volume 3, pp. 593–594.
- Liu, G.Q. Analysis of the impact of vehicle and vessel tax law on the automobile industry. In Defence Industry Conversion in China; Industrial Designers Society of America: Arlington, WV, USA, 2011; Volume 6, pp. 60–61. [Google Scholar]
- Lin, S.F.; Xiao, L.; Wang, X.J. Does air pollution hinder technological innovation in China? A perspective of innovation value chain. J. Clean. Prod. 2021, 278, 123326. [Google Scholar] [CrossRef]
- Zeng, Y.; Tan, X.C.; Gu, B.H.; Wang, Y.; Xu, B.G. Greenhouse gas emissions of motor vehicles in Chinese cities and the implication for China’s mitigation targets. Appl. Energy 2016, 184, 1016–1025. [Google Scholar] [CrossRef]
- He, X.P.; Jiang, S. Effects of vehicle purchase restrictions on urban air quality: Empirical study on cities in China. Energy Policy 2021, 148B, 112001. [Google Scholar] [CrossRef]
- Chandrashekar, R.; Muhammad, S.; Krishna, R.C.; Jiao, Z.L. Financing clean energy projects: New empirical evidence from major investment countries. Renew. Energy 2021, 169, 231–241. [Google Scholar]
- Wu, Y.W.; Gu, F.; Ji, Y.J.; Guo, J.F.; Fan, Y. Technological capability, eco-innovation performance, and cooperative R&D strategy in new energy vehicle industry: Evidence from listed companies in China. J. Clean. Prod. 2020, 261, 121157. [Google Scholar]
- Murena, F.; Esposito, S.; Deorsola, F.A.; Galletti, C.; Prati, M.V. CO2 abatement and CH4 recovery at vehicle exhausts: Comparison and characterization of Ru powder and pellet catalysts. Int. J. Hydrogen Energy 2020, 45, 8640–8648. [Google Scholar] [CrossRef]
- Yang, W.X.; Yuan, G.H.; Han, J.T. Is China’s air pollution control policy effective? Evidence from Yangtze River Delta cities. J. Clean. Prod. 2019, 220, 110–133. [Google Scholar] [CrossRef]
- David, P. International innovation and diffusion of air pollution control technologies: The effects of NOX and SO2 regulation in the US, Japan, and Germany. J. Environ. Econ. Manag. 2006, 51, 46–71. [Google Scholar]
- Kendall, M. Energy cell development for New Energy Vehicles (NEVs) and clean air in China. Prog. Nat. Sci. Mater. Int. 2018, 28, 113–120. [Google Scholar] [CrossRef]
- Jin, J.; McKelvey, M. Building a sectoral innovation system for new energy vehicles in Hangzhou, China: Insights from evolutionary economics and strategic niche management. J. Clean. Prod. 2019, 224, 1–9. [Google Scholar] [CrossRef]
- UNFCCC (United Nations Framework Convention on Climate Change). Kyoto Protocol Kyoto; UNFCCC: New York, NY, USA, 2015; Volume 19, p. 497. [Google Scholar]
- International Energy Agency (IEA). Energy Technology Perspectives; IEA: Paris, France, 2016. [Google Scholar]
- Johnstone, N.; Hascic, I.; Popp, D. Renewable energy policies and technological innovation: Evidence based on patent counts. Environ. Resour. Econ. 2010, 45, 133–155. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Z.; Qiu, S.; Zhu, L. Effects of environmental regulations on technological innovation efficiency in China’s industrial enterprises: A spatial analysis. Sustainability 2019, 11, 2186. [Google Scholar] [CrossRef] [Green Version]
- Magee, C.L.; Devezas, T.C. Specifying technology and rebound in the IPAT identity. Procedia Manuf. 2018, 21, 476–485. [Google Scholar] [CrossRef]
- Breitung, J. The local power of some unit root tests for panel data. Adv. Econom. Nonstation. Panels Panel Cointegration Dyn. Panels 2000, 15, 161–178. [Google Scholar]
- Levin, A.; Lin, C.; Chu, C.J. Unit root tests in panel data: Asymptotic and finite-sample properties. J. Econom. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Wen, Z.L.; Ye, B.J. Analysis of mediating effects: Development of methods and models. Adv. Psychol. Sci. 2014, 22, 731–745. [Google Scholar] [CrossRef]
- Jeffrey, R.E.; Lisa, S.L. Methods for Integrating Moderation and Mediation: A General Analytical Framework Using Moderated Path Analysis. Psychol. Methods 2007, 12, 1–22. [Google Scholar]
- Hayes, A.F. Beyond Baron and Kenny: Statistical Mediation Analysis in the New Millennium. Commun. Monogr. 2009, 76, 408–420. [Google Scholar] [CrossRef]
Variables | Definition | Mean | SD | Min | Median | Max | |
---|---|---|---|---|---|---|---|
Dependent Variable | AQI | Number of days of air quality excellent status (day) | 263.200 | 60.700 | 93 | 260 | 362 |
Independent Variable | Patent | Number of NEVs invention patent (piece) | 26.330 | 70.660 | 0 | 3 | 523 |
Control Variable | POP | Population (ten thousand) | 4954 | 7540 | 317.600 | 3811.700 | 100,047 |
2nd Industry | The proportion of GDP in the secondary industry (%) | 41.350 | 7.844 | 16.200 | 42.584 | 54.140 | |
VVT Sum | Sum of VVT (ten thousand yuan) | 232,409 | 176,065 | 7647 | 181,762 | 843,520 | |
Forest | Forest coverage rate (%) | 33.000 | 18.090 | 4.240 | 35.840 | 66.800 | |
Mediator Variable | Output | Output of NEVs (ten thousand) | 2.389 | 3.155 | 0 | 1.100 | 15.440 |
Moderator Variable | VVT | 1–1.6 L emissions VVT in 31 provinces (yuan) | 335.500 | 43.960 | 300 | 350 | 420 |
AQI | Patent | POP | 2nd Industry | Sum | Forest | Output | VVT | |
---|---|---|---|---|---|---|---|---|
AQI | 0.317 *** | 0.067 ** | 0.079 ** | 0.070 *** | 0.147 ** | 0.191 ** | 0.076 *** | |
Patent | 0.377 *** | 0.017 *** | −0.199 ** | −0.313 ** | −0.297 *** | 0.208 * | −0.203 *** | |
POP | 0.045 * | 0.022 ** | 0.217 ** | −0.305 * | 0.312 ** | 0.171 *** | 0.509 ** | |
2nd Industry | 0.063 ** | −0.225 * | 0.123 | 0.204 ** | 0.355 *** | 0.041 ** | 0.336 ** | |
VVT Sum | 0.057 * | −0.253 ** | −0.170 ** | 0.140 ** | 0.102 * | −0.025 * | 0.082 * | |
Forest | 0.133 *** | −0.376 * | 0.126 *** | 0.394 * | 0.078 * | 0.216 *** | 0.578 ** | |
Output | 0.212 ** | 0.394 * | 0.166 *** | 0.028 ** | −0.038 | 0.253 *** | 0.149 * | |
VVT | 0.088 ** | −0.144 *** | 0.388 * | 0.357 * | 0.095 ** | 0.320 * | 0.123 |
Variables | Constant |
---|---|
AQI | −0.909 *** |
0 | |
Patent | −1.023 ** |
−0.005 | |
Output | −1.003 ** |
−0.002 | |
VVT | −2.077 ** |
−0.006 | |
2nd Industry | 1.579 * |
−0.002 | |
POP | 1.958 *** |
0 | |
Forest | 2.905 *** |
0 |
Equation | Excluded | Chi-Square | Prob > Chi-Square |
---|---|---|---|
AQI | Patent | 7.812 | 0.005 |
Patent | AQI | 0.066 | 0.798 |
Dependent Variable | AQI | (1) | (2) |
---|---|---|---|
Independent Variable | Patent | 1.012 *** | 1.034 *** |
(2.741) | (2.973) | ||
Control Variable | POP | 0.010 * | |
(1.900) | |||
Forest | −0.017 ** | ||
(−2.305) | |||
2nd Industry | −0.011 ** | ||
(−2.597) | |||
VVT Sum | −0.103 * | ||
(−1.896) | |||
Constant | −71.884 *** | −59.552 * | |
(−5.366) | (−1.694) | ||
Year FE | YES | YES | |
Province FE | YES | YES | |
Observations | 186 | 186 | |
Adj.R2 | 0.360 | 0.336 |
Dependent Variable | Model 2 | Model 3 | ||
---|---|---|---|---|
Output | AQI | |||
Independent Variable | Patent | 0.673 *** (5.565) | Patent | 0.019 *** (2.923) |
Output | 0.023 *** (3.015) | |||
Control Variable | POP | 0.017 *** | POP | 0.031 ** |
(2.918) | (2.336) | |||
Forest | −0.002 | Forest | 0.007 *** | |
(−0.195) | (8.824) | |||
2nd Industry | 0.043 * | 2nd Industry | −0.006 *** | |
(1.819) | (−2.993) | |||
VVT Sum | 0.983 *** | VVT Sum | −0.157 *** | |
(4.045) | (−8.347) | |||
Constant | −12.636 *** | Constant | 7.384 *** | |
(−4.487) | (33.459) | |||
Year FE | YES | Year FE | YES | |
Province FE | YES | Province FE | YES | |
Observations | 186 | Observations | 186 | |
Adj.R2 | 0.319 | Adj.R2 | 0.385 |
Dependent Variable | AQI | ||
---|---|---|---|
Low Tax Group | High Tax Group | ||
Independent Variable | Patent | 0.017 | 8.622 *** |
(1.633) | (3.027) | ||
Control Variable | POP | 0.001 * | −15.451 |
(1.882) | (−1.265) | ||
Forest | 0.003 | 1.877 *** | |
(1.913) * | (7.619) | ||
2nd Industry | −0.017 *** | −57.865 *** | |
(−3.235) | (−3.297) | ||
VVT Sum | −0.362 | −29.897 *** | |
(−1.556) | (−2.758) | ||
Constant | −75.244 | 783.878 *** | |
(−1.264) | (5.070) | ||
Year FE | YES | YES | |
Province FE | YES | YES | |
Observations | 102 | 84 | |
Adj.R2 | 0.394 | 0.441 | |
Difference | 0.908 | ||
Chi-square | 5.12 *** |
Dependent Variable | AQI | (1) | (2) |
---|---|---|---|
Independent Variable | Patent | 1.725 *** | 1.116 *** |
(2.945) | (2.790) | ||
Control Variable | POP | 0.009 * | |
(1.913) | |||
Forest | −0.020 ** | ||
(−2.311) | |||
2nd Industry | −0.016 ** | ||
(−2.479) | |||
VVT Sum | −0.121 * | ||
(−1.877) | |||
Constant | −60.894 *** | −52.769 * | |
(−4.277) | (−1.701) | ||
Year FE | YES | YES | |
Province FE | YES | YES | |
Observations | 186 | 186 | |
Adj.R2 | 0.323 | 0.307 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Zhang, Y.; Rao, X.; Jin, Y. Impact of Technology Innovation on Air Quality—An Empirical Study on New Energy Vehicles in China. Int. J. Environ. Res. Public Health 2021, 18, 4025. https://doi.org/10.3390/ijerph18084025
Hu H, Zhang Y, Rao X, Jin Y. Impact of Technology Innovation on Air Quality—An Empirical Study on New Energy Vehicles in China. International Journal of Environmental Research and Public Health. 2021; 18(8):4025. https://doi.org/10.3390/ijerph18084025
Chicago/Turabian StyleHu, Haoxuan, Yuchen Zhang, Xi Rao, and Yinghua Jin. 2021. "Impact of Technology Innovation on Air Quality—An Empirical Study on New Energy Vehicles in China" International Journal of Environmental Research and Public Health 18, no. 8: 4025. https://doi.org/10.3390/ijerph18084025
APA StyleHu, H., Zhang, Y., Rao, X., & Jin, Y. (2021). Impact of Technology Innovation on Air Quality—An Empirical Study on New Energy Vehicles in China. International Journal of Environmental Research and Public Health, 18(8), 4025. https://doi.org/10.3390/ijerph18084025