Physical and Physiological Predictors of FRAN CrossFit® WOD Athlete’s Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedures
2.2.1. FRAN
2.2.2. RM Pull-Up and Thruster Measurements
2.2.3. Maximum Number of Pull-Ups and Thrusters Measurements
2.2.4. 2K Row Test
2.2.5. Anthropometric Evaluation
2.2.6. Blood Lactate Assessment
2.2.7. Heart Rate Monitoring
2.2.8. Rating of Perceived Exertion (RPE)
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glassman, G. Understanding CrossFit. Crossfit J. 2007, 56, 1. [Google Scholar]
- de Sousa, A.F.; dos Santos, G.B.; dos Reis, T.; Valerino, A.J.; Del Rosso, S.; Boullosa, D.A. Differences in Physical Fitness between Recreational CrossFit® and Resistance Trained Individuals. J. Exerc. Physiol. Online 2016, 19, 112–122. [Google Scholar]
- Heinrich, K.M.; Spencer, V.; Fehl, N.; Poston, C. Mission essential fitness: Comparison of functional circuit training to traditional Army physical training for active duty military. Mil. Med. 2012, 177, 1125–1130. [Google Scholar] [CrossRef] [Green Version]
- Maté-Muñoz, J.L.; Lougedo, J.H.; Barba, M.; Cañuelo-Márquez, A.M.; Guodemar-Pérez, J.; García-Fernández, P.; Lozano-Estevan, M.D.C.; Alonso-Melero, R.; Sánchez-Calabuig, M.A.; Ruíz-López, M. Cardiometabolic and muscular fatigue responses to different crossfit® workouts. J. Sport Sci. Med. 2018, 17, 668. [Google Scholar]
- Murawska-Cialowicz, E.; Wojna, J.; Zuwala-Jagiello, J. Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women. Physiol. Pharmacol. 2015, 66, 811–821. [Google Scholar]
- Landero-Gómez, L.A.; Menacho-Juan, J.M. Analysis of morphofunctional variables associated with performance in Crossfit® competitors. J. Hum. Kinet. 2020, 73, 83–91. [Google Scholar] [CrossRef]
- Heywood, L. The CrossFit sensorium: Visuality, affect and immersive sport. Paragraph 2015, 38, 20–36. [Google Scholar] [CrossRef]
- Butcher, S.J.; Neyedly, T.J.; Horvey, K.J.; Benko, C.R. Do physiological measures predict selected CrossFit® benchmark performance? Open Access J. Sports Med. 2015, 6, 241. [Google Scholar] [CrossRef] [Green Version]
- Bellar, D.; Hatchett, A.; Judge, L.; Breaux, M.; Marcus, L. The relationship of aerobic capacity, anaerobic peak power and experience to performance in CrossFit exercise. Biol. Sport 2015, 32, 315. [Google Scholar] [CrossRef]
- Crawford, D.A.; Drake, N.B.; Carper, M.J.; DeBlauw, J.; Heinrich, K.M. Are Changes in Physical Work Capacity Induced by High-Intensity Functional Training Related to Changes in Associated Physiologic Measures? Sports 2018, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Zeitz, E.K.; Cook, L.F.; Dexheimer, J.D.; Lemez, S.; Leyva, W.D.; Terbio, I.Y.; Tran, J.R.; Jo, E. The Relationship between CrossFit® Performance and Laboratory-Based Measurements of Fitness. Sports 2020, 8, 112. [Google Scholar] [CrossRef]
- Fernández, J.F.; Solana, R.S.; Moya, D.; Marin, J.M.S.; Ramón, M.M. Acute physiological responses during crossfit® workouts. Eur. J. Hum. Mov. 2015, 35, 114–124. [Google Scholar]
- Klusiewicz, A.; Borkowski, L.; Sitkowski, D.; Burkhard-Jagodzińska, K.; Szczepańska, B.; Ładyga, M. Indirect methods of assessing maximal oxygen uptake in rowers: Practical implications for evaluating physical fitness in a training cycle. J. Hum. Kinet. 2016, 50, 187–194. [Google Scholar] [CrossRef]
- McArdle, W.D.; Katch, F.I.; Katch, V.L. Essentials of Exercise Physiology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006. [Google Scholar]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A new approach to monitoring exercise training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar]
- Foster, C.; Boullosa, D.; McGuigan, M.; Fusco, A.; Cortis, C.; Arney, B.E.; Orton, B.; Dodge, C.; Jaime, S.; Radtke, K.; et al. 25 Years of Session Rating of Perceived Exertion: Historical Perspective and Development. Int. J. Sports Physiol. Perform. 2021, 1–10. [Google Scholar] [CrossRef]
- Mangine, G.T.; Cebulla, B.; Feito, Y. Normative values for self-reported benchmark workout scores in crossfit® practitioners. Sports Med. Open 2018, 4, 39. [Google Scholar] [CrossRef]
- Maté-Muñoz, J.L.; Lougedo, J.H.; Barba, M.; García-Fernández, P.; Garnacho-Castaño, M.V.; Domínguez, R. Muscular fatigue in response to different modalities of CrossFit sessions. PLoS ONE 2017, 12, e0181855. [Google Scholar] [CrossRef] [Green Version]
- Serafini, P.R.; Feito, Y.; Mangine, G.T. Self-reported measures of strength and sport-specific skills distinguish ranking in an international online fitness competition. J. Strength Cond. Res. 2018, 32, 3474–3484. [Google Scholar] [CrossRef] [PubMed]
- Claudino, J.G.; Gabbett, T.J.; Bourgeois, F.; de Sá Souza, H.; Miranda, R.C.; Mezêncio, B.; Soncin, R.; Cardoso Filho, C.A.; Bottaro, M.; Hernandez, A.J. Crossfit overview: Systematic review and meta-analysis. Sports Med. Open 2018, 4, 11. [Google Scholar] [CrossRef] [PubMed]
- Feito, Y.; Giardina, M.J.; Butcher, S.; Mangine, G.T. Repeated anaerobic tests predict performance among a group of advanced CrossFit-trained athletes. Appl. Physiol. Nutr. Metab. 2019, 44, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Gómez, R.; Valenzuela, P.L.; Barranco-Gil, D.; Moral-González, S.; García-González, A.; Lucia, A. Full-Squat as a Determinant of Performance in CrossFit. Int. J. Sports Med. 2019, 40, 592–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrar, R.E.; Mayhew, J.L.; Koch, A.J. Oxygen cost of kettlebell swings. J. Strength Cond. Res. 2010, 24, 1034–1036. [Google Scholar] [CrossRef]
- Naclerio, F.J.; Colado, J.C.; Rhea, M.R.; Bunker, D.; Triplett, N.T. The influence of strength and power on muscle endurance test performance. J. Strength Cond. Res. 2009, 23, 1482–1488. [Google Scholar] [CrossRef]
- Soriano, M.A.; Jiménez-Reyes, P.; Rhea, M.R.; Marín, P.J. The optimal load for maximal power production during lower-body resistance exercises: A meta-analysis. Sports Med. 2015, 45, 1191–1205. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, E.; Boullosa, D.A.; Dopico, X.; Carballeira, E. Analysis of factors that influence the maximum number of repetitions in two upper-body resistance exercises: Curl biceps and bench press. J. Strength Cond. Res. 2010, 24, 1566–1572. [Google Scholar] [CrossRef] [PubMed]
Predictors | Median | Interquartile Range |
---|---|---|
(25–75) | ||
FRAN(s) | 242 | 217–242 |
FRAN Blood lactate (mmol L−1) | 12.6 | 10.6–15.2 |
FRAN RPE | 10 | 9–10 |
FRAN HRmax (bpm) | 182 | 179–189 |
FRAN HRav (bpm) | 172 | 164–183 |
1RM Pull-up (rep) | 123.25 | 109.99–139.42 |
1RM Pull-up RPE | 7 | 7–8 |
1RM Thruster (rep) | 88.56 | 74.93–102.18 |
1RM Thruster RPE | 8 | 7–8 |
Maximum Repetitions of Pull-ups (rep) | 35 | 27–38 |
Maximum Repetitions of Pull-ups RPE | 8 | 8 |
Maximum Repetitions of Pull-up Blood lactate (mmol L−1) | 9.7 | 6.9–11.6 |
Maximum Repetitions of Pull-ups HRav (bpm) | 157.5 | 151–162 |
Maximum Repetitions of Pull-ups HRmax (bpm) | 174 | 165.25–178.25 |
Maximum Repetitions Thrusters (rep) | 30 | 25–35 |
Maximum Repetitions Thrusters RPE | 9 | 8–9 |
Maximum Repetitions Thrusters Blood Lactate (mmol L−1) | 10.6 | 8.9–12.5 |
Maximum Repetitions Thrusters HRav (bpm) | 168.5 | 162.75–172.75 |
Maximum Repetitions Thrusters HRmax (bpm) | 174.5 | 172–182 |
2K Row Time(s) | 446 | 436–462 |
2K Row Blood Lactate (mmol L−1) | 14.4 | 10.4–18.1 |
2K Row RPE | 10 | 9–10 |
2K Row HRmax (bpm) | 183 | 178–186 |
2K Row HRav (bpm) | 168 | 163–175 |
2K Row VO2 (L/min) | 51.96 | 49.99–53.88 |
Predictors | FRAN Performance |
---|---|
FRAN Blood Lactate | 0.279 |
FRAN Rate of Perceived Exertion | 0.283 |
FRAN HRmax | −0.103 |
FRAN HRav | 0.130 |
1RM Pull-up | −0.451 |
1RM Thruster | −0.608 * |
Maximum Repetitions of Pull-ups | −0.598 * |
Maximum Repetitions Thrusters | −0.822 * |
2K Row Time | 0.673 * |
2K Row VO2 | −0.471 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leitão, L.; Dias, M.; Campos, Y.; Vieira, J.G.; Sant’Ana, L.; Telles, L.G.; Tavares, C.; Mazini, M.; Novaes, J.; Vianna, J. Physical and Physiological Predictors of FRAN CrossFit® WOD Athlete’s Performance. Int. J. Environ. Res. Public Health 2021, 18, 4070. https://doi.org/10.3390/ijerph18084070
Leitão L, Dias M, Campos Y, Vieira JG, Sant’Ana L, Telles LG, Tavares C, Mazini M, Novaes J, Vianna J. Physical and Physiological Predictors of FRAN CrossFit® WOD Athlete’s Performance. International Journal of Environmental Research and Public Health. 2021; 18(8):4070. https://doi.org/10.3390/ijerph18084070
Chicago/Turabian StyleLeitão, Luis, Marcelo Dias, Yuri Campos, João Guilherme Vieira, Leandro Sant’Ana, Luiz Guilherme Telles, Carlos Tavares, Mauro Mazini, Jefferson Novaes, and Jeferson Vianna. 2021. "Physical and Physiological Predictors of FRAN CrossFit® WOD Athlete’s Performance" International Journal of Environmental Research and Public Health 18, no. 8: 4070. https://doi.org/10.3390/ijerph18084070
APA StyleLeitão, L., Dias, M., Campos, Y., Vieira, J. G., Sant’Ana, L., Telles, L. G., Tavares, C., Mazini, M., Novaes, J., & Vianna, J. (2021). Physical and Physiological Predictors of FRAN CrossFit® WOD Athlete’s Performance. International Journal of Environmental Research and Public Health, 18(8), 4070. https://doi.org/10.3390/ijerph18084070